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Lastly, numbers are applicable even to such things as seem to be governed by no rule, I 
mean such as depend on chance: the quantity of probability and proportion of it in any 
two proposed cases being subject to calculation as much as anything else. Upon this 
depend the principles of game. We find sharpers know enough of this to cheat some 
men that would take it very ill to be thought bubbles; and one gamester exceeds another, 
as he has a greater sagacity and readiness in calculating his probability to win or lose 
in any particular case. To understand the theory of chance thoroughly, requires a great 
knowledge of numbers, and a pretty competent one of Algebra. 

John Arbuthnot 
An essay on the usefulness of mathematical learning 

25 November 1 700 

To this may be added, that some of the problems about chance having a great appearance 
of simplicity, the mind is easily drawn into a belief, that their solution may be attained 
by the mere strength of natural good sense; which generally proving otherwise, and the 
mistakes occasioned thereby being not infrequent, it is presumed that a book of this 
kind, which teaches to distinguish truth from what seems so nearly to resemble it, will 
be looked on as a help to good reasoning. 

Abraham de Moivre 
The Doctrine of Chances 

1 7 1 7  





Preface to the Third Edition 

This book provides an extensive introduction to probability and random processes. It is 
intended for those working in the many and varied applications of the subject as well as for 
those studying more theoretical aspects . We hope it will be found suitable for mathematics 
undergraduates at all levels, as well as for graduate students and others with interests in these 
fields. 

In particular, we aim: 

• to give a rigorous introduction to probability theory while limiting the amount of measure 
theory in the early chapters; 

• to discuss the most important random processes in some depth, with many examples;  

• to include various topics which are suitable for undergraduate courses, but are not routinely 
taught; 

• to impart to the beginner the flavour of more advanced work, thereby whetting the appetite 
for more. 

The ordering and numbering of material in this third edition has for the most part been 
preserved from the second. However, a good many minor alterations and additions have been 
made in the pursuit of clearer exposition .  Furthermore, we have included new sections on 
sampling and Markov chain Monte Carlo, coupling and its applications, geometrical prob­
ability, spatial Poisson processes, stochastic calculus and the Ito integral, Ito 's formula and 
applications, including the Black-Scholes formula, networks of queues, and renewal-reward 
theorems and applications. In a mild manifestation of millennial mania, the number of exer­
cises and problems has been increased to exceed 1 000. These are not merely drill exercises, 
but complement and illustrate the text, or are entertaining, or (usually, we hope) both. In a 
companion volume One Thousand Exercises in Probability (Oxford University Press, 2001 ) ,  
we give worked solutions to almost all exercises and problems . 

The basic layout of the book remains unchanged. Chapters 1-5 begin with the foundations 
of probability theory, move through the elementary properties of random variables, and finish 
with the weak law of large numbers and the central limit theorem; on route, the reader meets 
random walks, branching processes, and characteristic functions. This material is suitable for 
about two lecture courses at a moderately elementary level . The rest of the book is largely 
concerned with random processes. Chapter 6 deals with Markov chains, treating discrete­
time chains in some detail (and including an easy proof of the ergodic theorem for chains 
with countably infinite state spaces) and treating continuous-time chains largely by example. 
Chapter 7 contains a general discussion of convergence, together with simple but rigorous 
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accounts of the strong law of large numbers, and martingale convergence . Each of these two 
chapters could be used as a basis for a lecture course. Chapters 8-1 3  are more fragmented and 
provide suitable material for about five shorter lecture courses on: stationary processes and 
ergodic theory ; renewal processes ; queues; martingales; diffusions and stochastic integration 
with applications to finance. 

We thank those who have read and commented upon sections of this and earlier editions, 
and we make special mention of Dominic Welsh, Brian Davies, Tim Brown, Sean Collins, 
Stephen Suen, Geoff Eagleson, Harry Reuter, David Green, and Bernard Silverman for their 
contributions to the first edition . 

Of great value in the preparation of the second and third editions were the detailed criticisms 
of Michel Dekking, Frank den Hollander, Torgny Lindvall, and the suggestions of Alan Bain, 
Erwin Bolthausen, Peter Clifford, Frank Kelly, Doug Kennedy, Colin McDiarmid, and Volker 
Priebe. Richard Buxton has helped us with classical matters, and Andy Burbanks with the 
design of the front cover, which depicts a favourite confluence of the authors. 

This edition having been reset in its entirety, we would welcome help in thinning the errors 
should any remain after the excellent TpX.-ing of Sarah Shea-Simonds and Julia Blackwell. 

Cambridge and Oxford 
April 200 1 

G. R. G. 
D . R. S .  
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1 
Events and their probabilities 

Summary. Any experiment involving randomness can be modelled as a prob­
ability space. Such a space comprises a set Q of possible outcomes of the 
experiment, a set :F of events, and a probability measure P. The definition and 
basic properties of a probability space are explored, and the concepts of condi­
tional probability and independence are introduced. Many examples involving 
modelling and calculation are included. 

1.1 Introduction 

Much of our life is based on the belief that the future is largely unpredictable . For example, 
games of chance such as dice or roulette would have few adherents if their outcomes were 
known in advance. We express this belief in chance behaviour by the use of words such as 
'random' or 'probability ' ,  and we seek, by way of gaming and other experience, to assign 
quantitative as well as qualitative meanings to such usages. Our main acquaintance with 
statements about probability relies on a wealth of concepts, some more reasonable than others. 
A mathematical theory of probability will incorporate those concepts of chance which are 
expressed and implicit in common rational understanding. Such a theory will formalize these 
concepts as a collection of axioms, which should lead directly to conclusions in agreement with 
practical experimentation. This chapter contains the essential ingredients of this construction. 

1.2 Events as sets 

Many everyday statements take the form 'the chance (or probability) of A is p' , where A is 
some event (such as 'the sun shining tomorrow' ,  'Cambridge winning the Boat Race' , . . .  ) 
and p is a number or adjective describing quantity (such as 'one-eighth' , ' low ' ,  . . .  ) .  The 
occurrence or non-occurrence of A depends upon the chain of circumstances involved. This 
chain is called an experiment or trial ; the result of an experiment is called its outcome. In 
general, we cannot predict with certainty the outcome of an experiment in advance of its 
completion; we can only list the collection of possible outcomes. 

(1) Definition. The set of all possible outcomes of an experiment is called the sample space 
and is denoted by Q. 
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(2) Example. A coin is tossed. There are two possible outcomes, heads (denoted by H) and 
tails (denoted by T), so that Q = {H, T} . We may be interested in the possible occurrences of 
the following events : 

(a) the outcome is a head; 

(b) the outcome is either a head or a tail ; 

(c) the outcome is both a head and a tail (this seems very unlikely to occur) ; 

(d) the outcome is not a head. • 

(3) Example. A die is thrown once. There are six possible outcomes depending on which of 
the numbers 1 , 2, 3 , 4, 5 ,  or 6 is uppermost. Thus Q = { l ,  2, 3 ,  4, 5 ,  6 } .  We may be interested 
in the following events : 

(a) the outcome is the number 1 ;  

(b) the outcome is an even number; 

(c) the outcome is even but does not exceed 3 ;  

(d) the outcome is not even. • 

We see immediately that each of the events of these examples can be specified as a subset 
A of the appropriate sample space Q. In the first example they can be rewritten as 

(a) A = {H} , 

(c) A = {H} n {T} , 

(b) A = {H} U {T} ,  

(d) A = {H}C , 

whilst those of the second example become 

(a) A = { l } , 

(c) A = {2 ,  4,  6}  n { l ,  2 ,  3 } ,  

(b) A = {2 ,  4,  6 } ,  

(d) A = {2, 4, 6 } c .  

The complement of a subset A of Q is  denoted here and subsequently by AC ;  from now on, 
subsets of Q containing a single member, such as {H} , will usually be written without the 
containing braces. 

Henceforth we think of events as subsets of the sample space Q. Whenever A and B are 
events in which we are interested, then we can reasonably concern ourselves also with the 
events AU B ,  A n  B ,  and A c , representing ' A or B ' , 'A  and B ' , and 'not A ' respectively. Events 
A and B are called disjoint if their intersection is the empty set 0; 0 is called the impossible 
event. The set Q is called the certain event, since some member of Q will certainly occur. 

Thus events are subsets of Q, but need all the subsets of Q be events? The answer is no, but 
some of the reasons for this are too difficult to be discussed here. It suffices for us to think of 
the collection of events as a subcollection F of the set of all subsets of Q. This subcollection 
should have certain properties in accordance with the earlier discussion : 

(a) if A ,  B E F then A U B E F and A n B E F ;  

(b) if A E F then A C E F ;  

(c) the empty set 0 belongs to :r. 
Any collection F of subsets of Q which satisfies these three conditions is called afield. It 
follows from the properties of a field F that 

if A I , A2 , . . .  , An E F then 
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Typical notation Set jargon Probability jargon 

n Collection of objects Sample space 

w Member ofn Elementary event, outcome 

A Subset ofn Event that some outcome in A occurs 

AC Complement of A Event that no outcome in A occurs 

AnB Intersection Both A andB 

AUB Union Either A or B or both 

A\B Difference A, but not B 

At;.B Symmetric difference Either A or B, but not both 

AS;B Inclusion If A, then B 

0 Empty set Impossible event 

n Whole space Certain event 

Table 1 . 1 .  The jargon of set theory and probability theory. 

that is to say, F is closed under finite unions and hence under finite intersections also (see 
Problem ( 1 . 8 . 3 » . This is fine when Q is a finite set, but we require slightly more to deal with 
the common situation when Q is infinite, as the following example indicates. 

(4) Example. A coin is tossed repeatedly until the first head turns up; we are concerned 
with the number of tosses before this happens. The set of all possible outcomes is the set 
Q = {WI , W2 , W3 , . . . }, where Wi denotes the outcome when the first i - I tosses are tails 
and the i th toss is a head. We may seek to assign a probability to the event A, that the first 
head occurs after an even number of tosses, that is, A = {W2 , W4, W6, . . .  }. This is an infinite 
countable union of members of Q and we require that such a set belong to F in order that we 
can discuss its probability. • 

Thus we also require that the collection of events be closed under the operation of taking 
countable unions. Any collection of subsets of Q with these properties is called a a-field. 

(5) Definition. A collection F of subsets of Q is called a u-field if it satisfies the following 
conditions: 

(a) 0 E F ;  
(b) if A I , A2 , . . .  E F then U�l Ai E F ;  

(c) if A E F then AC E F .  

It follows from Problem ( 1 . 8 . 3 )  that a-fields are closed under the operation o f  taking 
countable intersections. Here are some examples of a -fields. 

(6) Example. The smallest a-field associated with Q is the collection F = {0, Q} . • 

(7) Example. If A is any subset of Q then F = {0, A ,  A c, Q} is a a -field. • 

(8) Example. The power set of Q, which is written {O , l } Q and contains all subsets of Q, is 
obviously a a-field. For reasons beyond the scope of this book, when Q is infinite, its power 
set is too large a collection for probabilities to be assigned reasonably to all its members. • 
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To recapitulate, with any experiment we may associate a pair (Q, F) ,  where Q is the 
set of all possible outcomes or elementary events and F is a a -field of subsets of Q which 
contains all the events in whose occurrences we may be interested; henceforth, to call a set 
A an event is equivalent to asserting that A belongs to the a-field in question. We usually 
translate statements about combinations of events into set-theoretic jargon; for example, the 
event that both A and B occur is written as A n B . Table 1 . 1  is a translation chart. 

Exercises for Section 1 .2 

1. Let {Ai: i E l} be a collection of sets. Prove 'De Morgan's Laws't: 

(l)Air = (1Al, 
I I 

((1 Air = l)Al. 
I I 

2. Let A and B belong to some a -field:F. Show that .rcontains the sets A n B, A \ B, and A b,. B .  

3. A conventional knock-out tournament (such as that at Wimbledon) begins with 2n competitors 
and has n rounds. There are no play-offs for the positions 2, 3, . . .  , 2n - I ,  and the initial table of 
draws is specified. Give a concise description of the sample space of all possible outcomes. 
4. Let .rbe a a-field of subsets of Q and suppose that B E :F. Show that g, = {A n B : A E J1 is a 
a-field of subsets of B .  

5 .  Which of the following are identically true? For those that are not, say when they are true. 
(a) A U (B n C) = (A U B) n (A U C) ;  
(b) An (B n C) = (A n B) n C;  
(c) (A U B)  n C = AU (B n C) ;  
(d) A \ (B n C) = (A \ B)  U (A \ C) .  

1.3 Probability 

We wish to be able to discuss the likelihoods of the occurrences of events . Suppose that we 
repeat an experiment a large number N of times, keeping the initial conditions as equal as 
possible, and suppose that A is some event which may or may not occur on each repetition. 
Our experience of most scientific experimentation is that the proportion of times that A occurs 
settles down to some value as N becomes larger and larger; that is to say, writing N(A) for 
the number of occurrences of A in the N trials, the ratio N(A)/ N appears to converge to a 
constant limit as N increases. We can think of the ultimate value of this ratio as being the 
probability IP'(A) that A occurs on any particular trial:j:; it may happen that the empirical ratio 
does not behave in a coherent manner and our intuition fails us at this level, but we shall not 
discuss this here. In practice, N may be taken to be large but finite, and the ratio N(A)/N 
may be taken as an approximation to IP'(A ) .  Clearly, the ratio is a number between zero and 
one; if A = 0 then N(0) = 0 and the ratio is 0, whilst if A = Q then N(Q) = N and the 

t Augustus De Morgan is well known for having given the first clear statement of the principle of mathematical 
induction. He applauded probability theory with the words: "The tendency of our study is to substitute the 
satisfaction of mental exercise for the pernicious enjoyment of an immoral stimulus". 

:j:This superficial discussion of probabilities is inadequate in many ways; questioning readers may care to 
discuss the philosophical and empirical aspects of the subject amongst themselves (see Appendix III). 
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ratio is 1 .  Furthermore, suppose that A and B are two disjoint events, each of which may or 
may not occur at each trial. Then 

N(A U B) = N(A ) + N(B) 

and so the ratio N(A U B)/N is the sum of the two ratios N(A)/N and N(B)/N.  We now 
think of these ratios as representing the probabilities of the appropriate events. The above 
relations become 

IP'(A U B) = IP'(A ) + IP'(B) , 1P'(0) = 0, IP'(Q) = 1 .  

This discussion suggests that the probability function IP' should be finitely additive, which is 
to say that 

a glance at Example ( 1 .2.4) suggests the more extensive property that IP' be countably additive, 
in that the corresponding property should hold for countable collections A I , A2 , . . .  of disjoint 
events. 

These relations are sufficient to specify the desirable properties of a probability function IP' 
applied to the set of events . Any such assignment of likelihoods to the members of F is called 
a probability measure. Some individuals refer informally to IP' as a 'probability distribution ' ,  
especially when the sample space i s  finite o r  countably infinite ; this practice i s  best avoided 
since the term 'probability distribution' is reserved for another purpose to be encountered in 
Chapter 2. 

(1) Definition. A probability measure.lP' on (0, F) is a function.lP' : :F -+ [0, 1] satisfying 
(a) .IP'(0) = 0, .IP'(O) = 1; 
(b) if AI, Az, . • .  is a collection of disjoint members of :F, in that Ai n Aj = 0 for all pairs 

i. j satisfying i ::j:. j, then 

The triple (Q, F,.IP'), comprising a set 0, a a-field F of subsets of 0, and a probability 
measure .IP' on (0, F), is called a probability space. 

A probability measure is a special example of what is called a measure on the pair (Q , F ) .  
A measure i s  a function f.L : F -+ [0, 00) satisfying f.L(0) = 0 together with (b) above. A 
measure f.L is a probability measure if f.L(Q ) = 1 .  

We can associate a probability space (Q , F ,  IP') with any experiment, and all questions 
associated with the experiment can be reformulated in terms of this space. It may seem 
natural to ask for the numerical value of the probability IP'(A) of some event A. The answer 
to such a question must be contained in the description of the experiment in question. For 
example, the assertion that a/air coin is tossed once is equivalent to saying that heads and 
tails have an equal probability of occurring; actually, this is the definition of fairness. 
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(2) Example. A coin, possibly biased, is tossed once. We can take Q = {H, T} and :F = 
{0, H, T, Q} , and a possible probability measure JP' : :F � [0, 1 ]  is given by 

JP'(0) = 0, JP'(H) = p, JP'(T) = 1 - p, JP'(Q) = 1 ,  

where p is a fixed real number in the interval [0, 1 ] .  If p = 1, then we say that the coin is 
fair, or unbiased. • 

(3) Example. A die is thrown once. We can take Q = { l ,  2, 3 , 4, 5 ,  6 } ,  :F = {O, l }n, and 
the probability measure JP' given by 

JP'(A) = L Pi for any A S;  Q, 
i EA 

where P I , P2, . . . , P6 are specified numbers from the interval [0, 1 ]  having unit sum. The 
probability that i turns up is Pi . The die is fair if Pi = i for each i ,  in which case 

JP'(A) = i l A I for any A S;  Q, 

where I A I denotes the cardinality of A.  • 

The triple (Q, :F, JP') denotes a typical probability space. We now give some of its simple 
but important properties. 

(4) Lemma. 
(a) JP'(AC) = 1 - JP'(A), 
(b) if B ;2 A then JP'(B) = JP'(A) + JP'(B \ A) 2: JP'(A), 
(c) JP'(A U B) = JP'(A) + JP'(B) - JP'(A n B), 
(d) more generally, if A I , A2 , . . .  , An are events, then 

II' (� A;) � � II'(A;) - t1 11'(A; n Aj ) + ;f. II'(A; n Aj n A.) - . . .  

+ (_ I )n+IJP'(A I n A2 n . . .  n An ) 

where, for example, L i <j sums over all unordered pairs (i , j )  with i =1= j .  

Proof. 
(a) AU AC = Q and A n AC = 0, so JP'(A U AC) = JP'(A) + JP'(N) = 1 .  
(b) B = AU ( B  \ A) . This is the union of disjoint sets and therefore 

JP'(B) = JP'(A) + JP'(B \ A) . 

(c) AU B = AU (B \ A) ,  which is a disjoint union. Therefore, by (b), 

JP'(A U B) = JP'(A) + JP'(B \ A) = JP'(A) + JP'(B \ (A n B» 
= JP'(A) + JP'(B) - JP'(A n B) . 

(d) The proof is by induction on n , and is left as an exercise (see Exercise ( 1 . 3 .4» . • 
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In Lemma (4b), B \ A denotes the set of members of B which are not in A .  In order to 
write down the quantity lP'(B \ A) ,  we require that B \ A belongs to F ,  the domain of lP'; this is 
always true when A and B belong to F, and to prove this was part of Exercise ( 1 .2 .2) .  Notice 
that each proof proceeded by expressing an event in terms of disjoint unions and then applying 
lP'. It is sometimes easier to calculate the probabilities of intersections of events rather than 
their unions ;  part (d) of the lemma is useful then, as we shall discover soon. The next property 
of lP' is more technical, and says that lP' is a continuous set function; this property is essentially 
equivalent to the condition that lP' is countably additive rather than just finitely additive (see 
Problem ( 1 . 8 . 1 6) also). 

(5) Lemma. Let A I ,  A2 , . . .  be an increasing sequence of events, so that A l S; A2 S; A3 S; 
. .  " and write A for their limit : 

Then lP'(A) = limi--->oo lP'(Ai ) . 

00 
A = U Ai = .lim Ai . 

1--->00 i= 1  

Similarly, if BI , B2 , . . .  is  a decreasing sequence of events, so that BI ;::> B2 ;::> B3 ;::> . • " 

then 

satisfies lP'(B) = limi--->oo lP'(Bi ) . 

00 
B = n Bi = .lim Bi 

1--->00 i= 1  

Proof. A = AI  U (A2 \ A I )  U (A3 \ A2) U . . . i s  the union of  a disjoint family of  events. 
Thus, by Definition ( 1 ) ,  

00 
lP'(A) = lP'(A I ) + L lP'(Ai+ 1 \ Ai ) 

i=1  
n- I = lP'(A I )  + lim "' [lP'(Ai+l ) - lP'(Ai ) ] n---7- oo L..... 
i= 1  

To show the result for decreasing families of  events, take complements and use  the first part 
(exercise) .  • 

To recapitulate, statements concerning chance are implicitly related to experiments or 
trials, the outcomes of which are not entirely predictable. With any such experiment we can 
associate a probability space (Q , F , lP') the properties of which are consistent with our shared 
and reasonable conceptions of the notion of chance. 

Here is some final jargon. An event A is called null if lP'(A) = O. If lP'(A) = 1, we say 
that A occurs almost surely. Null events should not be confused with the impossible event 
0. Null events are happening all around us, even though they have zero probability ; after all, 
what is the chance that a dart strikes any given point of the target at which it is thrown? That 
is, the impossible event is null, but null events need not be impossible . 
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Exercises for Section 1 . 3 

1. Let A and B be events with probabilities IP'(A) = i and lP'(B) = �. Show that /2 � IP'(AnB) � �, 
and give examples to show that both extremes are possible. Find corresponding bounds for IP'(A U B) .  

2 .  A fair coin is tossed repeatedly. Show that, with probability one, a head turns up sooner or  later. 
Show similarly that any given finite sequence of heads and tails occurs eventually with probability 
one. Explain the connection with Murphy's Law. 

3. Six cups and saucers come in pairs : there are two cups and saucers which are red, two white, and 
two with stars on. If the cups are placed randomly onto the saucers (one each), find the probability 
that no cup is upon a saucer of the same pattern. • 

4. Let A I , A 2 , . . .  , An be events where n :::: 2, and prove that 

1P'( U Ai ) = L IP'(A i ) - L IP'(A i n Aj ) + L IP'(A i n Aj n Ak ) 
i= l i i <j i <j <k 

In each packet of Corn Flakes may be found a plastic bust of one of the last five Vice-Chancellors 
of Cambridge University, the probability that any given packet contains any specific Vi ce-Chancellor 
being �, independently of all other packets. Show that the probability that each of the last three 

Vice-Chancellors is obtained in a bulk purchase of six packets is I - 3 (� )6 + 3 (� )6 _ (� )6 . 

5. Let Ar , r :::: 1, be events such that IP'(Ar ) = 1 for all r .  Show that lP' (n� l Ar ) = 1 .  

6. You are given that at least one of the events Ar , 1 � r � n, is certain to occur, but certainly no 
more than two occur. If IP'(Ar ) = p, and IP'(Ar n As ) = q, r =f. s ,  show that p :::: l in  and q � 21n . 

7. You are given that at least one, but no more than three, of the events Ar , 1 � r � n, occur, where 
n :::: 3 .  The probability of at least two occurring is i. If IP'(Ar ) = p, IP'(Ar n As ) = q, r =f. s ,  and 
IP'(Ar n As n At )  = x, r < s < t, show that p :::: 3/ (2n) ,  and q � 41n . 

1.4 Conditional probability 

Many statements about chance take the form ' if B occurs, then the probability of A is p', 
where B and A are events (such as ' it rains tomorrow' and 'the bus being on time' respectively) 
and p is a likelihood as before. To include this in our theory, we return briefly to the discussion 
about proportions at the beginning of the previous section. An experiment is repeated N times, 
and on each occasion we observe the occurrences or non-occurrences of two events A and 
B .  Now, suppose we only take an interest in those outcomes for which B occurs ; all other 
experiments are disregarded. In this smaller collection of trials the proportion of times that A 
occurs is N (A n B)  j N (B) ,  since B occurs at each of them. However, 

N(A n B) 

N(B)  

N(A n B) j N 

N(B) j N  

If we now think of these ratios as probabilities, we see that the probability that A occurs, given 
that B occurs, should be reasonably defined as lP'(A n B ) j lP'(B) .  

Probabilistic intuition leads to the same conclusion. Given that an event B occurs, it i s  the 
case that A occurs if and only if A n B occurs . Thus the conditional probability of A given B 
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should be proportional to JP>(A n B) ,  which is to say that it equals aJP>(A n B)  for some constant 
a = a(B) .  The conditional probability of Q given B must equal 1 ,  and thus aJP>(Q n B)  = 1 ,  
yielding a = 1 /JP>(B) . 

We formalize these notions as follows .  

(1) Definition. If JP'(B) > 0 then the conditional probability that A occurs given that B 
occurs is defined to be 

JP'(A I B) = 
P(A n B) 

P(B) . 
We denote this conditional probability by JP>(A I B) ,  pronounced 'the probability of A given 

B ' , or sometimes 'the probability of A conditioned (or conditional) on B ' . 

(2) Example. Two fair dice are thrown. Given that the first shows 3, what is the probability 
that the total exceeds 6? The answer is obviously � ,  since the second must show 4, 5, or 
6. However, let us labour the point. Clearly Q = { I ,  2 ,  3, 4, 5, 6f , the sett of all ordered 
pairs (i ,  j) for i, j E { I ,  2, . . . , 6 } ,  and we can take F to be the set of all subsets of Q, with 
JP>(A) = I A I /36 for any A S; Q.  Let B be the event that the first die shows 3, and A be the 
event that the total exceeds 6. Then 

B = { (3 , b) : 1 S b S 6} ,  A = { (a ,  b) : a + b  > 6 } ,  An B = { (3 , 4) , (3 , 5 ) ,  (3 , 6) } ,  

and 
JP>(A n B)  I A  n B I 3 

JP>(A I B)  = 
JP>(B) 

= 
I B I  

= 6· • 

(3) Example. A family has two children. What is the probability that both are boys, given 
that at least one is a boy? The older and younger child may each be male or female, so there 
are four possible combinations of sexes, which we assume to be equally likely. Hence we can 
represent the sample space in the obvious way as 

where JP>(GG) 
probability, 

Q = {GG, GB , BG, BB} 

JP>(BB) = JP>(GB) = JP>(BG) = i. From the definition of conditional 

JP>(BB l one boy at least) = JP>(BB I GB U BG U BB) 

JP>(BB n (GB U BG U BB» 
JP>(GB U BG U BB) 

JP>(BB) 1 
-

JP>(GBU BGU BB) 3 

A popular but incorrect answer to the question is �. This is the correct answer to another 
question: for a family with two children, what is the probability that both are boys given that 
the younger is a boy? In this case, 

JP>(BB) 1 

JP>(BB I younger is a boy) = JP>(BB I GB U BB) 
JP>(BB n (GB U BB» 

JP>(GB U BB) JP>(GB U BB) 2 

tRemember that A x B = {(a, b) : a E A, bE B} and that A x A = A2. 
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The usual dangerous argument contains the assertion 

lP'(BB l one child is a boy) = lP'( other child is a boy) . 

Why is this meaningless? [Hint: Consider the sample space.] • 

The next lemma is crucially important in probability theory. A family Bl , B2 , . . .  , Bn of 
events is called a partition of the set Q if 

n 
Bi n Bj = 0 when i =I- j ,  and U Bi = Q .  

i= 1 

Each elementary event (J) E Q belongs to exactly one set in a partition of Q.  

(4) Lemma. For any events A and B such that 0 < lP'(B) < 1, 

lP'(A) = p(Ai I B)P(B) + lP'(A I BC)lP'(BC). 
More generally. let B1. B2 •• • .  , Bn be a partition off'!. such that lP'(B/) > Ofor all i. Then 

n 

lP'(A) = L lP'(A I B;)lP'(Bj). 
i=1 

Proof. A = (A n B )  U (A n BC) .  This is a disjoint union and so 

lP'(A) = lP'(A n B) + lP'(A n BC) = lP'(A I B )lP'(B) + lP'(A I BC)lP'(BC) .  

The second part i s  similar (see Problem ( 1 . 8 . 1 0» . • 

(5) Example. We are given two urns, each containing a collection of coloured balls. Urn I 
contains two white and three blue balls, whilst urn II contains three white and four blue balls .  
A ball is drawn at random from urn I and put into urn II, and then a ball is picked at random 
from urn II and examined. What is the probability that it is blue? We assume unless otherwise 
specified that a ball picked randomly from any urn is equally likely to be any of those present. 
The reader will be relieved to know that we no longer need to describe (Q , :F, lP') in detail; 
we are confident that we could do so if necessary. Clearly, the colour of the final ball depends 
on the colour of the ball picked from urn I. So let us ' condition' on this . Let A be the event 
that the final ball is blue, and let B be the event that the first one picked was blue. Then, by 
Lemma (4), 

lP'(A) = lP'(A I B )lP'(B) + lP'(A I BC)lP'(BC) .  

We can easily find all these probabilities: 

lP'(A I B )  = lP'(A I urn II contains three white and five blue balls) = i, 
lP'(A I BC) = lP'(A I urn II contains four white and four blue balls) = i, 

lP'(B) = �, lP'(BC) = �. 
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Hence 
JP'(A) = i . � + ! . � = �6' • 

Unprepared readers may have been surprised by the sudden appearance of urns in this book. 
In the seventeenth and eighteenth centuries, lotteries often involved the drawing of slips from 
urns, and voting was often a matter of putting slips or balls into urns. In France today, aller aux 
urnes is synonymous with voting. It was therefore not unnatural for the numerous Bemoullis 
and others to model births, marriages, deaths, fluids, gases, and so on, using urns containing 
balls of varied hue. 

(6) Example. Only two factories manufacture zoggles .  20 per cent of the zoggles from factory 
I and 5 per cent from factory II are defective. Factory I produces twice as many zoggles as 
factory II each week. What is the probability that a zoggle, randomly chosen from a week's 
production, is satisfactory? Clearly this satisfaction depends on the factory of origin. Let A 
be the event that the chosen zoggle is satisfactory, and let B be the event that it was made in 
factory I. Arguing as before, 

JP'(A) = JP'(A I B )JP'(B) + JP'(A I BC)JP'(BC) 
4 2 19 1 51 = "5 • :3 + 20 . :3 = 60 ' 

If the chosen zoggle is defective, what is the probability that it came from factory I? In our 
notation this is just JP'(B I AC) .  However, 

C JP'(B n AC) JP'(AC I B )JP'(B) ! . � 8 
JP'(B I A ) = 

JP'(AC)  
= 

JP'(AC) 
= 

1 _ 51 9 60 
• 

This section is terminated with a cautionary example. It is not untraditional to perpetuate 
errors of logic in calculating conditional probabilities. Lack of unambiguous definitions and 
notation has led astray many probabilists, including even Boole, who was credited by Russell 
with the discovery of pure mathematics and by others for some of the logical foundations of 
computing. The well-known 'prisoners ' paradox' also illustrates some of the dangers here. 

(7) Example. Prisoners' paradox. In a dark country, three prisoners have been incarcerated 
without trial. Their warder tells them that the country's dictator has decided arbitrarily to free 
one of them and to shoot the other two, but he is not permitted to reveal to any prisoner the 
fate of that prisoner. Prisoner A knows therefore that his chance of survival is §-. In order 
to gain information, he asks the warder to tell him in secret the name of some prisoner (but 
not himself) who will be killed, and the warder names prisoner B .  What now is prisoner A:s 
assessment of the chance that he will survive? Could it be ! :  after all, he knows now that 

the survivor will be either A or C, and he has no information about which? Could it be §-: 
after all, according to the rules, at least one of B and C has to be killed, and thus the extra 
information cannot reasonably affect A: s earlier calculation of the odds? What does the reader 
think about this? The resolution of the paradox lies in the situation when either response (B 
or C) is possible. 

An alternative formulation of this paradox has become known as the Monty Hall problem, 
the controversy associated with which has been provoked by Marilyn vos Savant (and many 
others) in Parade magazine in 1 990; see Exercise ( 1 .4 .5) .  • 
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Exercises for Section 1 .4 

1 .4 Events and their probabilities 

1. Prove that JP'(A I B) = JP'(B I A)JP'(A) /JP'(B) whenever JP'(A)JP'(B) =1= O. Show that, if JP'(A I B) > 
JP'(A), then JP'(B I A) > JP'(B) .  

2 .  For events AI , A2 , "" An satisfying JP'(AI n A2 n··· n An-d > 0 ,  prove that 

3. A man possesses five coins, two of which are double-headed, one is double-tailed, and two are 
normal. He shuts his eyes, picks a coin at random, and tosses it. What is the probability that the lower 
face of the coin is a head? 

He opens his eyes and sees that the coin is showing heads ; what is the probability that the lower 
face is a head? 

He shuts his eyes again, and tosses the coin again. What is the probability that the lower face is 
a head? 

He opens his eyes and sees that the coin is showing heads; what is  the probability that the lower 
face is a head? 

He discards this coin, picks another at random, and tosses it. What is the probability that it shows 
heads? 

4. What do you think of the following 'proof' by Lewis Carroll that an urn cannot contain two balls 
of the same colour? Suppose that the urn contains two balls, each of which is either black or white; 
thus, in the obvious notation, JP'(BB) = JP'(BW) = JP'(WB) = JP'(WW) = i. We add a black ball, so 

that JP'(BBB) = JP'(BBW) = JP'(BWB) = JP'(BWW) = i. Next we pick a ball at random; the chance 

that the ball is black is (using conditional probabilities) 1 . i + � . i + � . i + � . i = �. However, if 

there is probability � that a ball, chosen randomly from three, is black, then there must be two black 
and one white, which is to say that originally there was one black and one white ball in the urn. 

5. The Monty Hall problem: goats and cars. (a) Cruel fate has made you a contestant in a game 
show; you have to choose one of three doors . One conceals a new car, two conceal old goats. You 
choose, but your chosen door is not opened immediately. Instead, the presenter opens another door 
to reveal a goat, and he offers you the opportunity to change your choice to the third door (unopened 
and so far unchosen). Let p be the (conditional) probability that the third door conceals the car. The 
value of p depends on the presenter's protocol. Devise protocols to yield the values p = � ,  p = �. 
Show that, for a E [ � , �] ,  there exists a protocol such that p = a. Are you well advised to change 
your choice to the third door? 
(b) In a variant of this question, the presenter is permitted to open the first door chosen, and to reward 
you with whatever lies behind. If he chooses to open another door, then this door invariably conceals 
a goat. Let p be the probability that the unopened door conceals the car, conditional on the presenter 
having chosen to open a second door. Devise protocols to yield the values p = 0, p = I ,  and deduce 
that, for any a E [0, 1] ,  there exists a protocol with p = a. 
6. The prosecutor's fallacyt. Let G be the event that an accused is guilty, and T the event that 
some testimony is true. Some lawyers have argued on the assumption that JP'(G I T) = JP'(T I G) .  
Show that this holds i f  and only i f  JP'(G) = JP'(T). 

7. Urns. There are n urns of which the rth contains r - 1 red balls and n - r magenta balls. You 
pick an urn at random and remove two balls at random without replacement. Find the probability that: 
(a) the second ball is magenta; 
(b) the second ball is magenta, given that the first is magenta. 

tThe prosecution made this error in the famous Dreyfus case of 1894. 
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1.5 Independence 

In general, the occurrence of some event B changes the probability that another event A 
occurs, the original probability IP'(A) being replaced by IP'(A I B ) .  If the probability remains 
unchanged, that is to say IP'(A I B )  = IP' (A ) , then we call A and B ' independent' . This is 
well defined only if IP'(B) > O. Definition ( 1 .4 . 1 )  of conditional probability leads us to the 
following. 

(1) Definition. Events A and B are called independent if 

JP>(A n B) = JP>(A)JP>(B). 

More generally, a family {Ai: i E I} is called independent if 

for all finite subsets J of I. 
Remark. A common student error is to make the fallacious statement that A and B are 
independent if A n B = 0. 

If the family {A i : i E I }  has the property that 

for all i =1= j 

then it is called pairwise independent . Pairwise-independent families are not necessarily 
independent, as the following example shows. 

(2) Example. Suppose Q = {abc, acb, cab ,  cba , bca ,  bac, aaa , bbb, ccc } ,  and each of the 
nine elementary events in Q occurs with equal probability �. Let Ak be the event that the kth 
letter is a .  It is left as an exercise to show that the family {A I , A2 , A3 } is pairwise independent 
but not independent. • 

(3) Example (1.4.6) revisited. The events A and B of this example are clearly dependent 
because IP'(A I B) = � and IP'(A ) = ��. • 

(4) Example. Choose a card at random from a pack of 52 playing cards, each being picked 
with equal probability 5�' We claim that the suit of the chosen card is independent of its rank. 
For example, 

lP'(king) = ;i, lP'(king I spade) = 1
1
3 , 

Alternatively, 
lP'(spade king) = A = i . /3 = lP'(spade)lP'(king). • 

Let C be an event with IP'(C) > O. To the conditional probability measure IP'( . I C) 
corresponds the idea of conditional independence. Two events A and B are called conditionally 
independent given C if 

(5) IP'(A n B I C) = IP'(A I C)IP'(B I C) ; 

there is a natural extension to families of events. [However, note Exercise ( 1 . 5 .5) . ]  
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Exercises for Section 1 . 5 

1. Let A and B be independent events; show that AC, B are independent, and deduce that AC, BC 
are independent. 

2. We roll a die n times. Let Aij be the event that the i th and jth rolls produce the same number. 
Show that the events {Aij : 1 ::s i < j ::s n } are pairwise independent but not independent. 

3. A fair coin is tossed repeatedly. Show that the following two statements are equivalent: 
(a) the outcomes of different tosses are independent, 
(b) for any given finite sequence of heads and tails, the chance of this sequence occurring in the first 

m tosses is 2-m, where m is the length of the sequence. 

4. Let Q = { I ,  2, . . . , p } where p is prime, J"be the set of all subsets of Q, and IP'(A) = I A I I p for 
all A E :F. Show that, if A and B are independent events, then at least one of A and B is either 0 or 
Q. 
5. Show that the conditional independence of A and B given C neither implies, nor is implied by, 
the independence of A and B .  For which events C is it the case that, for all A and B,  the events A and 
B are independent if and only if they are conditionally independent given C? 

6. Safe or  sorry? Some form of prophylaxis i s  said to b e  9 0  per cent effective at prevention during 
one year's treatment. If the degrees of effectiveness in different years are independent, show that the 
treatment is more likely than not to fail within 7 years . 

7. Families. Jane has three children, each of which is equally likely to be a boyar a girl independently 
of the others. Define the events : 

A = {all the children are of the same sex} , 

B = {there is at most one boy } ,  

C = {the family includes a boy and a girl } .  

(a) Show that A i s  independent of B,  and that B i s  independent of  C . 
(b) Is A independent of C ?  
(c) D o  these results hold i f  boys and girls are not equally likely? 
(d) Do these results hold if Jane has four children? 

8. Galton's paradox. You flip three fair coins . At least two are alike, and it is an evens chance that 
the third is a head or a tail. Therefore lP'(all alike) = i. Do you agree? 

9. Two fair dice are rolled. Show that the event that their sum is 7 is independent of the score shown 
by the first die. 

1.6 Completeness and product spaces 

This section should be omitted at the first reading, but we shall require its contents later. It 
contains only a sketch of complete probability spaces and product spaces ;  the reader should 
look elsewhere for a more detailed treatment (see Billingsley 1 995) .  We require the following 
result. 

(1) Lemma. If :F and g, are two a -fields of subsets of Q then their intersection :F n g, is 
a a -field also. More generally, if {J:! : i E l } is a family of a-fields of subsets of Q then 
g, = niEI J:! is a a-field also. 
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The proof i s  not difficult and i s  left as an exercise. Note that the union F U 9. may not be a 
a -field, although it may be extended to a unique smallest a -field written a (F U 9.), as follows. 
Let {9.; : i E l} be the collection of all a -fields which contain both F and 9. as subsets ; this 
collection is non-empty since it contains the set of all subsets of Q. Then 9. = niEI 9.i is the 
unique smallest a -field which contains F U 9.. 

(A) Completeness. Let (Q, F ,  lP') be a probability space. Any event A which has zero 
probability, that is lP'(A) = 0, is called null. It may seem reasonable to suppose that any subset 
B of a null set A will itself be null, but this may be without meaning since B may not be an 
event, and thus lP'(B) may not be defined. 

(2) Definition. A probability space (Q, F ,  lP') is called complete if all subsets of null sets 
are events . 

Any incomplete space can be completed thus. Let N be the collection of all subsets of 
null sets in F and let 9. = a (F U N) be the smallest a-field which contains all sets in F 
and N. It can be shown that the domain of lP' may be extended in an obvious way from F to 
9.; (Q, 9., lP') is called the completion of (Q, F ,  lP') . 

(B) Product spaces. The probability spaces discussed in this chapter have usually been con­
structed around the outcomes of one experiment, but instances occur naturally when we need 
to combine the outcomes of several independent experiments into one space (see Examples 
( 1 .2 .4) and ( 1 .4.2» . How should we proceed in general? 

Suppose two experiments have associated probability spaces (Q1 , F1 , lP'1 ) and (Q2 , F2 , lP'2) 
respectively. The sample space of the pair of experiments, considered jointly, is the collection 
Q1 x Q2 = { (WI , W2) : WI E Q1 , W2 E Q2} of ordered pairs . The appropriate a -field of events 
is more complicated to construct. Certainly it should contain all subsets of Q 1 x Q2 of the form 
A I  X A2 = { (a1 , a2) :  a1 E A I , a2 E A2 } where A 1 and A2 are typical members of Fl and F2 
respectively. However, the family of all such sets, F1 x F2 = {A I x A2 : A l E F1 , A2 E F2 } ,  
is not in  general a a -field. By the discussion after ( 1 ) , there exists a unique smallest a -field 
9. = a (Fl x F2) of subsets of Q1 x Q2 which contains F1 x F2 . All we require now is a 
suitable probability function on (Q1 x Q2, 9.). Let lP'12 : F1 x F2 -+ [0, 1] be given by: 

(3) 

It can be shown that the domain of lP'12 can be extended from F1 x F2 to the whole of 
9. = a (Fl x F2) ' The ensuing probability space (Q1 x Q2, 9., lP'12 ) is  called the product 
space of (QI ,  FI , lP'1 ) and (Q2 , F2 , lP'2) .  Products of larger numbers of spaces are constructed 
similarly. The measure lP'12  is sometimes called the 'product measure' since its defining 
equation (3) assumed that two experiments are independent. There are of course many other 
measures that can be applied to (Q1 x Q2, 9.). 

In many simple cases this technical discussion is unnecessary. Suppose that Q1 and Q2 
are finite, and that their a -fields contain all their subsets; this is the case in Examples ( 1 .2.4) 
and ( 1 .4.2) . Then 9. contains all subsets of Q1 x Q2. 
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1.7 Worked examples 

Here are some more examples to illustrate the ideas of this chapter. The reader is now equipped 
to try his or her hand at a substantial number of those problems which exercised the pioneers 
in probability. These frequently involved experiments having equally likely outcomes, such 
as dealing whist hands, putting balls of various colours into urns and taking them out again, 
throwing dice, and so on. In many such instances, the reader will be pleasantly surprised to 
find that it is not necessary to write down (Q, :F ,  lP') explicitly, but only to think of Q as being 
a collection {WI , W2 , . . .  , WN } of possibilities, each of which may occur with probability l iN. 
Thus, lP'(A) = I A I I N for any A <::::: Q. The basic tools used in such problems are as follows. 

(a) Combinatorics : remember that the number of permutations of n objects is  n !  and that 
the number of ways of choosing r objects from n is (;) . 

(b) Set theory : to obtain lP'(A) we can compute lP'(AC) = 1 - lP'(A) or we can partition A 
by conditioning on events Bi , and then use Lemma ( 1 .4.4) . 

(c) Use of independence. 

(1) Example. Consider a series of hands dealt at bridge. Let A be the event that in a given 
deal each player has one ace . Show that the probability that A occurs at least once in seven 
deals is approximately ! . 

Solution. The number of ways of dealing 52 cards into four equal hands is 52 ! / ( 1 3 ! )4 . There 
are 4 !  ways of distributing the aces so that each hand holds one, and there are 48 ! / ( 1 2 ! )4 ways 
of dealing the remaining cards. Thus 

4 ! 48 ! / ( 1 2 ! )4 1 lP'(A) = 
52 ! / ( 1 3 ! )4 � 10

· 

Now let Bi be the event that A occurs for the first time on the i th deal . Clearly Bi n Bj = 0, 
i =1= j .  Thus 

7 
lP'(A occurs in seven deals) = lP'(BI U · · · U B7) = L lP'(Bi ) using Definition ( 1 . 3 . 1 ) .  

1 
Since successive deals are independent, we have 

Thus 

lP'(Bi ) = lP'(AC occurs on deal 1 ,  AC occurs on deal 2, 

. . .  , A C occurs on deal i - I , A occurs on deal i ) = lP'(Ac) i- I lP'(A) using Definition ( 1 . 5 . 1 )  

� ( 1 - I�r- l I� . 
7 7 . I 

lP'(A occurs in seven deals) = LlP'(Bi ) � L uor- 1� � ! . 
I 1 

Can you see an easier way of obtaining this answer? • 

(2) Example. There are two roads from A to B and two roads from B to C. Each of the four 
roads has probability p of being blocked by snow, independently of all the others. What is 
the probability that there is  an open road from A to C? 
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lP'(open road) = lP'( open road from A to B) n (open road from B to C») = lP'(open road from A to B)lP'(open road from B to C) 

using the independence. However, P is  the same for all roads; thus, using Lemma ( 1 . 3 .4) , 

lP'(open road) = ( I - lP'(no road from A to B»)2 = { I - lP' ( (first road blocked) n (second road blocked») } 2 = { I - lP'(first road blocked)lP'(second road blocked) } 2 

using the independence. Thus 

(3) 

1 7  

Further suppose that there is  also a direct road from A to C, which is  independently blocked 
with probability p. Then, by Lemma ( 1 .4.4) and equation (3) ,  

lP'(open road) = lP'(open road I direct road blocked) . P 

+ lP'(open road I direct road open) . ( 1  - p) = ( 1  - p2)2 . P + 1 . ( 1  - p) . • 

(4) Example. Symmetric random walk (or 'Gambler's ruin'). A man is saving up to buy 
a new Jaguar at a cost of N units of money. He starts with k units where 0 < k < N, and 
tries to win the remainder by the following gamble with his bank manager. He tosses a fair 
coin repeatedly; if it comes up heads then the manager pays him one unit, but if it comes up 
tails then he pays the manager one unit. He plays this game repeatedly until one of two events 
occurs : either he runs out of money and is bankrupted or he wins enough to buy the Jaguar. 
What is the probability that he is ultimately bankrupted? 
Solution. This is one of many problems the solution to which proceeds by the construction 
of a linear difference equation subject to certain boundary conditions .  Let A denote the event 
that he is eventually bankrupted, and let B be the event that the first toss of the coin shows 
heads. By Lemma ( 1 .4.4), 

(5) 

where lP'k denotes probabilities calculated relative to the starting point k . We want to find 
lP'k (A) .  Consider lP'k (A I B ) .  If the first toss is a head then his capital increases to k + 1 units 
and the game starts afresh from a different starting point. Thus lP'k (A I B) = lP'HI (A) and 
similarly lP'k (A I Be) = lP'k- 1 (A) . So, writing Pk = lP'k (A) , (5) becomes 

(6) Pk = !- (Pk+ I + Pk- d if 0 < k < N, 

which is a linear difference equation subject to the boundary conditions PO = 1 ,  PN = O. 
The analytical solution to such equations is routine, and we shall return later to the general 
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method of solution. In this case we can proceed directly. We put bk = Pk - Pk- l to obtain 
bk = bk- I and hence bk = bl for all k . Thus 

Pk = bl + Pk- I = 2b1 + Pk-2 = . . .  = kb1 + PO 

is the general solution to (6). The boundary conditions imply that PO = 1 ,  bl = - 1 / N, giving 

(7) 
k 

lP'k(A) = 1 - - . 
N 

As the price of the Jaguar rises, that is as N � 00, ultimate bankruptcy becomes very likely. 
This is the problem of the ' symmetric random walk with two absorbing barriers' to which we 
shall return in more generality later. • 

Remark. Our experience of student calculations leads us to stress that probabilities lie be­
tween zero and one; any calculated probability which violates this must be incorrect. 

(8) Example. Testimony. A court is investigating the possible occurrence of an unlikely event 
T .  The reliability of two independent witnesses called Alf and Bob is known to the court: 
Alf tells the truth with probability a and Bob with probability fJ, and there is no collusion 
between the two of them. Let A and B be the events that Alf and Bob assert (respectively) 
that T occurred, and let r = lP'(T) . What is the probability that T occurred given that both 
Alf and Bob declare that T occurred? 
Solution. We are asked to calculate lP'(T I A n B) ,  which is equal to lP'(T n A  n B)/lP'(A n B ) .  
Now lP'(T  n A n  B)  = lP'(A n B I T)lP'(T) and 

lP'(A n B )  = lP'(A n B I T)lP'(T) + lP'(A n B I TC )lP'(TC) .  

We have from the independence of the witnesses that A and B are conditionally independent 
given either T or TC • Therefore 

so that 

lP'(A n B I T) = lP'(A I T)lP'(B I T) = afJ, 

lP'(A n B I TC ) = lP'(A I TC )lP'(B I TC ) = ( 1  - a) ( 1  - fJ) ,  

lP'(T I A n B)  = afJr 
afJr + ( 1  - a) ( 1  - fJ) ( 1  - r )  

As an example, suppose that a = fJ = (o and r = 1 / 1 000. Then lP'(T I A nB) = 8 1 / 1080, 
which is  somewhat small as a basis for a judicial conclusion. 

This calculation may be informative. However, it is generally accepted that such an appli-
cation of the axioms of probability is inappropriate to questions of truth and belief. • 

(9) Example. Zoggles revisited. A new process for the production of zoggles is invented, 
and both factories of Example ( 1 .4.6) install extra production lines using it. The new process 
is  cheaper but produces fewer reliable zoggles, only 75 per cent of items produced in this new 
way being reliable. 

Factory I fails to implement its new production line efficiently, and only 10  per cent of its 
output is made in this manner. Factory II does better: it produces 20 per cent of its output by 
the new technology, and now produces twice as many zoggles in all as Factory I. 
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I s  the  new process beneficial to the consumer? 
Solution. Both factories now produce a higher proportion of unreliable zoggles than before, 
and so it might seem at first sight that there is an increased proportion of unreliable zoggles 
on the market. 

Let A be the event that a randomly chosen zoggle is satisfactory, B the event that it came 
from factory I, and C the event that it was made by the new method. Then 

lP'(A) = �lP'(A I B) + �lP'(A I BC) 

= � UolP'(A I B n  C) + folP'(A I B n  CC )) 
+ � OlP'(A I BC n C) + �lP'(A I BC n CC)) 

1 ( 1 3 9 4) 2 ( 1 3 4 19 ) 523 51 = :3 TO '  4 + 1 0 . 5' + 3' 5" 4 + 5' . 20 = 600 > 60 ' 

so that the proportion of satisfactory zoggles has been increased. • 

(10) Example. Simpson's paradoxt. A doctor has performed clinical trials to determine 
the relative efficacies of two drugs, with the following results . 

Success 
Failure 

Women 
Drug I Drug ll 

200 
1 800 

10  
1 90 

Men 
Drug I Drug ll 

1 9  1 000 
1000 

Which drug is the better? Here are two conflicting responses. 
1 .  Drug I was given to 2020 people, of whom 2 1 9  were cured. The success rate was 

2 1912020, which is much smaller than the corresponding figure, 1 0 1012200, for drug II. 
Therefore drug II is better than drug I. 

2. Amongst women the success rates of the drugs are 1 1 10  and 1 120, and amongst men 
19120 and 1 12 .  Drug I wins in both cases. 

This well-known statistical paradox may be reformulated in the following more general 
way. Given three events A , B ,  C, it is possible to allocate probabilities such that 

(11) lP'(A I B n  C) > lP'(A I BC n C) and lP'(A I B n  CC) > lP'(A I BC n CC) 

but 

(12) lP'(A I B) < lP'(A I BC) .  

tThis paradox, named after Simpson ( 1 95 1 ), was remarked by Yule in 1 903.  The nomenclature is an 
instance of Stigler's law of eponymy: "No law, theorem, or discovery is named after its originator". This law 
applies to many eponymous statements in this book, including the law itself. As remarked by A. N. Whitehead, 
"Everything of importance has been said before, by somebody who did not discover it". 
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d DI 

Figure 1 . 1 .  Two unions of rectangles illustrating Simpson's paradox. 

We may think of A as the event that treatment is successful, B as the event that drug I is given 
to a randomly chosen individual, and C as the event that this individual is female. The above 
inequalities imply that B is preferred to BC when C occurs and when CC occurs, but BC is  
preferred to B overall. 

Setting 

a = JP>(A n B n C) ,  b = JP>(Ac n B n C) ,  

e = JP>(A n BC n C) , d = JP>(AC n BC n C) , 

e = JP>(A n B n CC) ,  j = JP>(AC n B n CC) ,  

g = JP>(A n BC n CC) ,  h = JP>(AC n BC n CC) ,  

and expanding ( 1 1 )-( 1 2) ,  we arrive at the (equivalent) inequalities 

(13) ad > be, eh > jg , (a + e) (d + h) < (b + f) (e + g) , 

subject to the conditions a ,  b, e, . .  " h 2: 0 and a + b + e + . . .  + h = 1 .  Inequalities ( 1 3) 
are equivalent to the existence of two rectangles RI and R2 , as in Figure 1 . 1 ,  satisfying 

area (DI ) > area (D2 ) ,  area (D3 ) > area (D4) ,  area (RI ) < area (R2) .  
Many such rectangles may be found, by inspection, as for example those with a = :fu ,  b = 3� ' 
e = 3� ' d = io ' e = io ' j = 3� ' g = 3� ' h = io ' Similar conclusions are valid for finer 
partitions {C; : i E I} of the sample space, though the corresponding pictures are harder to 
draw. 

S impson's paradox has arisen many times in practical situations. There are many well­
known cases, including the admission of graduate students to the University of California at 
Berkeley and a clinical trial comparing treatments for kidney stones .  • 

(14) Example. False positives. A rare disease affects one person in 1 05 . A test for the 
disease shows positive with probability ito when applied to an ill person, and with probability 

Ibo when applied to a healthy person. What is the probability that you have the disease given 
that the test shows positive? 
Solution. In the obvious notation, 

JP>( + I ill)lP'(ill) 
JP>(ill l +) = ------------­

JP>( + I ill)lP'(ill) + JP>( + I healthy)JP>(healthy) 

� . 1 0-5 99 1 l Oa � 

- � .  1 0-5 + _I ( 1  - 10-5 ) - 99 + 1 05 - 1 - 10 1 1 ' 
1 00 1 00 

The chance of being ill is rather small . Indeed it is more likely that the test was incorrect. • 



1 . 8 Problems 2 1  

Exercises for Section 1 .7 

1. There are two roads from A to B and two roads from B to C. Each of the four roads is blocked by 
snow with probability p, independently of the others. Find the probability that there is an open road 
from A to B given that there is no open route from A to C .  

If, in  addition, there is a direct road from A to C, this road being blocked with probability p 
independently of the others, find the required conditional probability. 

2. Calculate the probability that a hand of 13 cards dealt from a normal shuffled pack of 52 contains 
exactly two kings and one ace. What is the probability that it contains exactly one ace given that it 
contains exactly two kings? 

3. A symmetric random walk takes place on the integers 0, 1 ,  2, . . .  , N with absorbing barriers at 0 
and N, starting at k. Show that the probability that the walk is never absorbed is zero. 

4. The so-called ' sure thing principle' asserts that if you prefer x to y given C, and also prefer x to 
y given CC, then you surely prefer x to y . Agreed? 

5. A pack contains m cards, labelled 1 , 2 ,  . . .  , m .  The cards are dealt out in a random order, one 
by one. Given that the label of the kth card dealt is the largest of the first k cards dealt, what is the 
probability that it is also the largest in the pack? 

1.8 Problems 

1. A traditional fair die is thrown twice. What is the probability that: 
(a) a six turns up exactly once? 
(b) both numbers are odd? 
(c) the sum of the scores is 4? 
(d) the sum of the scores is divisible by 3 ?  

2. A fair coin i s  thrown repeatedly. What i s  the probability that o n  the nth throw: 
(a) a head appears for the first time? 
(b) the numbers of heads and tails to date are equal? 
(c) exactly two heads have appeared altogether to date? 
(d) at least two heads have appeared to date? 

3. Let .r and g, be a-fields of subsets of n.  
(a) Use elementary set operations to  show that .r is closed under countable intersections ; that i s ,  if 

A I ,  A2 , · · ·  are in :F, then so is ni Ai .  
(b) Let Jf = .rn g, be the collection of subsets of n lying in both .rand g, .  Show that Jf is a a -field. 
(c) Show that .rU g" the collection of subsets of n lying in either .ror g" is not necessarily a a-field. 

4. Describe the underlying probability spaces for the following experiments : 
(a) a biased coin is tossed three times; 
(b) two balls are drawn without replacement from an urn which originally contained two ultramarine 

and two vermilion balls; 
(c) a biased coin is tossed repeatedly until a head turns up. 

5. Show that the probability that exactly one of the events A and B occurs is 

JP'(A) + JP'(B) - 2JP'(A n B) .  
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7. (a) If A is independent of itself, show that IP'(A) is 0 or 1 .  
(b) If lP'(A) i s  0 or I ,  show that A i s  independent of all events B .  

8 .  Let J="'be a a-field of subsets of Q ,  and suppose II" : J="' -+ [0, I ]  satisfies : (i) IP'(Q) = I ,  and (ii) II" 
is additive, in that IP'(A U B) = IP'(A) + IP'(B) whenever A n B = 0. Show that 1P'(0) = o. 
9. Suppose (Q, J="', IP') is a probability space and B E J="' satisfies IP'(B) > O. Let Q : J="' -+ [0, I] be 
defined by Q(A) = IP'(A I B). Show that (Q, :F, Q) is a probability space. If C E J="' and Q(C) > 0, 
show that Q(A I C) = IP'(A I B n  C) ;  discuss. 

10. Let B \ >  B2 , . . . be a partition of the sample space Q,  each Bi having positive probability, and 
show that 00 

IP'(A) = L IP'(A I Bj )IP'(Bj ) . 
j= l 

11. Prove Boole's ineqUalities: 

12. Prove that 

lP' (n Ai ) = L IP'(Ai ) - L IP'(Ai U Aj ) +  L IP'(Ai U Aj U Ak ) 
1 i i <j i <j <k 

13. Let AI , A2 , . . . , An be events, and let Nk be the event that exactly k of the Ai occur. Prove the 
result sometimes referred to as Waring's theorem: 

IP'(Nk ) = � (_ l ) i (k ; i) Sk+i , where Sj = . 

.
L 

. 
IP'(Ai [ n A i2 n · · ·  n Ai) . 

,=0 l [  <'2 < · · · < 'j 

Use this result to find an expression for the probability that a purchase of six packets of Com Flakes 
yields exactly three distinct busts (see Exercise ( 1 .3 .4» . 

14. Prove Bayes's formula: if A I ,  A2 , . . . , An is a partition of Q, each Ai having positive probability, 
then 

IP'(B I Aj )1P'(Aj )  
IP'( A j i B)  = =I:=-=7;-1P'-(-B

---'
1 
'--
A-i )-IP'

--"-
( A-,-. ) 

. 

15. A random number N of dice is thrown. Let Ai be the event that N = i ,  and assume that 
IP'(Ai ) = Ti , i ::: 1 .  The sum of the scores is S . Find the probability that: 
(a) N = 2 given S = 4 ;  
(b) S = 4 given N i s  even; 
(c) N = 2, given that S = 4 and the first die showed I ;  
(d) the largest number shown by any die is r ,  where S is unknown. 

1 6. Let A I , A2 , . . .  be a sequence of events. Define 

00 00 
Bn = U Am , Cn = n Am . 

m=n m=n 
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Clearly Cn S; An S; Bn . The sequences {Bn }  and {Cn }  are decreasing and increasing respectively 
with limits 

lim Cn = C = U Cn = U n Am . 
n n m?:n n n m?:n 

The events B and C are denoted lim sUPn�oo An and lim infn�oo An respectively. Show that 
(a) B = {w E Q : w E An for infinitely many values of n } ,  
(b) C = {w  E Q : w E An for all but finitely many values of n } .  
We say that the sequence {An } converges to a limit A = lim An if B and C are the same set A. Suppose 
that An --+ A and show that 
(c) A is an event, in that A E :F, 
(d) IP'(An ) --+ IP'(A) . 

17. In Problem ( 1 .8 . 1 6) above, show that B and C are independent whenever Bn and Cn are inde­
pendent for all n. Deduce that if this holds and furthermore An --+ A, then IP'(A) equals either zero or 
one. 

18. Show that the assumption that II" is countably additive is equivalent to the assumption that II" is 
continuous .  That is to say, show that if a function II" : :F --+ [0, 1] satisfies 1P'(0) = 0, IP'(Q) = 1, and 
IP'(A U B) = IP'(A) + IP'(B) whenever A, B E :F and A n  B = 0, then II" is countably additive (in the 
sense of satisfying Definition ( 1 .3 . 1  b» if and only if II" is continuous (in the sense of Lemma ( 1 .3 .5» . 

19. Anne, Betty, Chloe, and Daisy were all friends at school. Subsequently each of the (i) = 6 
subpairs meet up; at each of the six meetings the pair involved quarrel with some fixed probability 
P, or become firm friends with probability 1 - p. Quarrels take place independently of each other. 
In future, if any of the four hears a rumour, then she tells it to her firm friends only. If Anne hears a 
rumour, what is the probability that: 
(a) Daisy hears it? 
(b) Daisy hears it if Anne and Betty have quarrelled? 
(c) Daisy hears it if Betty and Chloe have quarrelled? 
(d) Daisy hears it if she has quarrelled with Anne? 

20. A biased coin is tossed repeatedly. Each time there is a probability p of a head turning up. Let Pn 
be the probability that an even number of heads has occurred after n tosses (zero is an even number). 
Show that Po = 1 and that Pn = p (1 - Pn- ] }  + ( 1 - p) Pn- l if n � 1 .  Solve this difference equation. 

21. A biased coin is tossed repeatedly. Find the probability that there is a run of r heads in a row 
before there is a run of s tails, where r and s are positive integers. 

22. A bowl contains twenty cherries, exactly fifteen of which have had their stones removed. A 
greedy pig eats five whole cherries, picked at random, without remarking on the presence or absence 
of stones. Subsequently, a cherry is picked randomly from the remaining fifteen. 
(a) What is the probability that this cherry contains a stone? 
(b) Given that this cherry contains a stone, what is the probability that the pig consumed at least one 

stone? 

23. The 'menages' problem poses the following question. Some consider it to be desirable that men 
and women alternate when seated at a circular table. If n couples are seated randomly according to 
this rule, show that the probability that nobody sits next to his or her partner is 

1 
L
n 

k 2n (2n - k) - (- 1)  -- (n - k) ! 
n '  2n - k  k . k=O 

You may find it useful to show first that the number of ways of selecting k non-overlapping pairs of 
adjacent seats is enkk) 2n (2n - k)- I . 
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24. An urn contains b blue balls and r red balls .  They are removed at random and not replaced. Show 

that the probability that the first red ball drawn is the (k + l ) th ball drawn equals (r+�=�- l ) / (rth) . 
Find the probability that the last ball drawn is red. 

25. An urn contains a azure balls and c carmine balls ,  where ac =F O. Balls are removed at random 
and discarded until the first time that a ball (B , say) is removed having a different colour from its 
predecessor. The ball B is now replaced and the procedure restarted. This process continues until the 
last ball is drawn from the urn. Show that this last ball is equally likely to be azure or carmine. 

26. Protocols. A pack of four cards contains one spade, one club, and the two red aces. You deal 
two cards faces downwards at random in front of a truthful friend. She inspects them and tells you 
that one of them is the ace of hearts. What is the chance that the other card is the ace of diamonds? 
Perhaps 1 ? 

Suppose that your friend's protocol was : 
(a) with no red ace, say "no red ace", 
(b) with the ace of hearts, say "ace of hearts", 
(c) with the ace of diamonds but not the ace of hearts, say "ace of diamonds". 

Show that the probability in question is 1 .  
Devise a possible protocol for your friend such that the probability in question i s  zero. 

27. Eddington's controversy. Four witnesses, A, B, C, and D, at a trial each speak the truth with 
probability � independently of each other. In their testimonies , A claimed that B denied that C declared 
that D lied. What is the (conditional) probability that D told the truth? [This problem seems to have 
appeared first as a parody in a university magazine of the 'typical' Cambridge Philosophy Tripos 
question. ]  

28. The probabilistic method. 10  per cent of  the surface of  a sphere is coloured blue, the rest i s  red. 
Show that, irrespective of the manner in which the colours are distributed, it is possible to inscribe a 
cube in S with all its vertices red. 

29. Repulsion. The event A is said to be repelled by the event B if lP'(A I B) < lP'(A) , and to be 
attracted by B if lP'(A I B) > lP'(A) . Show that if B attracts A, then A attracts B ,  and Be repels A .  

If  A attracts B,  and B attracts C ,  does A attract C?  

30. Birthdays. If  m students born on  independent days in  1991  are attending a lecture, show that the 
probability that at least two of them share a birthday is p = 1 - (365) ! / { (365 - m) ! 365m } .  Show 
that p > 1 when m = 23 . 

31. Lottery. You choose r of the first n positive integers, and a lottery chooses a random subset L of 
the same size. What is the probability that: 
(a) L includes no consecutive integers? 
(b) L includes exactly one pair of consecutive integers? 
(c) the numbers in L are drawn in increasing order? 
(d) your choice of numbers is the same as L ?  
(e) there are exactly k of your numbers matching members o f  L ?  

32. Bridge. During a game of bridge, you are dealt at random a hand o f  thirteen cards. With an 
obvious notation, show that lP'(4S , 3H, 3D, 3C) :::::: 0 .026 and lP'(4S , 4H, 3D,  2C) :::::: 0.0 18 .  However 
if suits are not specified, so numbers denote the shape of your hand, show that lP'(4, 3 ,  3 ,  3) :::::: 0. 1 1  
and lP'(4, 4 ,  3 ,  2) :::::: 0.22. 

33. Poker. During a game of poker, you are dealt a five-card hand at random. With the convention 
that aces may count high or low, show that: 

lP'(1  pair) :::::: 0.423 , 

lP'(straight) :::::: 0.0039, 

lP'(4 of a kind) :::::: 0.00024, 

lP'(2 pairs) :::::: 0 .0475,  lP'(3 of a kin d) :::::: 0.02 1 ,  

lP'(flush) :::::: 0 .0020, lP'(full house) :::::: 0 .0014 ,  

lP'(straight flush) :::::: 0.000015 .  
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34. Poker dice. There are five dice each displaying 9, 1 0, J, Q, K, A. Show that, when rolled: 

1P'( 1  pair) :::::: 0.46, 

lP'(no 2 alike) :::::: 0.093 , 

1P'(5 of a kind) :::::: 0.0008 . 

1P'(2 pairs) :::::: 0.23 , 

lP'(full house) :::::: 0.039, 

1P'(3 of a kind) :::::: 0. 15 ,  

1P'(4 of  a kind) :::::: 0.0 1 9, 

25 

35. You are lost in the National Park of Bandrikat .  Tourists comprise two-thirds of the visitors to 
the park, and give a correct answer to requests for directions with probability � . (Answers to repeated 
questions are independent, even if the question and the person are the same.)  If you ask a Bandrikan 
for directions, the answer is always false. 
(a) You ask a passer-by whether the exit from the Park is East or West. The answer is East. What is 

the probability this is correct? 
(b) You ask the same person again, and receive the same reply. Show the probability that it is correct . 1 IS :l '  
(c) You ask the same person again, and receive the same reply. What i s  the probability that it is 

correct? 
(d) You ask for the fourth time, and receive the answer East. Show that the probability it is correct 

. 27 IS 70 '  
(e) Show that, had the fourth answer been West instead, the probability that East i s  nevertheless 

. 9 correct IS 10 '  
36. Mr Bayes goes to Bandrika. Tom is in the same position as you were in the previous problem, 
but he has reason to believe that, with probability E, East is the correct answer. Show that: 
(a) whatever answer first received, Tom continues to believe that East is correct with probability E ,  

(b) if the first two replies are the same (that i s ,  either WW or  EE), Tom continues to believe that East 
is correct with probability E ,  

(c) after three like answers, Tom will calculate as  follows, in  the obvious notation: 

9E 
IP'(East correct I EEE) = --- , 

1 1  - 2E 

Evaluate these when E = fa .  
37. Bonferroni's inequality. Show that 

l I E 
IP'(East correct I WWW) = -- . 

9 + 2E 

IP' ( U Ar) � t lP'(Ar ) - L IP'(Ar n Ak ) ' 
r=l r= ) r<k 

38. Kounias's inequality. Show that 

39. The n passengers for a Bell-Air flight in an airplane with n seats have been told their seat numbers . 
They get on the plane one by one. The first person sits in the wrong seat. Subsequent passengers sit 
in their assigned seats whenever they find them available, or otherwise in a randomly chosen empty 
seat. What is the probability that the last passenger finds his seat free? 

t A fictional country made famous in the Hitchcock film 'The Lady Vanishes ' .  
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Random variables and their distributions 

Summary. Quantities governed by randomness correspond to functions on the 
probability space called random variables .  The value taken by a random vari­
able is subject to chance, and the associated likelihoods are described by a 
function called the distribution function . Two important classes of random 
variables are discussed, namely discrete variables and continuous variables. 
The law of averages, known also as the law of large numbers, states that the 
proportion of successes in a long run of independent trials converges to the 
probability of success in any one trial. This  result provides a mathematical 
basis for a philosophical view of probability based on repeated experimenta­
tion . Worked examples involving random variables and their distributions are 
included, and the chapter terminates with sections on random vectors and on 
Monte Carlo simulation. 

2.1 Random variables 

We shall not always be interested in an experiment itself, but rather in some consequence 
of its random outcome. For example, many gamblers are more concerned with their losses 
than with the games which give rise to them. Such consequences, when real valued, may 
be thought of as functions which map Q into the real line IR, and these functions are called 
'randomt variables' . 

(1) Example. A fair coin is tossed twice : Q = {HH, HT, TH, TT} .  For W E Q, let X (w) be 
the number of heads, so that 

X (HH) = 2, X (HT) = X (TH) = 1 ,  X (TT) = O. 

Now suppose that a gambler wagers his fortune of £1 on the result of this experiment. He 
gambles cumulatively so that his fortune is doubled each time a head appears, and is annihilated 
on the appearance of a tail. His subsequent fortune W is a random variable given by 

W(HH) = 4, W(HT) = W(TH) = W(TT) = O. 

tDerived from the Old French word randon meaning 'haste ' .  

• 
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Fx (x ) 

• 
3 • 4' 

1 
4' 

1 2 x 

Figure 2 . 1 .  The distribution function Fx of the random variable X of Examples ( 1 )  and (5) .  

After the experiment is done and the outcome W E Q is known, a random variable X : Q � 
� takes some value. In general this numerical value is more likely to lie in certain subsets 
of � than in certain others, depending on the probability space (Q, :F, JP') and the function X 
itself. We wish to be able to describe the distribution of the likelihoods of possible values of 
X. Example ( 1 )  above suggests that we might do this through the function f : � � [0, 1 ]  
defined by 

f (x ) = probability that X is equal to x ,  

but this turns out to be inappropriate i n  general . Rather, we use the distribution function 
F : � � � defined by 

F (x ) = probability that X does not exceed x .  

More rigorously, this is 

(2) F(x )  = JP'(A (x ) )  

where A (x )  <; Q is given by  A (x )  = {w E Q : X (w) S x} .  However, JP' i s  a function on  the 
collection :F of events; we cannot discuss JP'(A (x ) )  unless A (x ) belongs to :F, and so we are 
led to the following definition. 

(3) Definition. A random variable is a function X : Q � R with the property that {w E n :  
X (w) ::s x} E :r for each x E R. Such a fnnction is said to be F-measurable. 

If you so desire, you may pay no attention to the technical condition in the definition 
and think of random variables simply as functions mapping Q into R We shall always use 
upper-case letters, such as X, Y, and Z, to represent generic random variables, whilst lower­
case letters, such as x, y, and z, will be used to represent possible numerical values of these 
variables. Do not confuse this notation in your written work. 

Every random variable has a distribution function, given by (2); distribution functions are 
very important and useful. 

(4) Definition. The distribution function of a random variable X is the function F : lR � 
[0, l ] given by F(x) = JP'(X � x) . 

This is the obvious abbreviation of equation (2) . Events written as {w E Q : X (w) S x }  
are commonly abbreviated to { w  : X (w) S x }  or { X  S x } .  We write F x where i t  i s  necessary 
to emphasize the role of X.  
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Figure 2.2. The distribution function Fw of the random variable W of Examples ( I )  and (5). 

(5) Example (1) revisited. The distribution function Fx of X is given by { 0 if x < 0, 

i if O .:s x  < 1 ,  
Fx (x ) = 

i if 1 .:s x < 2, 

1 if x :::: 2, 

and is sketched in Figure 2 . 1 .  The distribution function Fw of W is given by { 0 if x < 0, 

Fw (x) = i if 0 .:s x < 4, 

1 if x :::: 4, 

and is sketched in Figure 2 .2 .  This illustrates the important point that the distribution function 
of a random variable X tells us about the values taken by X and their relative likelihoods, 
rather than about the sample space and the collection of events . • 

(6) Lemma. A distribution function F has the following properties : 
(a) lim F(x )  = 0, lim F(x )  = 1 ,  

x-+-oo x-+oo 
(b) ifx < y then F (x )  .:s F(y) , 
(c) F is right-continuous, that is, F (x + h)  -+ F(x )  as h .J, O. 

Proof. 
(a) Let Bn = {w E Q :  X (w) .:s -n} = {X .:s -n} .  The sequence Bj , B2 , . . . is decreasing 

with the empty set as limit. Thus, by Lemma ( 1 .3 .5) , lP'(Bn )  -+ lP'(0) = o. The other 
part is similar. 

(b) Let A (x )  = {X .:s x } ,  A (x ,  y) = {x < X .:s y } .  Then A (y)  = A (x )  U A (x ,  y) is a 
disjoint union, and so by Definition ( 1 . 3 . 1 ) ,  

lP'(A (y» = lP'(A (x »  + lP'(A (x ,  y» 

giving 
F(y) = F(x )  + lP'(x < X .:s y) :::: F(x ) .  

(c) This i s  an exercise . Use Lemma ( 1 . 3 .5) .  • 
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Actually, this lemma characterizes distribution functions. That is to say, F is the distribution 
function of some random variable if and only if it satisfies (6a), (6b), and (6c) .  

For the time being we can forget all about probability spaces and concentrate on random 
variables and their distribution functions. The distribution function F of X contains a great 
deal of information about X.  

(7) Example. Constant variables. The simplest random variable takes a constant value on 
the whole domain Q. Let c E lR and define X : Q � lR by 

X (w) = c for all W E  Q. 

The distribution function F(x )  = JP>(X S x)  is the step function 

{ O x  < c ,  
F (x )  = 

1 x � c .  

Slightly more generally, we call X constant (almost surely) i f  there exists c E lR such that 
JP>(X = c) = 1 .  • 

(8) Example. Bernoulli variables. Consider Example ( 1 . 3 .2) .  Let X : Q � lR be given by 

X (H)  = 1 ,  X (T) = O. 

Then X is the simplest non-trivial random variable, having two possible values, 0 and 1 .  Its 
distribution function F(x )  = JP>(X S x)  is 

x < 0, 

O s  x < 1 ,  

x � 1 .  

X is said to have the Bernoulli distribution sometimes denoted Bern(p) . • 

(9) Example. Indicator functions. A particular class of Bernoulli variables is very useful 
in probability theory. Let A be an event and let fA : Q � lR be the indicator function of A ;  
that is, { I if W E  A ,  

fA (w) = 0 if w E AC • 

Then fA is a Bernoulli random variable taking the values 1 and 0 with probabilities JP>(A) and 
JP>(AC) respectively. Suppose {Bi : i E I }  is a family of disjoint events with A s.; UiEI Bi ·  
Then 

(10) 

an identity which is often useful. • 
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(11) Lemma. Let F be the distribution function of X. Then 
(a) JP'(X > x )  = 1 - F(x ), 
(b) JP'(x < X S y) = F(y) - F(x ), 
(c) JP'(X = x)  = F(x )  - lim F(y) .  

y tx 
Proof. (a) and (b) are exercises . 

(c) Let Bn = {x - lin  < X S x }  and use the method of proof of Lemma (6) . • 

Note one final piece of jargon for future use. A random variable X with distribution function 
F is said to have two 'tails '  given by 

Tl (X ) = JP'(X > x) = 1 - F(x ) ,  T2 (X ) = JP'(X s x )  = F(-x) ,  

where x i s  large and positive. We shall see later that the rates at which the Ii decay to zero 
as x -+ 00 have a substantial effect on the existence or non-existence of certain associated 
quantities called the 'moments ' of the distribution. 

Exercises for Section 2. 1 

1. Let X be a random variable on a given probability space, and let a E JR.. Show that 
(i) aX is a random variable, 

(ii) X - X = 0, the random variable taking the value 0 always, and X + X = 2X. 

2. A random variable X has distribution function F .  What is the distribution function of Y = aX +b, 
where a and b are real constants? 

3. A fair coin is tossed n times. Show that, under reasonable assumptions, the probability of exactly 
k heads is (k) ( 1 )n . What is the corresponding quantity when heads appears with probability p on 
each toss? 

4. Show that if F and G are distribution functions and 0 S A S I then A F  + ( 1 - A) G i s  a distribution 
function. Is the product FG a distribution function? 

5. Let F be a distribution function and r a positive integer. Show that the following are distribution 
functions: 
(a) F (xt ,  

(b) I - { I - F (xW ,  

(c) F (x) + { I - F (x) } log { l - F (x) } , 

(d) { F (x)  - l }e + exp { l - F (x) } .  

2.2 The law of averages 

We may recall the discussion in Section 1 . 3 of repeated experimentation. In each of N 
repetitions of an experiment, we observe whether or not a given event A occurs, and we write 
N(A) for the total number of occurrences of A .  One possible philosophical underpinning of 
probability theory requires that the proportion N(A)I N settles down as N -+ 00 to some 
limit interpretable as the 'probability of A ' . Is our theory to date consistent with such a 
requirement? 

With this question in mind, let us suppose that A I , A2 , . . .  is a sequence of independent 
events having equal probability JP'(Ai ) = p, where 0 < p < 1 ;  such an assumption requires of 
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course the existence of a corresponding probability space (Q , :F ,  JP') , but we do not plan to get 
bogged down in such matters here. We think of Ai as being the event 'that A occurs on the i th 
experiment' . We write Sn = I:?=I lA" the sum of the indicator functions of A I , A2 , . . .  , An ; 
Sn is a random variable which counts the number of occurrences of Ai for 1 .::s i .::s n (certainly 
Sn is a function of Q, since it is the sum of such functions, and it is left as an exercise to show 
that Sn is :F -measurable) . The following result concerning the ratio n- I Sn was proved by 
James Bernoulli before 1 692. 

(1) Theorem. It is the case that n- i Sn converges to p as n � 00 in the sense that, for all 
E > 0, 

There are certain technicalities involved in the study of the convergence of random variables 
(see Chapter 7), and this is the reason for the careful statement of the theorem. For the time 
being, we encourage the reader to interpret the theorem as asserting simply that the proportion 
n- i Sn of times that the events AI , A2 , . . .  , An occur converges as n � 00 to their common 
probability p. We shall see later how important it is to be careful when making such statements . 

Interpreted in terms of tosses of a fair coin , the theorem implies that the proportion of heads 
is (with large probability) near to �. As a caveat regarding the difficulties inherent in studying 
the convergence of random variables, we remark that it is not true that, in a 'typical ' sequence 
of tosses of a fair coin , heads outnumber tails about one-half of the time. 

Proof. Suppose that we toss a coin repeatedly, and heads occurs on each toss with probability 
p. The random variable Sn has the same probability distribution as the number Hn of heads 
which occur during the first n tosses, which is to say that JP'(Sn = k) = JP'(Hn = k) for all k .  
I t  follows that, for small positive values of E ,  

JP' (�Sn � P + E) = L JP'(Hn = k) . 

k�n (p+E) 
We have from Exercise (2. 1 . 3 )  that 

JP'(Hn = k) = G)pk ( 1  - p)n-k for O .::s k .::s n ,  

and hence 

(2) 

where m = r n (p + E) l , the least integer not less than n (p + E ) .  The following argument is 
standard in probability theory. Let A > 0 and note that eAk � e).n (P+E) if k � m .  Writing 
q = 1 - p, we have that 

JP' (� Sn � p + E) .::s t e).[k-n (P+E) lG)lqn-k 
k=m 

.::s e-).nE t G) (pe).q )k (qe-).p)n-k 
k=O 

= e-).nE (pe).q + qe-).P)n , 
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by the binomial theorem. It is a simple exercise to show that eX S x + ex2 for x E K With 
the aid of this inequality, we obtain 

(3) lP' (� Sn ::: p + E) S e-AnE [peA2q 2 + qeA2p2r 

S eA2n-AnE 

We can pick A to minimize the right-hand side, namely A = � E ,  giving 

(4) for E > 0, 

an inequality that is known as 'Bernstein 's inequality ' .  It fol lows immediately that lP'(n- 1 Sn ::: 
p + E ) � 0 as n � 00. An exactly analogous argument shows that lP'(n- 1 Sn S p - E )  � 0 
as n � 00, and thus the theorem is proved. • 

Bernstein 's inequality (4) is rather powerful, asserting that the chance that Sn exceeds its 
mean by a quantity of order n tends to zero exponentially fast as n � 00;  such an inequality 
is known as a ' large-deviation estimate' .  We may use the inequality to prove rather more than 
the conclusion of the theorem. Instead of estimating the chance that, for a specific value of 
n, Sn lies between n (p - E ) and n (p + E ) ,  let us estimate the chance that this occurs for all 
large n . Writing An = {p - E S n- 1 Sn S p + E } , we wish to estimate lP'(n�m An ) .  Now 
the complement of this intersection is the event U�m A� , and the probability of this union 
satisfies , by the inequalities of Boole and Bernstein, 

(5) 

giving that, as required, 

00 00 
S L lP'(A� ) S L 2e- �nE2 � 0 
n=m n=m 

as m � 00, 

(6) lP' (p - E S � Sn S P + E for all n ::: m ) � 1 as m � 00. 

Exercises for Section 2 .2  

1. You wish to ask each of  a large number of  people a question to which the answer "yes" is 
embarrassing. The following procedure is proposed in order to determine the embarrassed fraction of 
the population. As the question is asked, a coin is tossed out of sight of the questioner. If the answer 
would have been "no" and the coin shows heads, then the answer "yes" is given. Otherwise people 
respond truthfully. What do you think of this procedure? 

2. A coin is tossed repeatedly and heads turns up on each toss with probability p. Let Hn and Tn be 
the numbers of heads and tails in n tosses . Show that, for E > 0, 

as n -+ 00. 

3 .  Let {Xr : r 2: I }  be  observations which are independent and identically distributed with unknown 
distribution function F. Describe and justify a method for estimating F (x) . 
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Much of the study of random variables i s  devoted to distribution functions, characterized by 
Lemma (2. 1 .6) . The general theory of distribution functions and their applications is quite 
difficult and abstract and is best omitted at this stage . It relies on a rigorous treatment of 
the construction of the Lebesgue-Stieltjes integral; this is sketched in Section 5 .6 .  However, 
things become much easier if we are prepared to restrict our attention to certain subclasses 
of random variables specified by properties which make them tractable. We shall consider in 
depth the collection of 'discrete ' random variables and the collection of 'continuous ' random 
variables. 

(1) Definition. The random variable X is called discrete if it takes values in some countable 
subset {Xl ,  X2 , . • •  }, only, of R. The discrete random variable X has (probability) mass 
function f : R -+ [0, 1 ]  given by I(x) = P(X = x). 

We shall see that the distribution function of a discrete variable has jump discontinuities 
at the values X l , X2 , . . .  and is constant in between; such a distribution is called atomic. this 
contrasts sharply with the other important class of distribution functions considered here . 

(2) Definition. The random variable X is called continuous if its distribution function can 
be expressed as 

F(x) = L� feu) du x e R, 

for some integrable function f : R -+ [0, (0) called the (probability) density function of X. 
The distribution function of a continuous random variable is certainly continuous (actually 

it is 'absolutely continuous ' ) .  For the moment we are concerned only with discrete variables 
and continuous variables .  There is another sort of random variable, called ' singular' , for a 
discussion of which the reader should look elsewhere . A common example of this phenomenon 
is based upon the Cantor ternary set (see Grimmett and Welsh 1 986, or Billingsley 1995) .  Other 
variables are 'mixtures' of discrete, continuous, and singular variables. Note that the word 
'continuous' is a misnomer when used in this regard: in describing X as continuous, we are 
referring to a property of its distribution function rather than of the random variable (function) 
X itself. 

(3) Example. Discrete variables. The variables X and W of Example (2. 1 . 1 ) take values in 
the sets {O, 1 ,  2} and {O, 4} respectively ; they are both discrete . • 

(4) Example. Continuous variables. A straight rod is flung down at random onto a horizontal 
plane and the angle w between the rod and true north is measured. The result is a number 
in Q = [0, 2n ) .  Never mind about F for the moment; we can suppose that F contains 
all nice subsets of Q, including the collection of open subintervals such as (a , b) ,  where 
o S a < b < 2n . The implicit symmetry suggests the probability measure JP' which satisfies 
JP'« a ,  b» = (b - a)/(2n ) ;  that is to say, the probability that the angle lies in some interval is 
directly proportional to the length of the interval. Here are two random variables X and Y :  

X (w) = w, Y ew) = w2 . 
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Figure 2 .3 .  The distribution function Fx of the random variable X in Example (5). 

Notice that Y is a function of X in that Y = X2 . The distribution functions of X and Y are { O x < 0, 

Fx (x ) = x/ (2]'[ ) O :s  x < 2]'[, 

1 x :::: 2]'[, 

Fy (y) = { �/ (2n) 

To see this, let 0 :s x < 2]'[ and 0 :s y < 4]'[ 2 . Then 

Fx (x ) = lP'({w E Q : 0 :s X (w) :s x l ) 
= lP'({w E Q : 0 :s w :s x l) = x/ (2]'[ ) ,  

Fy (y) = lP'({w : Y ew) :s y l ) 

y :s 0, 

O :s  y < 4],[2 , 

y :::: 4]'[2 . 

= lP'({w : w2 :s y l) = lP'({w : O :s  w :s  .JYl) = lP'(X :s .JY) = .JY/(2]'[ ) .  

The random variables X and Y are continuous because 

where 

Fx (x ) = i� fx (u) du ,  Fy (y) = 1:00 fy (u) du ,  

fx (u) = 
{ 1 / (2]'[ ) 

o 
1 { u- "2 / (4]'[ )  

fy (u) = 
o 

if 0 :s u :s 2]'[ , 

otherwise, 

if 0 :s u :s 4],[2 , 

otherwise. 
• 

(5) Example. A random variable which is neither continuous nor discrete. A coin is 
tossed, and a head turns up with probability p (= 1 -q ) . If a head turns up then a rod is flung on 
the ground and the angle measured as in Example (4). Then Q = {T} U { (H, x)  : 0 :s x < 2]'[ } ,  
in  the obvious notation. Let X : Q � lR be given by 

X(T) = - 1 , X « H, x» = x .  

The random variable X takes values in {- I }  U [0, 2]'[ ) (see Figure 2 .3 for a sketch of its 
distribution function). We say that X is continuous with the exception of a 'point mass (or 
atom) at - 1 '  . • 
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Exercises for Section 2.3 

1. Let X be a random variable with distribution function F, and let a = (am : - 00  < m < 00) 
be a strictly increasing sequence of real numbers satisfying a-m ---+ - 00  and am ---+ 00 as m ---+ 00. 
Define G(x)  = lP'(X ::::: am) when am- I ::::: x < am , so that G is the distribution function of a discrete 
random variable. How does the function G behave as the sequence a is chosen in such a way that 
sUPm l am - am- I I becomes smaller and smaller? 

2. Let X be a random variable and let g : JR ---+ JR be continuous and strictly increasing. Show that 
Y = g(X) is a random variable. 

3. Let X be a random variable with distribution function { 0 if x ::::: 0, 

lP'(X ::::: x } = x if O < x ::::: l ,  
1 if x > l . 

Let F be a distribution function which is continuous and strictly increasing. Show that Y = F- I (X) 
is a random variable having distribution function F. Is it necessary that F be continuous and/or strictly 
increasing? 

4. Show that, if f and g are density functions , and 0 ::::: A ::::: 1 , then Af + ( 1 - A)g is a density. Is 
the product fg a density function? 

5. Which of the following are density functions? Find c and the corresponding distribution function 
F for those that are. { cx -d x >  1 ,  
(a) f (x)  = . o otherwIse. 
(b) f (x)  = ceX ( l  + ex )-2 , x E JR. 

2.4 Worked examples 

(1) Example. Darts. A dart is flung at a circular target of radius 3. We can think of the 
hitting point as the outcome of a random experiment; we shall suppose for simplicity that the 
player is guaranteed to hit the target somewhere. Setting the centre of the target at the origin 
of ]R2 , we see that the sample space of this experiment is 

Q = { (x ,  y) : x2 + i < 9} . 

Never mind about the col lection :F of events. Let us suppose that, roughly speaking, the 
probability that the dart lands in some region A is proportional to its area I A I . Thus 

(2) JP'(A) = I A I / (9JT ) .  

The scoring system is as follows. The target i s  partitioned by three concentric circles CI , C2 , 
and C3 , centered at the origin with radii 1 , 2, and 3 .  These circles divide the target into three 
annuli A I ,  A2 , and A3 ,  where 
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Figure 2.4. The distribution function Fx of X in Example ( 1 ) .  

x 

We suppose that the player scores an amount k if and only if the dart hits Ak . The resulting 
score X is the random variable given by 

X (w) = k whenever w E Ak . 

What is its distribution function? 
Solution. Clearly 

lP'(X = k) = lP'(Ak ) = I Ak l / (9n ) = � (2k - 1 ) ,  for k = 1 , 2 , 3 , 

and so the distribution function of X is given by 

if r < 1 ,  

if 1 S r < 3 ,  

if r :::: 3 ,  

where Lr J denotes the largest integer not larger than r (see Figure 2.4) .  • 

(3) Example. Continuation of (1) . Let us consider a revised method of scoring in which the 
player scores an amount equal to the distance between the hitting point w and the centre of 
the target. This time the score Y is a random variable given by 

Y (W) = JX2 + y2 , if w = (x , y ) .  

What i s  the distribution function o f  Y ?  
Solution. For any real r let Cr denote the disc with centre (0, 0 )  and radius r ,  that is 

Cr = { (x ,  y) : x2 + y2 S r } .  

Then 
Fy (r) = lP'(Y S r) = lP'(Cr ) = �r2 if O s r S 3 . 
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Fy (r) 
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1 2 3 r 

Figure 2 .5 .  The distribution function Fy of Y in Example (3). 

Fz (r ) 

1 

I - p 

-

2 3 4 r 

Figure 2.6 .  The distribution function Fz of Z in Example (4). 

This distribution function is sketched in Figure 2 .5 .  
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• 

(4) Example. Continuation of (1). Now suppose that the player fails to hit the target with 
fixed probability p; if he is successful then we suppose that the distribution of the hitting point 
is described by equation (2). His score is specified as follows. If he hits the target then he 
scores an amount equal to the distance between the hitting point and the centre; if he misses 
then he scores 4.  What is the distribution function of his score Z?  
Solution. Clearly Z takes values i n  the interval [0, 4] . Use Lemma ( 1 .4.4) to see that 

Fz (r) = lP'(Z � r )  
= lP'(Z � r I hits target)lP'(hits target) + lP'(Z � r I misses target)lP'(misses target) { , O  if r < 0, 

= ( 1  - p) Fy (r) if O � r < 4,  

1 if r � 4,  

where Fy is given in Example (3) (see Figure 2 .6 for a sketch of Fz) .  • 
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Exercises for Section 2.4 

1. Let X be a random variable with a continuous distribution function F. Find expressions for the 
distribution functions of the following random variables : 

(a) X2 , (b) ,JX, 
(c) sin X, (d) G-

I
(X) , 

(e) F(X), (f) G- I (F(X», 
where G is a continuous and strictly increasing function. 

2. Truncation. Let X be a random variable with distribution function F, and let a < b . Sketch the 
distribution functions of the 'truncated' random variables Y and Z given by { a if X < a ,  

Y = X i f  a ::s X ::s b ,  
b if X >  b ,  

Z = { X i f  I X I ::s b ,  
o if I X I > b .  

Indicate how these distribution functions behave as  a � -00, b � 00.  

2.5 Random vectors 

Suppose that X and Y are random variables on the probability space (Q , :F ,  JP') . Their dis­
tribution functions, Fx and Fy , contain information about their associated probabilities .  But 
how may we encapsulate information about their properties relative to each other? The key 
is to think of X and Y as being the components of a 'random vector' (X, Y)  taking values in 
�2 , rather than being unrelated random variables each taking values in R 

(1) Example. Tontine is a scheme wherein subscribers to a common fund each receive an 
annuity from the fund during his or her lifetime, this annuity increasing as the other subscribers 
die. When all the subscribers are dead, the fund passes to the French government (this was 
the case in the first such scheme designed by Lorenzo Tonti around 1 653) .  The performance 
of the fund depends on the lifetimes L I ,  L2 , . . . , Ln of the subscribers (as well as on their 
wealths), and we may record these as a vector (L I , L2 , . . .  , Ln ) of random variables. • 

(2) Example. Darts. A dart is flung at a conventional dartboard. The point of striking 
determines a distance R from the centre, an angle e with the upward vertical (measured 
clockwise, say), and a score S. With this experiment we may associate the random vector 
(R ,  e ,  S) , and we note that S is a function of the pair (R ,  e) .  • 

(3) Example. Coin tossing. Suppose that we toss a coin n times, and set Xi equal to 0 
or 1 depending on whether the i th toss results in a tail or a head. We think of the vector 
X = (X I ,  X 2 , . . .  , X n ) as describing the result of this composite experiment. The total 
number of heads is the sum of the entries in X. • 

An individual random variable X has a distribution function F X defined by F x (x ) = 
JP'(X .:s x )  for x E R The corresponding 'joint' distribution function of a random vector 
(X I ,  X2 , . . .  , Xn ) is the quantity JP'(X I .:s XI ,  X2 .:s X2 , . . . , Xn .:s xn ) , a function of n real 
variables X I , X2 , . . .  , Xn . In order to aid the notation, we introduce an ordering of vectors of 
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real numbers : for vectors x = (X l , X2 , . . .  , xn ) and y = (Y l ,  Y2 , . . .  , Yn )  we write x ::s y if 
Xi ::s Yi for each i = 1 ,  2, . . .  , n .  

(4) Deftnition. The joint distriootion function of a random vector X = (Xl ,  X2 • •  , . •  Xn) on 
the probability space (0 , :F ,  lP') is the function Fx : R.n -+ [0, 1] given by Fx(x) = lP'(X ::s x) 
for x € R.n , 

As before, the expression {X ::s x}  is an abbreviation for the event {w E Q : X (w) ::s x} .  
Joint distribution functions have properties similar to those of  ordinary distribution functions. 
For example, Lemma (2 . 1 .6) becomes the following. 

(5) Lemma. Thejoint distributionfunction Fx, y o/the random vector (X, Y )  has the/ollow­
ing properties: 

(a) limx ,y---+ -oo Fx, y (x , y) = 0, limx , y---+oo Fx, y (x , y )  = 1 , 
(b) If (XI , YI ) ::s (X2 , Y2 ) then FX, Y (X I , YI ) ::s FX, Y (X2 , Y2), 
(c) Fx, y is continuous/rom above, in that 

Fx, y (x + u ,  Y + v) --+ Fx, y (x , y) as u ,  v -I- 0.  

We state this lemma for a random vector with only two components X and Y ,  but the 
corresponding result for n components is valid also . The proof of the lemma is left as an 
exercise. Rather more is true. It may be seen without great difficulty that 

(6) lim Fx, y (x ,  y )  = Fx (x ) (= JP'(X ::s x» 
y---+oo 

and similarly 

(7) lim Fx, y (x ,  y )  = Fy (y) (= JP'(Y ::s y» .  
x---+oo .. 

This more refined version of part (a) of the lemma tells us that we may recapture the individual 
distribution functions of X and Y from a knowledge of their joint distribution function. The 
converse is false: it is not generally possible to calculate Fx, y from a knowledge of Fx and 
Fy alone. The functions Fx and Fy are called the 'marginal ' distribution functions of Fx, y . 

(8) Example. A schoolteacher asks each member of his or her class to flip a fair coin twice 
and to record the outcomes. The diligent pupil D does this and records a pair (XD , YD) of 
outcomes . The lazy pupil L flips the coin only once and writes down the result twice, recording 
thus a pair (XL , Yd where XL = h .  Clearly XD, YD , XL , and YL are random variables with 
the same distribution functions. However, the pairs (XD , YD ) and (XL , h )  have different 
joint distribution functions. In particular, JP'(XD = YD = heads) = i since only one of the 

four possible pairs of outcomes contains heads only, whereas JP'( X L = h = heads) = 1. • 

Once again there are two classes of random vectors which are particularly interesting: the 
'discrete ' and the 'continuous' . 

(9) Definition. The random variables X and Y on the probability space (Q , :F ,  JP') are called 
(jointly) discrete if the vector (X, Y) takes values in some countable subset of ]R2 only. The 
jointly discrete random variables X, Y have joint (probability) mass function / : ]R2 --+ 
[0, 1 ]  given by l ex ,  y )  = JP'(X = x ,  Y = y ) .  
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(10) Definition. The random variables X and Y on the probability space (Q , :F ,  lP') are called 
(jointly) continuous if their joint distribution function can be expressed as 

x ,  y E JR, 

for some integrable function f : JR2 � [0, 00) called the joint (probability) density function 
of the pair (X, Y) .  

We shall return to such questions in  later chapters . Meanwhile here are two concrete 
examples .  

(11 )  Example. Three-sided coin. We are provided with a special three-sided coin, each 
toss of which results in one of the possibilities H (heads), T (tails), E (edge), each having 
probability � .  Let Hn , Tn , and En be the numbers of such outcomes in n tosses of the coin. 
The vector (Hn , Tn , En ) is a vector of random variables satisfying Hn + Tn + En = n. If the 
outcomes of different tosses have no influence on each other, it is not difficult to see that 

n !  ( 1 )n lP'( Hn , Tn , En ) = (h , t ,  e») = -
h I I I -

3 . t .  e .  

for any triple (h , t ,  e) of non-negative integers with sum n .  The random variables Hn , Tn , En 
are (jointly) discrete and are said to have (jointly) the trinomial distribution. • 

(12) Example. Darts. Returning to the flung dart of Example (2), let us assume that no 
region of the dartboard is preferred unduly over any other region of equal area. It may then 
be shown (see Example (2.4.3 »  that 

8 lP'(8 < 8)  = -- 2n ' 
for 0 S r S p ,  0 S 8 S 2n , 

where p is the radius of the board, and furthermore 

It follows that 

where 

lP'(R S r, 8 S 8) = lP'(R S r)lP'(8 S 8) . 

u 
f eu , v) = -2 ' 

0 S u S p , 0 S v S 2n . 
np 

The pair (R ,  8) is (jointly) continuous. • 
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/ Exercises for Section 2.5 

1. A fair coin is tossed twice. Let X be the number of  heads, and let W be the indicator function of 
the event (X = 2) .  Find JfD(X = x, W = w) for all appropriate values of x and w.  
2 .  Let X be  a Bernoulli random variable, so  that JfD (X = 0)  = 1 - p,  JfD(X = 1 )  = p .  Let Y = 1 - X 
and Z = XY . Find IP'(X = x, Y = y) and IP'(X = x, Z = z) for x, y , z E {O, I } .  

3. The random variables X and Y have joint distribution function 

FX, Y (x , y) � { ;, 
_ 

,-'
) G + � ",,- I 

y) 
Show that X and Y are (jointly) continuously distributed. 

4. Let X and Y have joint distribution function F. Show that 

if x < 0, 

if x ::: O .  

lP'(a < X ::::: b, c < Y ::::: d) = F(b, d) - F(a, d) - F(b, c) + F(a, c) 

whenever a < b and c < d .  
5 .  Let X, Y be  discrete random variables taking values in  the integers, with joint mass function f .  
Show that, for integers x ,  y, 

f(x , y) = IP'(X ::: x, Y ::::: y )  - IP'(X ::: x + 1 ,  Y ::::: y )  
- IP'(X ::: x ,  Y ::::: y - 1 )  + IP'(X ::: x + 1 ,  Y ::::: y - 1 ) .  

Hence find the joint mass function o f  the smallest and largest numbers shown i n  r rolls o f  a fair die . 

6. Is the function F(x ,  y) = 1 - e-xy , 0 ::::: x ,  y < 00, the joint distribution function of some pair 
of random variables? 

2.6 Monte Carlo simulation 

It is presumably the case that the physical shape of a coin is one of the major factors relevant 
to whether or not it will fall with heads uppermost. In principle, the shape of the coin may 
be determined by direct examination, and hence we may arrive at an estimate for the chance 
of heads. Unfortunately, such a calculation would be rather complicated, and it is easier to 
estimate this chance by simulation, which is to say that we may toss the coin many times and 
record the proportion of successes . Similarly, roulette players are well advised to observe 
the behaviour of the wheel with care in advance of placing large bets, in order to discern 
its peculiarities (unfortunately, casinos are now wary of such observation, and change their 
wheels at regular intervals). 

Here is a related question. Suppose that we know that our coin is fair (so that the chance of 
heads is i on each toss), and we wish to know the chance that a sequence of 50 tosses contains 
a run of outcomes of the form HTHHT. In principle, this probability may be calculated 
explicitly and exactly. If we require only an estimate of its value, then another possibility is 
to simulate the experiment: toss the coin SON times for some N, divide the result into N runs 
of 50, and find the proportion of such runs which contain HTHHT. 

It is not unusual in real life for a specific calculation to be possible in principle but extremely 
difficult in practice, often owing to limitations on the operating speed or the size of the memory 
of a computer. Simulation can provide a way around such a problem. Here are some examples .  
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(1) Example. Gambler's ruin revisited. The gambler of Example ( 1 .7 .4) eventually won 
his Jaguar after a long period devoted to tossing coins, and he has now decided to save up 
for a yacht. His bank manager has suggested that, in order to speed things up, the stake on 
each gamble should not remain constant but should vary as a certain prescribed function of 
the gambler's current fortune. The gambler would like to calculate the chance of winning the 
yacht in advance of embarking on the project, but he finds himself incapable of doing so. 

Fortunately, he has kept a record of the extremely long sequence of heads and tails encoun­
tered in his successful play for the Jaguar. He calculates his sequence of hypothetical fortunes 
based on this information, until the point when this fortune reaches either zero or the price of 
the yacht. He then starts again, and continues to repeat the procedure until he has completed 
it a total of N times, say. He estimates the probability that he will actually win the yacht by 
the proportion of the N calculations which result in success. 

Can you see why this method will make him overconfident? He might do better to retoss 
� �m. • 

(2) Example. A dam. It is proposed to build a dam in order to regulate the water supply, 
and in particular to prevent seasonal flooding downstream. How high should the dam be? 
Dams are expensive to construct, and some compromise between cost and risk is necessary. 
It is decided to build a dam which is just high enough to ensure that the chance of a flood 
of some given extent within ten years is less than 1 0-2 , say. No one knows' exactly how 
high such a dam need be, and a young probabilist proposes the following scheme. Through 
examination of existing records of rainfall and water demand we may arrive at an acceptable 
model for the pattern of supply and demand. This model includes, for example, estimates for 
the distributions of rainfall on successive days over long periods. With the aid of a computer, 
the ' real world' situation is simulated many times in order to study the likely consequences 
of building dams of various heights . In this way we may arrive at an accurate estimate of the 
height required. • 

(3) Example. Integration. Let g : [0, 1 ]  � [0, 1 ]  be a continuous but nowhere differentiable 
function. How may we calculate its integral I = Jd g (x )  dx?  The following experimental 
technique is known as the 'hit or miss Monte Carlo technique' . 

Let (X, Y) be a random vector having the uniform distribution on the unit square. That is, 
we assume that lP'( (X, Y) E A) = I A I , the area of A, for any nice subset A of the unit square 

[0, 1 P;  we leave the assumption of niceness somewhat up in the air for the moment, and shall 
return to such matters in Chapter 4. We declare (X, Y) to be ' successful' if Y S g (X) . The 
chance that (X, Y) is successful equals I, the area under the curve y = g (x ) .  We now repeat 
this experiment a large number N of times, and calculate the proportion of times that the 
experiment is successful. Following the law of averages, Theorem (2.2 . 1 ), we may use this 
value as an estimate of I .  

Clearly i t  i s  desirable to know the accuracy of  this estimate. This i s  a harder problem to 
which we shall return later. • 

Simulation is a dangerous game, and great caution is required in interpreting the results . 
There are two major reasons for this .  First, a computer simulation is limited by the degree 
to which its so-called 'pseudo-random number generator' may be trusted. It has been said 
for example that the summon-according-to-birthday principle of conscription to the United 
States armed forces may have been marred by a pseudo-random number generator with a bias 
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for some numbers over others . Secondly, in estimating a given quantity, one may in some 
circumstances have little or no idea how many repetitions are necessary in order to achieve an 
estimate within a specified accuracy. 

We have made no remark about the methods by which computers calculate 'pseudo-random 
numbers ' .  Needless to say they do not flip coins, but rely instead on operations of sufficient 
numerical complexity that the outcome, although deterministic, is apparently unpredictable 
except by an exact repetition of the calculation. 

These techniques were named in honour of Monte Carlo by Metropolis, von Neumann, and 
Ulam, while they were involved in the process of building bombs at Los Alamos in the 1 940s . 

2.7 Problems 

1. Each toss of a coin results in a head with probability p . The coin is tossed until the first head 
appears. Let X be the total number of tosses. What is JP'(X > m)? Find the distribution function of 
the random variable X .  

2. (a) Show that any discrete random variable may be written as a linear combination of indicator 
variables. 

(b) Show that any random variable may be expressed as the limit of an increasing sequence of discrete 
random variables .  

(c) Show that the limit of any increasing convergent sequence of random variables is a random 
variable. 

3. (a) Show that, if X and Y are random variables on a probability space (Q ,  :F, JP'), then so are 
X + Y, XY,  and min {X,  Y } .  

(b) Show that the set o f  all random variables o n  a given probability space (Q , :F, JP' )  constitutes a 
vector space over- the reals .  If Q is finite, write down a basis for this space. 

4. Let X have distribution function 

and let Y = X2 . Find 
(a) JP' ( i .:s x .:s i ) , 
(c) JP'(Y .:s X),  
(e) JP' (X + Y .:s � ) , 

{ 0 if x < 0 ,  

F (x) = � x if 0 .:s x .:s 2,  

I if  x > 2,  

(b) JP'( I  .:s X < 2) ,  
(d) JP'(X .:s 2Y) ,  
(f) the distribution function of Z = .JX. 

5. Let X have distribution function { 0 

I - p 
F(x )  = 1 � - P + zxp 

if x < - I ,  

if - I .:s x < 0, 

if 0 .:s x .:s 2,  

if x > 2.  

Sketch this function, and find: (a) JP'(X = - I ) , (b) JP'(X = 0), (c) JP'(X :::: I ) .  

6. Buses arrive at ten minute intervals starting at noon. A man arrives at the bus stop a random 
number X minutes after noon, where X has distribution function { 0 if x < 0 ,  

JP'(X .:s x)  = x/60 if 0 .:s x .:s 60, 

I if x > 60. 
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What is the probability that he waits less than five minutes for a bus? 

7. Airlines find that each passenger who reserves a seat fails to tum up with probability 1� inde­
pendently of the other passengers . So Teeny Weeny Airlines always sell 10 tickets for their 9 seat 
aeroplane while Blockbuster Airways always sell 20 tickets for their 1 8  seat aeroplane. Which is more 
often over-booked? 

8. A fairground performer claims the power of telekinesis. The crowd throws coins and he wills 
them to fall heads up. He succeeds five times out of six. What chance would he have of doing at least 
as well if he had no supernatural powers? 

9. Express the distribution functions of 

X+ = max{O, X} ,  X- = - min{O, X} ,  I X I  = X+ 
+ X- , -X, 

in  terms of  the distribution function F of the random variable X. 
10. Show that Fx (x) is continuous at x = Xo  i f  and only if lP'(X = xo) = O .  

11 .  The real number m i s  called a median of  the distribution function F whenever limytm F(y)  .::: 
1 .::: F(m) .  Show that every distribution function F has at least one median, and that the set of 
medians of F is a closed interval of JR. 

12. Show that it is not possible to weight two dice in such a way that the sum of the two numbers 
shown by these loaded dice is equally likely to take any value between 2 and 1 2  (inclusive). 

13. A function d : S x S -7 JR is called a metric on S if: 
(i) des ,  t) = d(t ,  s) :::: 0 for all s ,  t E S,  

(ii) des ,  t )  = 0 if and only if s = t ,  and 
(iii) des ,  t )  .::: d es ,  u )  + d(u ,  t ) for all s ,  t ,  u E S.  
(a) Levy metric. Let F and G be distribution functions and define the Levy metric 

ddF, G) = inf{ E > 0 :  G (x - E) - E .::: F(x) .::: G (x + E ) + E for all x } . 

Show that dL is indeed a metric on the space of distribution functions . 
(b) Total variation distance. Let X and Y be integer-valued random variables, and let 

dTV (X, Y) = L IlP'(X = k) - lP'(Y = k) l · 
k 

Show that dTV satisfies (i) and (iii) with S the space of integer-valued random variables, and that 
dTV (X, Y) = 0 if and only if lP'(X = Y) = 1 .  Thus dTV is a metric on the space of equivalence 
classes of S with equivalence relation given by X � Y if lP'(X = Y) = 1 .  We call dTV the total 
variation distance. 

Show that 
dTV (X, Y) = 2 sup 1lP'(X E A) - lP'(Y E A) I . 

A £;;Z 

14. Ascertain in the following cases whether or not F is the joint distribution function of some pair 
(X, Y) of random variables . If your conclusion is affirmative, find the distribution functions of X and 
Y separately. 

(a) 

(b) 

{ I  - e-x-y 
F(x ,  y)  = 

0 { I - e-x - xe-y 
F(x ,  y)  = � - e-Y - ye-Y 

if x ,  y :::: 0 ,  

otherwise. 
if O '::: x '::: y ,  

if O .::: y .::: x ,  

otherwise. 



2.7 Problems 45 

15. It is required to place in order n books B} , B2 , . . .  , Bn on a library shelf in such a way that readers 
searching from left to right waste as little time as possible on average. Assuming that each reader 
requires book Bi with probability Pi , find the ordering of the books which minimizes JP'(T :::: k) for 
all k, where T is the (random) number of titles examined by a reader before discovery of the required 
book. 

16. Transitive coins. Three coins each show heads with probability � and tails otherwise. The first 
counts 10 points for a head and 2 for a tail, the second counts 4 points for both head and tail, and the 
third counts 3 points for a head and 20 for a tail. 

You and your opponent each choose a coin; you cannot choose the same coin. Each of you tosses 
your coin and the person with the larger score wins £ 1 OlD . Would you prefer to be the first to pick a 
coin or the second? 

17. Before the development of radar and inertial navigation, flying to isolated islands (for example, 
from Los Angeles to Hawaii) was somewhat 'hit or miss ' . In heavy cloud or at night it was necessary 
to fly by dead reckoning, and then to search the surface. With the aid of a radio, the pilot had a good 
idea of the correct great circle along which to search, but could not be sure which of the two directions 
along this great circle was correct (since a strong tailwind could have carried the plane over its target). 
When you are the pilot, you calculate that you can make n searches before your plane will run out of 
fuel. On each search you will discover the island with probability P (if it is indeed in the direction of 
the search) independently of the results of other searches ;  you estimate initially that there is probability 
a that the island is ahead of you. What policy should you adopt in deciding the directions of your 
various searches in order to maximize the probability of locating the island? 

18. Eight pawns are placed randomly on a chessboard, no more than one to a square. What is the 
probability that: 
(a) they are in a straight line (do not forget the diagonals)? 
(b) no two are in the same row or column? 

19. Which of the following are distribution functions? For those that are, give the corresponding 
density function f .  

(a) F(x) = 
{ 

0

1 - e-x2 
x :::: 0,  

otherwise. { e- l /x x > 0, 
(b) F(x) = . o otherwIse. 
(c) F(x) = eX / (eX + e-X ) ,  x E R 

2 
(d) F(x) = e-x + eX / (eX + e-X ) ,  x E JR.. 
20. (a) If U and V are jointly continuous, show that JP'(U = V) = O. 
(b) Let X be uniformly distributed on (0,  1) ,  and let Y = X .  Then X and Y are continuous, and 
JP'(X = Y) = 1 .  Is there a contradiction here? 
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Discrete random variables 

Summary. The distribution of a discrete random variable may be specified via 
its probability mass function. The key notion of independence for discrete 
random variables is introduced. The concept of expectation, or mean value, 
is defined for discrete variables, leading to a definition of the variance and the 
moments of a discrete random variable. Joint distributions, conditional distri­
butions, and conditional expectation are introduced, together with the ideas of 
covariance and correlation. The Cauchy-Schwarz inequality is presented. The 
analysis of sums of random variables leads to the convolution formula for mass 
functions. Random walks are studied in some depth, including the reflection 
principle, the ballot theorem, the hitting time theorem, and the arc sine laws 
for visits to the origin and for sojourn times. 

3.1 Probability mass functions 

Recall that a random variable X is discrete if it takes values only in some countable set 
{X l , X2 , . . .  } .  Its distribution function F (x ) = JP'(X :s x )  is a jump function ; just as important 
as its distribution function is its mass function . 

(1) Definition. The (probability) mass fnnctiontof a discrete random variable X is the 
function f : R --* [0 , 1]  given by I(x) = JP'(X = x).  

The distribution and mass functions are related by 

i :x, ::::x 
I (x )  = F(x )  - lim F (y ) .  

ytx 

(2) Lemma. The probability mass function I : IR --* [0 , 1 ]  satisfies : 
(a) the set olx such that I (x )  I- 0 is countable, 
(b) Li I (Xi ) = 1 ,  where X l , X2 , . . .  are the values olx such that I (x )  I- O. 

Proof. The proof is obvious. 

This lemma characterizes probability mass functions. 

tSome refer loosely to the mass function of X as its distribution. 

• 
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(3) Example. Binomial distribution. A coin is tossed n times, and a head turns up each time 
with probability p (= 1 - q) . Then Q = {H, T}n . The total number X of heads takes values 
in the set {O, 1 ,  2, . . .  , n} and is a discrete random variable. Its probability mass function 
f (x ) = JP'(X = x) satisfies 

f (x ) = O if x � {0, 1 , 2, . . . , n } .  

Let 0 :s k :s n ,  and consider f(k) .  Exactly m points in Q give a total of k heads; each of 

these points occurs with probability pk qn-k , and so 

The random variable X is said to have the binomial distribution with parameters n and p, 
written bin(n , p). I t  is the sum X = Yl + Y2 + . . .  + Yn of n Bernoulli variables (see Example 
(2. 1 . 8» . • 

(4) Example. Poisson distribution. If a random variable X takes values in the set {O, 1 ,  2, . . .  } 
with mass function 

k = 0, 1 , 2 , . . .  , 

where A > 0, then X is said to have the Poisson distribution with parameter A . • 

Exercises for Section 3 . 1  

1. For what values of the constant C do the following define mass functions on the positive integers 
1 , 2,  . . .  ? 
(a) Geometric: f (x) = CZ-X •  
(b) Logarithmic: f (x)  = C2-x Ix . 

(c) Inverse square: f (x)  = Cx-2 . 
(d) 'Modified' Poisson: f (x) = C2x Ix ! .  

2 .  For a random variable X having (in tum) each of the four mass functions o f  Exercise ( l ), find: 
(i) IP'(X > I ) ,  

(ii) the most probable value o f  X,  
(iii) the probability that X is even. 

3. We toss n coins, and each one shows heads with probability p, independently of each of the 
others. Each coin which shows heads is tossed again. What is the mass function of the number of 
heads resulting from the second round of tosses? 

4. Let Sk be the set of positive integers whose base- IO  expansion contains exactly k elements (so 
that, for example, 1024 E S4) .  A fair coin is tossed until the first head appears, and we write T for 
the number of tosses required. We pick a random element, N say, from ST , each such element having 
equal probability. What is the mass function of N? 

5. Log-convexity. (a) Show that, if  X is a binomial or Poisson random variable, then the mass 
function f (k) = IP'(X = k) has the property that f(k - I ) f (k + I ) .::: f (k)2 . 

(b) Show that, if f (k) = 901 (rrk)4 , k :::: I ,  then f (k - l ) f (k + 1 )  :::: f (k)2 . 
(c) Find a mass function f such that f(k)2 = f (k - l )f (k + I ) ,  k :::: 1 .  
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3.2 Independence 

Remember that events A and B are called ' independent' if the occurrence of A does not 
change the subsequent probability of B occurring. More rigorously, A and B are independent 
if and only if JP'(A n B) = JP'(A)JP'(B ) .  Similarly, we say that discrete variables X and Y are 
' independent' if the numerical value of X does not affect the distribution of Y.  With this in 
mind we make the following definition .  

(1) Definition. Discrete variables X and Y are independent if the events {X = x} and 
{Y  = y} are independent for all x and y. 

Suppose X takes values in the set {X l ,  X2 , • . .  } and Y takes values in the set {Y I , Y2 , . . .  } . 
Let 

Ai = {X = Xi } , Bj = {Y  = Yj } .  

Notice (see Problem (2.7 .2» that X and Y are linear combinations of the indicator variables 
lA" IB) , in that 

and Y = L Yj IB) . 
j 

The random variables X and Y are independent if and only if Ai and Bj are independent for 
all pairs i ,  j .  A similar definition holds for collections {X I ,  X2 , . . . , Xn } of discrete variables . 

(2) Example. Poisson flips. A coin is tossed once and heads turns up with probability 
p = I - q .  Let X and Y be the numbers of heads and tails respectively. It is no surprise that 
X and Y are not independent. After all, 

JP'(X = Y = 1 )  = 0,  JP'(X = 1 )JP'(Y = 1 )  = p( 1  - p) . 

Suppose now that the coin is tossed a random number N of times, where N has the Poisson 
distribution with parameter 'A . It is a remarkable fact that the resulting numbers X and Y of 
heads and tails are independent, since 

JP'(X = X ,  Y = y) = JP'(X = X ,  Y = y i N = X + y)JP'(N = X + y) 

However, by  Lemma (1 .4 .4), 

(X + Y) x Y 'Ax+Y -J.. ('Apr ('Ap)Y _J.. = p q  e = e . 
X (x + y) ! x !  y !  

JP'(X = x )  = L JP'(X = x I N = n)JP'(N = n) 
n:;::x 

L (n) x n_x 'An 
-J.. ('Ap)X -J..p = P q - e  = -- e  . 

x n !  x !  ' n?:.x 

a similar result holds for Y,  and so 

JP'(X = x ,  Y = y) = JP'(X = x)JP'(Y = y ) .  • 

If X is a random variable and g : lR � lR, then Z = g (X) ,  defined by Z(w) = g (X (w», 

is a random variable also. We shall need the following. 
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(3) Theorem. If X and Y are independent and g, h JR � JR, then g (X) and h (Y) are 
independent also. 

Proof. Exercise. See Problem (3 . 1 1 . 1 ) .  • 

More generally, we say that a family {Xi i E I }  of (discrete) random variables is 
independent if the events {Xi = Xi } ,  i E I , are independent for all possible choices of the set 
{Xi : i E I } of the values of the Xi . That is to say, {Xi : i E I } is an independent family if 
and only if 

JP>(Xi = Xi for all i E J) = n JP>(Xi = Xi ) 
i E J 

for all sets {Xi : i E I }  and for all finite subsets J of I .  The conditional independence 
of a family of random variables , given an event C, is defined similarly to the conditional 
independence of events ;  see equation ( 1 .5 .5 ) .  

Independent families of random variables are very much easier to study than dependent 
families, as we shall see soon. Note that pairwise-independent families are not necessarily 
independent. 

Exercises for Section 3 . 2  

1 .  Let X and Y be independent random variables, each taking the values - l or I with probability 
� ,  and let Z = X Y. Show that X, Y, and Z are pairwise independent. Are they independent? 

2. Let X and Y be independent random variables taking values in the positive integers and having 
the same mass function f(x) = 2-x for x = 1 , 2 ,  . . . .  Find: 

(a) lP'(min{X ,  Y} ::s x) , (b) IP'(Y > X), 
(c) IP'(X = Y),  (d) IP'(X � kY),  for a given positive integer k, 
(e) IP'(X divides Y), (f) IP'(X = r Y) ,  for a given positive rational r .  

3. Let X I , X 2 , X 3 be independent random variables taking values i n  the positive integers and having 
mass functions given by IP'(Xi = x) = ( I  - Pi )pf- 1 for x = 1 , 2 ,  . . .  , and i = 1 , 2 , 3 .  
(a) Show that 

IP'(X X X )  
( 1  - P l ) ( 1  - P2)P2P� 

1 < 2 < 3 = . 
(l - P2P3 ) ( l  - P I P2P3 ) 

(b) Find IP'(X I ::s X2 ::s X3 ) ·  

4 .  Three players, A ,  B, and C, take turns to roll a die; they do  this in  the order ABCABCA. . . .  
(a) Show that the probability that, of the three players, A is the first to throw a 6, B the second, and 

C the third, is 2 16/ 100 1 .  
(b) Show that the probability that the first 6 to appear i s  thrown b y  A, the second 6 to appear i s  thrown 

by B, and the third 6 to appear is thrown by C, is 46656/75357 1 .  

5. Let Xr , 1 ::s r ::s n, be independent random variables which are symmetric about 0;  that is, 
Xr and -Xr have the same distributions. Show that, for all x, IP'(Sn � x) = IP'(Sn ::s -x) where 
Sn = L:�=l Xr . 

Is the conclusion necessarily true without the assumption of independence? 
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3.3 Expectation 

Let X I ,  X2 , . . .  , XN be the numerical outcomes of N repetitions of some experiment. The 
average of these outcomes is 

1 
m =  N �Xi . 

I 

In advance of performing these experiments we can represent their outcomes by a sequence 
X I ,  X2 , . . .  , XN of random variables, and we shall suppose that these variables are discrete 
with a common mass function /. Then, roughly speaking (see the beginning of Section 1 .3) ,  
for each possible value x, about N / (x) of the Xi will take that value x. So the average m is 
about 

1 
m � N LxN/(x) = LX/(x ) 

x x 

where the summation here is over all possible values of the Xi . This average is called the 
'expectation'  or 'mean value' of the underlying distribution with mass function / . 

(1) Definition. The moon valne, or expectation, or expected value of the random variable 
X with mass function / is defined to be 

E(X) = I: x/ex) 
x:f(x» O 

whenever this sum is absolutely convergent. 
We require absolute convergence in order that lE (X) be unchanged by reordering the Xi . We 

can, for notational convenience, write lE (X) = Lx x/ex ) . This appears to be an uncountable 
sum; however, all but countably many of its contributions are zero . If the numbers / (x) are 
regarded as masses / (x) at points x then lE (X) is just the position of the centre of gravity ; we 
can speak of X as having an 'atom' or 'point mass'  of size / (x) at x .  We sometimes omit the 
parentheses and simply write lEX. 

(2) Example (2.1.5) revisited. The random variables X and W of this example have mean 
values 

lE(X) = LXlP'(X = x) = o ·  ! + 1 · ! + 2 · ! = 1 ,  
x 

lE(W) = L xlP'(W = x ) = 0 . i + 4 . ! = 1 .  • 
x 

If X is a random variable and g ; IR � IR, then Y = g (X) ,  given formally by Y ew) = 
g (X (w», is a random variable also. To calculate its expectation we need first to find its 
probability mass function /y . This process can be complicated, and it is avoided by the 
following lemma (called by some the ' law of the unconscious statistician' ! ) . 
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(3) Lemma. If X has mass junction I and g : R � R, then 

E(g(X» = Lg(x)/(x) 
x 

whenever this sum is absolutely convergent. 
Proof. This is Problem (3 . 1 1 . 3 ) .  

5 1  

• 

(4) Example. Suppose that X takes values -2, - 1 ,  1 , 3 with probabilities i ,  � ,  i ,  � respec­

tively. The random variable Y = X2 takes values 1, 4, 9 with probabilities �, i, � respectively, 
and so 

E(Y) = LXIP'(Y = x) = 1 . � + 4 · i + 9 · � = � .  
x 

Alternatively, use the law of the unconscious statistician to find that 

E(Y) = JE(X2) = L x21P'(X = x)  = 4 ·  i + 1 . � + 1 · i + 9 ·  � = � .  • 
x 

Lemma (3) provides a method for calculating the 'moments ' of a distribution; these are 
defined as follows. 

(5) Definition. If k is a positive integer, the kth moment mk of X is defined to be mk = lE(Xk) .  
The kth central moment Ok is 0'1, = JE« X - m l )k) .  

The two moments of  most use are m l  = JE(X) and 0'2 = JE« X - JEX)2) ,  called the mean (or 
expectation) and variance of X. These two quantities are measures of the mean and dispersion 
of X; that is, m I is the average value of X, and 0'2 measures the amount by which X tends to 
deviate from this average. The mean m I is often denoted �, and the variance of X is often 
denoted var(X) . The positive square root a = .Jvar(X) is called the standard deviation, and 
in this notation 0'2 = 0'2 . The central moments {ai } can be expressed in terms of the ordinary 
moments {md . For example, 0'1 = 0 and 

x = L x2/ (x )  - 2m ! L xl (x ) + mi L I(x )  
x x x 

which may be written as 

Remark. Experience with student calculations of variances causes us to stress the following 
elementary fact: variances cannot be negative. We sometimes omit the parentheses and write 
simply var X. The expression JE(X)2 means (JE(X»2 and must not be confused with JE(X2) .  
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(6) Example. Bernoulli variables. Let X be a Bernoulli variable, taking the value 1 with 
probability p (= 1 - q) .  Then 

lE(X) = L X/ (x ) = O · q + 1 . p = p ,  
x 

x 
var(X) = lE(X2) _ lE(X)2 = pq .  

Thus the indicator variable fA has expectation JP>(A) and variance JP>(A)JP>(AC) . 

(7) Example. Binomial variables. Let X be bin(n , p) .  Then 

To calculate this, differentiate the identity 

multiply by x to obtain 

tkG)Xk = nx ( l + x)n- l , 
k=O 

• 

and substitute x = p / q to obtain lE(X) = np . A similar argument shows that the variance of 
X is given by var(X) = npq . • 

We can think of the process of calculating expectations as a linear operator on the space of 
random variables . 

(8) Theorem. The expectation operator 1E has the /olkJwing properties: 
(a) if X '?:. 0 then E(X) '?:. 0, 
(b) if a, b E lR then lE(aX + bY) = aE(X) + bE(Y). 
(c) the random variable 1,  taking the value 1 always, has expectation lE(1)  = 1 .  

Proof. (a) and (c) are obvious. 
(b) Let Ax = {X = x } , By = {Y = y } .  Then 

aX + bY = L (ax + by) fAxnBy 
x , y 

and the solution of the first part of Problem (3 . 1 1 . 3 )  shows that 

lE(aX + bY) = L (ax + by)JP>(Ax n By ) .  
x , y 
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However, 

� lP'(Ax n By) = lP' ( Ax n (y By) ) = lP'(Ax n Q) = lP'(Ax ) 
and similarly Lx lP'(Ax n By) = lP'(By ) , which gives 

JE(aX + bY) = Lax LlP'(Ax n By) + Lby LlP'(Ax n By) 
x y 

x y 

y x 
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= aJE(X) + bJE(Y) . • 

Remark. It is not in general true that JE(XY) is the same as JE(X)JE(Y) .  

(9) Lemma. If X and Y are independent then JE(XY) = JE(X)JE(Y) . 

Proof. Let Ax and By be as in the proof of (8) .  Then 

and so 

XY = LxyIAxnBy 
x ,y 

JE(XY) = LxylP'(Ax)lP' (By ) by independence 
x , y = LxlP'(Ax ) L ylP'(By) = JE(X)JE(Y) . 
x y 

(10) Definition. X and Y are called uncorrelated if JE(XY) = JE(X)JE(Y) . 

• 

Lemma (9) asserts that independent variables are uncorrelated. The converse is not true, 
as Problem (3 . 1 1 . 1 6) indicates. 

(11) Theorem. For random variables X and Y, 
(a) var(aX) = a2 var(X) for a E R, 

(b) var(X + Y) = var(X) + var(y) if X and Y are uncorrelated. 

Proof. (a) Using the linearity of JE, 

var(aX) = JE { (aX - JE(aX»2 } = JE { a2 (X - JEX)2 } = a2JE { (X - JEX)2 } = a2 var(X) . 

(b) We have when X and Y are uncorrelated that 

var(X + Y) = JE { (X + Y - JE(X + Y»)2 } = JE [ (X - JEX)2 + 2 (XY - JE(X)JE(Y») + (Y _ JEy)2
] = var(X) + 2 [JE(XY) - JE(X)JE(y) ] + var(Y) = var(X) + var(Y) . • 
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Theorem ( 1 1 a) shows that the variance operator 'var' is not a linear operator, even when it 
is applied only to uncorrelated variables. 

Sometimes the sum S = L xf(x ) does not converge absolutely, and the mean of the 
distribution does not exist. If S = -00 or S = +00, then we can sometimes speak of the 
mean as taking these values also. Of course, there exist distributions which do not have a 
mean value. 

(12) Example. A distribution without a mean. Let X have mass function 

f(k) = Ak-2 for k = ± 1 ,  ±2, . . .  

where A is chosen so that L f(k) = 1 .  The sum Lk kf (k) = A Lk#O k- 1 does not converge 
absolutely, because both the positive and the negative parts diverge. • 

This is a suitable opportunity to point out that we can base probability theory upon the 
expectation operator lE rather than upon the probability measure lP'. After all, our intuitions 
about the notion of 'average' are probably just as well developed as those about quantitative 
chance. Roughly speaking, the way we proceed is to postulate axioms, such as (a), (b), and 
(c) of Theorem (8) ,  for a so-called 'expectation operator' lE acting on a space of 'random 
variables' . The probability of an event can then be recaptured by defining lP'(A) = lE(IA ) .  
Whittle (2000) i s  an able advocate o f  this approach. 

This method can be easily and naturally adapted to deal with probabilistic questions in 
quantum theory. In this major branch of theoretical physics, questions arise which cannot 
be formulated entirely within the usual framework of probability theory. However, there still 
exists an expectation operator lE, which is applied to linear operators known as observables 
(such as square matrices) rather than to random variables. There does not exist a sample space 
Q, and nor therefore are there any indicator functions, but nevertheless there exist analogues 
of other concepts in probability theory. For example, the variance of an operator X is defined 
by var(X) = lE(X2) _ lE(X)2 . Furthermore, it can be shown that lE(X) = tr(UX) where tr 
denotes trace and U is a non-negative definite operator with unit trace. 

(13) Example. Wagers. Historically, there has been confusion amongst probabilists between 
the price that an individual may be willing to pay in order to play a game, and her expected 
return from this game. For example, I conceal £2 in one hand and nothing in the other, and 
then invite a friend to pay a fee which entitles her to choose a hand at random and keep the 
contents . Other things being equal (my friend is neither a compulsive gambler, nor particularly 
busy) ,  it would seem that £ 1  would be a 'fair' fee to ask, since £ 1  is the expected return to 
the player. That is to say, faced with a modest (but random) gain, then a fair 'entrance fee' 
would seem to be the expected value of the gain . However, suppose that I conceal £210 in one 
hand and nothing in the other; what now is a 'fair' fee? Few persons of modest means can be 
expected to offer £29 for the privilege of playing. There is confusion here between fairness 
and reasonableness :  we do not generally treat large payoffs or penalties in the same way as 
small ones, even though the relative odds may be unquestionable. The customary resolution 
of this paradox is to introduce the notion of 'utility ' .  Writing u (x ) for the 'utility' to an 
individual of £x , it would be fairer to charge a fee of i (u (O) + u (2 1 O)) for the above prospect. 
Of course, different individuals have different utility functions, although such functions have 
presumably various features in common: u (O) = 0, u is non-decreasing, u (x ) is near to x for 
small positive x , and u is concave, so that in particular u (x ) :os xu ( 1 )  when x � 1 .  
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The use of expectation to assess a 'fair fee' may be convenient but is sometimes inap­
propriate. For example, a more suitable criterion in the finance market would be absence of 
arbitrage; see Exercise (3 .3 .7) and Section 1 3 . 10 .  And, in a rather general model of financial 
markets, there is a criterion commonly expressed as 'no free lunch with vanishing risk' . • 

Exercises for Section 3 . 3  

1. Is it generally true that lE ( l /  X) = l /lE(X) ? Is it ever true that lE( l  / X) = l /lE(X) ? 

2. Coupons. Every package of some intrinsically dull commodity includes a small and exciting 
plastic object. There are c different types of object, and each package is equally likely to contain any 
given type. You buy one package each day. 
(a) Find the mean number of days which elapse between the acquisitions of the jth new type of object 

and the (j + l ) th new type. 
(b) Find the mean number of days which elapse before you have a full set of objects . 

3. Each member of a group of n players rolls a die. 
(a) For any pair of players who throw the same number, the group scores 1 point. Find the mean and 

variance of the total score of the group. 
(b) Find the mean and variance of the total score if any pair of players who throw the same number 

scores that number. 

4. 8t Petersburg paradoxt. A fair coin is tossed repeatedly. Let T be the number of tosses until 
the first head. You are offered the following prospect, which you may accept on payment of a fee. If 
T = k, say, then you will receive £2k . What would be a 'fair' fee to ask of you? 

5. Let X have mass function 

f (x) = { bX (X + 1 ) }- 1 if x = 1 , 2 ,  . . .  , 

otherwise, 

and let ex E JR. For what values of ex is it the case* that lE(X<l! ) < oo? 

6. Show that var(a + X) = var(X) for any random variable X and constant a .  
7. Arbitrage. Suppose you find a warm-hearted bookmaker offering payoff odds of rr (k) against 
the kth horse in an n-horse race where 2:k=1  {rr (k) + 1 }- 1 < 1. Show that you can distribute your 
bets in such a way as to ensure you win. 

S. You roll a conventional fair die repeatedly. If it shows 1, you must stop, but you may choose to 
stop at any prior time. Your score is the number shown by the die on the final roll. What stopping 
strategy yields the greatest expected score? What strategy would you use if your score were the square 
of the final roll? 

9. Continuing with Exercise (8), suppose now that you lose c points from your score each time you 
roll the die. What strategy maximizes the expected final score if c = j- ? What is the best strategy if 
c = I ?  

tThis problem was mentioned by Nicholas Bernoulli in 1 7 1 3, and Daniel Bernoulli wrote about the question 
for the Academy of St Petersburg. 

tIf ex is not integral, than IE(X"' )  is called the fractional moment of order ex of X. A point concerning 

notation: for real ex and complex x = reilJ , x'" should be interpreted as r'" eilJ"' ,  so that Ix'" I = r"' . In particular, 

1E( IX"' I ) = 1E( IX I"' ) ·  



56 3 .4 Discrete random variables 

3.4 Indicators and matching 

This section contains light entertainment, in the guise of some illustrations of the uses of 
indicator functions. These were defined in Example (2. 1 .9) and have appeared occasionally 
since. Recall that 

and lElA = JP>(A) .  

{ I  i f  W E  A ,  
IA (W) = 0 

if w E AC , 

(1) Example. Proofs of Lemma (1.3.4c, d). Note that 

IAUB = 1 - I(AUB)C = 1 - IAcnBc = 1 - IAc lBc = 1 - ( 1  - IA ) ( 1 - IB ) = IA + IB - IA IB · 

Take expectations to obtain 

JP>(A U B )  = JP>(A) + JP>(B) - JP>(A n B ) .  

More generally, if B = U7= 1  Ai then 

n 
IB = 1 - n ( 1  - IA, ) ; 

i= 1  

multiply this out and take expectations to obtain 

(2) JP>(0 Ai) = � JP>(Ai ) - � JP>(Ai n Aj ) + . . .  + (_ l )n+ IJP>(A I n · · ·  n An ) · 
1 = 1  1 I <j 

This very useful identity is known as the inclusion-exclusionformula. • 

(3) Example. Matching problem. A number of melodramatic applications of (2) are avail­
able, of which the following is typical . A secretary types n different letters together with 
matching envelopes, drops the pile down the stairs, and then places the letters randomly in 
the envelopes. Each arrangement is equally likely, and we ask for the probability that exactly 
r are in their correct envelopes. Rather than using (2), we shall proceed directly by way of 
indicator functions. (Another approach is presented in Exercise (3 .4 .9) . )  
Solution. Let L I , L2 , . . .  , Ln denote the letters. Call a letter good if it  is correctly addressed 
and bad otherwise; write X for the number of good letters. Let Ai be the event that Li is 
good, and let Ii be the indicator function of Ai .  Let j] , . . .  , jr , kr+ 1 , . . .  , kn be a permutation 
of the numbers 1 ,  2, . . .  , n, and define 

(4) S = L Ih . . .  Ijr (1 - hr+1 ) . . .  (1 - hn ) 
rr 
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where the sum is taken over all such permutations 7r .  Then 

s =  
{ o if X # r , 

r ! (n - r ) !  if X = r . 
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To see this, let Lil ' . . .  , Lim be the good letters. If m # r then each summand in (4) equals 
O. If m = r then the summand in (4) equals 1 if and only if jl , . . .  , jr is a permutation of 
i i ,  . . .  , i r and kr+ I , . . .  , kn is a permutation of the remaining numbers; there are r !  (n - r ) ! 
such pairs of permutations. It follows that I , given by 

(5) 
1 

1 =  S 
r ! (n - r ) !  ' 

is the indicator function of the event {X = r }  that exactly r letters are good. We take 
expectations of (4) and multiply out to obtain 

by a symmetry argument. However, 

(6) 

since there are n !  possible permutations, only (n - r - s) ! of which allocate Lip . . .  , Ljr , 
Lkr+1 ' • • •  , Lkr+s to their correct envelopes. We combine (4), (5) , and (6) to obtain 

1 
JP'(X = r )  = lE(/) = lEeS) 

r ! (n - r ) !  

1 
nL::-

r (n - r) (n - r - s) ! 
= ( - l )s n !  -'-------'-

r !  (n - r ) ! s n ! s=o 
1 n-r 

1 
=

;1 
L::(- l )s ;r . s=o . 

- - - - - + . . . + for r S n - 2 and n � 2 .  
1 ( 1 1 ( _ l )n-r ) 

- r !  2 !  3 !  (n - r ) ! 

In particular, as the number n of letters tends to infinity, we obtain the possibly surprising 
result that the probability that no letter is put into its correct envelope approaches e- I . It is 
left as an exercise to prove this without using indicators. • 

(7) Example. Reliability. When you telephone your friend in Cambridge, your call is routed 
through the telephone network in a way which depends on the current state of the traffic. For 
example, if all lines into the Ascot switchboard are in use, then your call may go through 
the switchboard at Newmarket. Sometimes you may fail to get through at all, owing to a 
combination of faulty and occupied equipment in the system. We may think of the network 
as comprising nodes joined by edges, drawn as 'graphs '  in the manner of the examples of 
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2 

1 3 

s 1 3 

2 4 

Figure 3 . 1 .  Two networks with source s and sink t .  

Figure 3 . 1 .  In  each of these examples there is a designated ' source' s and ' sink' t ,  and we 
wish to find a path through the network from s to t which uses available channels .  As a 
simple model for such a system in the presence of uncertainty, we suppose that each edge e is 
'working' with probability Pe ,  independently of all other edges. We write p for the vector of 
edge probabilities Pe ,  and define the reliability R (p) of the network to be the probability that 
there is a path from s to t using only edges which are working . Denoting the network by G, 
we write RG (p) for R (p) when we wish to emphasize the role of G. 

We have encountered questions of reliability already. In Example ( 1 .7 .2) we were asked 
for the reliability of the first network in Figure 3 . 1 and in Problem ( 1 . 8 . 1 9) of the second, 
assuming on each occasion that the value of Pe does not depend on the choice of e .  

Let us write { I  if edge e is working, 
Xe = o otherwise, 

the indicator function of the event that e is working, so that Xe takes the values 0 and 1 with 
probabilities 1 - Pe and Pe respectively. Each realization X of the Xe either includes a working 
connection from s to t or does not. Thus, there exists a structure function � taking values 0 
and 1 such that 

(8) � (X) = . 

{ I  if such a working connection exists , o otherwIse; 

thus � (X) is the indicator function of the event that a working connection exists. It is imme­
diately seen that R (p) = lE(� (X» . The function � may be expressed as 

(9) � (X) = 1 - n I{rr not workingl = 1 - n ( 1 - n Xe) 
rr rr eErr 

where 1T is a typical path in G from s to t ,  and we say that 1T is working if and only if every 
edge in 1T is working . 

For instance, in the case of the first example of Figure 3 . 1 ,  there are four different paths 
from s to t .  Numbering the edges as indicated, we have that the structure function is given by 

(10) 

As an exercise, expand this and take expectations to calculate the reliability of the network 
when Pe = P for all edges e .  • 
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(1 1) Example. The probabilistic methodt. Probability may be used to derive non-trivial 
results not involving probability. Here is an example. There are 1 7  fenceposts around the 
perimeter of a field, exactly 5 of which are rotten. Show that, irrespective of which these 5 
are, there necessarily exists a run of 7 consecutive posts at least 3 of which are rotten. 

Our solution involves probability. We label the posts 1 ,  2, . . .  , 1 7 ,  and let h be the indicator 
function that post k is rotten. Let Rk be the number of rotten posts amongst those labelled 
k + 1 ,  k + 2, . . .  , k + 7, all taken modulo 1 7 .  We now pick a random post labelled K, each 
being equally likely. We have that 

1 7 
1 

1 7 
7 7 

lE(RK ) = '" - (/k+ 1 + h+2 + . . .  + h+7 ) = '" - Ij = - · 5 .  f=: 1 7  � 1 7  1 7  

Now N > 2, implying that JP'(RK > 2) > O. Since RK is integer valued, it must be the case 
that JP'(RK 2: 3) > 0, implying that Rk 2: 3 for some k .  • 

Exercises for Section 3 .4 

1. A biased coin is tossed n times, and heads shows with probability p on each toss .  A run is a 
sequence of throws which result in the same outcome, so that, for example, the sequence HHTHTTH 
contains five runs. Show that the expected number of runs is 1 + 2(n - 1 )p ( l - p) .  Find the variance 
of the number of runs. 

2. An urn contains n balls numbered 1, 2, . . .  , n. We remove k balls at random (without replacement) 
and add up their numbers. Find the mean and variance of the total. 

3. Of the 2n people in a given collection of n couples, exactly m die. Assuming that the m have 
been picked at random, find the mean number of surviving couples . This problem was formulated by 
Daniel Bernoulli in 1 768.  

4. Urn R contains n red balls and urn B contains n blue balls . At each stage, a ball is selected at 
random from each urn, and they are swapped. Show that the mean number of red balls in urn R after 
stage k is in { 1 + ( 1  - 2/n)k ) . This 'diffusion model' was described by Daniel Bernoulli in 1 769. 

5. Consider a square with diagonals, with distinct source and sink. Each edge represents a component 
which is working correctly with probability p, independently of all other components . Write down an 
expression for the Boolean function which equals 1 if and only if there is a working path from source 
to sink, in terms of the indicator functions Xi of the events {edge i is working} as i runs over the set 
of edges . Hence calculate the reliability of the network. 

6. A system is called a 'k out of n ' system if it contains n components and it works whenever k or 
more of these components are working. Suppose that each component is working with probability 
p, independently of the other components, and let Xc be the indicator function of the event that 
component c is working. Find, in terms of the Xc, the indicator function of the event that the system 
works, and deduce the reliability of the system. 

7. The probabilistic method. Let G = (V ,  E) be a finite graph. For any set W of vertices and any 
edge e E E, define the indicator function 

Iw (e) = { � if e connects W and We, 

otherwise . 

Set Nw = �eEE Iw (e) .  Show that there exists W � V such that Nw 2: i l E I · 

tGenerally credited to Erdos .  
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8. A total of n bar magnets are placed end to end in a line with random independent orientations . 
Adjacent like poles repel, ends with opposite polarities join to form blocks . Let X be the number of 
blocks of joined magnets . Find JE(X) and var(X) . 

9. Matching. (a) Use the incIusion-excIusion formula (3 .4 .2) to derive the result of Example 
(3 .4.3) , namely: in a random permutation of the first n integers, the probability that exactly r retain 
their original positions is 

1 ( 1 1 (_ l )n-r ) 
r ! 2! - 3 !  

+ . . .  + (n - r) ! 
. 

(b) Let dn be the number of derangements of the first n integers (that is , rearrangements with no 
integers in their original positions) .  Show that dn+ l = ndn + ndn- l for n 2: 2. Deduce the result of 
part (a). 

3.5 Examples of discrete variables 

(1) Bernoulli trials. A random variable X takes values 1 and 0 with probabilities p and q 
(= 1 - p), respectively. Sometimes we think of these values as representing the ' success '  or 
the 'failure ' of a trial . The mass function is 

I (O) = l - p , 1 ( 1 )  = p ,  

and i t  follows that lEX = P and var(X) = p ( l - p) . • 

(2) Binomial distribution. We perform n independent Bernoulli trials X l , X2 , . . . , Xn and 
count the total number of successes Y = X l + X2 + . . . + Xn . As in Example (3 . 1 .3) ,  the 
mass function of Y is 

k = 0, J ,  . . . , n . 

Application of Theorems (3 . 3 . 8 )  and (3 . 3 . 1 1 ) yields immediately 

lEY = np , var(Y) = np ( l - p) ;  

the method of  Example (3 .3 .7) provides a more lengthy derivation of  this .  • 

(3) Trinomial distribution. More generally, suppose we conduct n trials, each of which 
results in one of three outcomes (red, white, or blue, say), where red occurs with probability 
p, white with probability q , and blue with probability 1 - P - q . The probability of r reds, 
w whites, and n - r - w blues is 

n !  
_______ pr qW ( 1  _ P _ q )n-r-w . 
r ! w !  (n - r - w) ! 

This is the trinomial distribution, with parameters n ,  p, and q . The 'multinomial distribution' 
is the obvious generalization of this distribution to the case of some number, say t ,  of possible 
outcomes . • 
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(4) Poisson distribution. A Poisson variable i s  a random variable with the Poisson mass 
function 

k = 0, 1 , 2 , . . .  

for some 'A > o.  It can be obtained in practice in the following way. Let Y be a bin (n , p) 
variable, and suppose that n is very large and p is very small (an example might be the number 
Y of misprints on the front page of the Grauniad, where n is the total number of characters 
and p is the probability for each character that the typesetter has made an error) . Now, let 
n -+ 00 and p -+ 0 in such a way that JE(Y) = np approaches a non-zero constant 'A . Then, 
for k = 0, 1 ,  2, . . .  , 

(n) k k 1 ( np ) k 'Ak 
JP'(Y = k) = P ( 1 - p)n- rv - -- ( 1 _ p)n -+ _e-A • 

k k !  1 - p k !  

Check that both the mean and the variance of this distribution are equal to 'A .  Now do Problem 
(2.7 .7) again (exercise) .  • 

(5) Geometric distribution. A geometric variable is a random variable with the geometric 
mass function 

f(k) = p ( l _ p)k- l , k = 1 , 2 ,  . . .  

for some number p in (0, 1 ) .  This distribution arises in the following way. Suppose that 
independent Bernoulli trials (parameter p) are performed at times 1 ,  2, . . . .  Let W be the time 
which elapses before the first success ;  W is called a waiting time. Then JP'(W > k) = ( 1 - p)k 
and thus 

JP'(W = k) = JP'(W > k - 1 ) - JP'(W > k) = p( l _ p)k- I . 

The reader should check, preferably at this point, that the mean and variance are p-l and 
( 1 - p)p-2 respectively. • 

(6) Negative binomial distribution. More generally, in the previous example, let Wr be the 
waiting time for the rth success. Check that Wr has mass function 

JP'(Wr = k) = 

(k - l) pr ( 1 _ p)k-r , r - 1  k = r, r + 1 , . . .  ; 

it is said to have the negative binomial distribution with parameters r and p . The random 
variable Wr is the sum of r independent geometric variables . To see this, let X I be the waiting 
time for the first success, X 2 the further waiting time for the second success, X 3 the further 
waiting time for the third success, and so on. Then X I ,  X 2 , . . .  are independent and geometric, 
and 

Apply Theorems (3 . 3 . 8) and (3 . 3 . 1 1 ) to find the mean and the variance of Wr . • 
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Exercises for Section 3 .5 

1. De Moivre trials. Each trial may result in any of t given outcomes, the i th outcome having 
probability Pi . Let Ni be the number of occurrences of the i th outcome in n independent trials . Show 
that 

(N ,. 1 . ) 
n !  n [ n2 nt JP' i = n i lor ::::: I ::::: t = PI P2 . . .  Pt n l ! n2 ! . .  · nt ! 

for any collection n l , n2 , . . . , nt of non-negative integers with sum n . The vector N is said to have 
the multinomial distribution. 

2. In your pocket is a random number N of coins, where N has the Poisson distribution with 
parameter A. You toss each coin once, with heads showing with probability P each time. Show that 
the total number of heads has the Poisson distribution with parameter Ap . 

3. Let X be Poisson distributed where JP'(X = n) = Pn (A) = An e-).. In ! for n 2: O. Show that 
JP'(X ::::: n) = 1 - It Pn (x ) dx .  
4 .  Capture-recapture. A population of b animals has had a number a of its members captured, 
marked, and released. Let X be the number of animals it is necessary to recapture (without re-release) 
in order to obtain m marked animals . Show that 

JP'(X = n) = - , 
a (a - l ) ( b - a ) / (b - l) 
b m - l n - m n - l 

and find EX. This distribution has been called negative hypergeometric . 

3.6 Dependence 

Probability theory is largely concerned with families of random variables ; these families will 
not in general consist entirely of independent variables. 

(1) Example. Suppose that we back three horses to win as an accumulator. If our stake is £ 1 
and the starting prices are a, fJ ,  and y , then our total profit is 

W = (a + l ) (fJ + 1 ) (y + 1 ) It Iz I3 - 1 

where Ii denotes the indicator of a win in the i th race by our horse. (In checking this expression 
remember that a bet of £ B on a horse with starting price a brings a return of £B(a + 1 ) , 
should this horse win . )  We lose £ 1  if some backed horse fails to win . It seems clear that the 
random variables W and It are not independent. If the races are run independently, then 

IP'(W = - 1 ) = 1P'(lt lzh = 0) , 

but 
IP'(W = - 1 l it = 1 ) = 1P'(lzh = 0) 

which are different from each other unless the first backed horse is guaranteed victory. • 

We require a tool for studying collections of dependent variables. Knowledge of their 
individual mass functions is little help by itself. Just as the main tools for studying a random 
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variable is its distribution function, so the study of, say, a pair of random variables is based 
on its 'joint' distribution function and mass function . 

(2) Definition. The Joint distribution function F : )R2 -* [0, 1] of X and Y, where X and 
Y are discrete variables, is given by 

F(x ,  y) = P(X :s x and Y :s y). 

Their joint mass function I : R2 ... [0, 1] is given by 

f(x ,  y) = P(X = x and Y = y). 

Joint distribution functions and joint mass functions of larger collections of variables are 
defined similarly. The functions F and I can be characterized in much the same way (Lemmas 
(2 . 1 .6) and (3 . 1 .2» as the corresponding functions of a single variable.We omit the details . 
We write FX, Y and Ix, Y  when we need to stress the role o f  X and Y .  You may think o f  the 
joint mass function in the following way. If Ax = {X = x }  and By = {Y  = y } ,  then 

I (x ,  y )  = lP'(Ax n By ) . 

The definition of independence can now be reformulated in a lemma. 

(3) Lemma. The discrete random variables X and Y are independent if and only if 

(4) /x,y (x ,  y) = Ix(x)/y(y) for all x. y E R. 

More generally, X and Y are independent if and only if /x,y(x ,  y) Can be lactorized as the 
product g(x)h (y) of a function 01 x alone and a function 01 y alone. 
Proof. This is Problem (3 . 1 1 . 1 ) . • 

Suppose that X and Y have joint mass function Ix, Y  and we wish to check whether or 
not (4) holds. First we need to calculate the marginal mass functions Ix and Iy from our 
knowledge of Ix, Y . These are found in the following way : 

Ix (x ) = lP'(X = x)  = lP'(U({X = x }  n {Y = yn) 
y 

= LlP'(X = x ,  Y = y) = L /x,y (x , y ) ,  
y y 

and similarly Iy (y) = Lx Ix, Y (x , y ) .  Having found the marginals, it is a trivial matter to 
see whether (4) holds or not. 

Remark. We stress that the factorization (4) must hold for all x and y in order that X and Y 
be independent. 

(5) Example. Calculation of mar gina Is. In Example (3 .2 .2) we encountered a pair X, Y of 
variables with a joint mass function 

aX f3Y 
I(x ,  y )  = __ e-a-fJ " 0 1 2 lor x , y =  , , , . . .  

x ! y !  
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where ex, f3 > O. The marginal mass function of X is 

and so X has the Poisson distribution with parameter ex .  Similarly Y has the Poisson distribution 
with parameter f3 .  It is easy to check that (4) holds , whence X and Y are independent. • 

For any discrete pair X, Y,  a real function g (X, Y)  is a random variable. We shall often 
need to find its expectation. To avoid explicit calculation of its mass function, we shall use 
the following more general form of the law of the unconscious statistician, Lemma (3 .3 .3 ) .  

(6) Lemma. lE(g(X, Y) )  = Lx,y g (x , y)fx, Y (x , y) . 

Proof. As for Lemma (3 . 3 . 3 ) .  • 

For example, lE(XY) = Lx,y xyfx, Y (x , y) . This formula is particularly useful to statisti­
cians who may need to find simple ways of explaining dependence to laymen. For instance, 
suppose that the government wishes to announce that the dependence between defence spend­
ing and the cost of living is very small. It should not publish an estimate of the joint mass 
function unless its object is obfuscation alone. Most members of the public would prefer to 
find that this dependence can be represented in terms of a single number on a prescribed scale. 
Towards this end we make the following definitiont .  

(7) Definition. The covariance of  X and Y is 

cov(X, Y) = lE [ (X - lEX) (Y - lEY)] . 

The correlation (coefficient) of X and Y is 

cov(X, Y)  
P (X ,  Y)  = --;===;:;:;:;::=:===;:� 

,Jvar(X) . var(Y) 

as long as the variances are non-zero . 

Note that the concept of covariance generalizes that of variance in that cov( X, X) = var( X) . 
Expanding the covariance gives 

cov(X, Y) = lE(XY) - lE(X)lE(Y) .  

Remember, Definition (3 . 3 . 1 0), that X and Y are called uncorrelated i f  cov(X, Y )  = O .  Also, 
independent variables are always uncorrelated, although the converse is not true. Covariance 
itself is not a satisfactory measure of dependence because the scale of values which cov(X, Y)  
may take contains no points which are clearly interpretable in terms of the relationship between 
X and Y .  The following lemma shows that this is not the case for correlations. 

(8) Lemma. The correlation coefficient p satisfies I p (X, Y) I S 1 with equality if and only if 
JP'(aX + bY = c) = 1 for some a ,  b ,  c E R 

tThe concepts and terminology in this definition were formulated by Francis Galton in the late 1 8 80s. 
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The proof is an application of the following important inequality. 

(9) Theorem. Cauchy-Schwarz inequality. For random variables X and Y, 

{JE(XY) }2 .s JE(X2)JE(y2) 
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with equality if and only iflP'(aX = bY) = 1 for some real a and b, at least one of which is 
non-zero. 

Proof. We can assume that JE(X2) and JE(y2) are strictly positive, since otherwise the result 
follows immediately from Problem (3 . 1 1 .2) .  For a, b E �, let Z = aX - bY .  Then o .:s JE(Z2) = a2JE(X2) - 2abJE(XY) + b2JE(y2) .  

Thus the right-hand side i s  a quadratic i n  the variable a with at most one real root. Its 
discriminant must be non-positive. That is to say, if b =I- 0, 

JE(Xy)2 - JE(X2)JE(y2) .:s O .  

The discriminant is zero if  and only if  the quadratic has a real root. This occurs if  and only if 

JE ( aX - by)2) = 0 for some a and b, 

which, by Problem (3 . 1 l .2) ,  completes the proof. 

Proof of (8). Apply (9) to the variables X - JEX and Y - JEY.  

• 

• 

A more careful treatment than this proof shows that p = + 1 if and only if Y increases 
linearly with X and p = - 1 if and only if Y decreases linearly as X increases . 

(10) Example. Here is a tedious numerical example of the use of joint mass functions. Let 
X and Y take values in { l ,  2, 3 }  and { - I ,  0, 2} respectively, with joint mass function f where 
f(x ,  y )  is the appropriate entry in Table 3 . 1 .  

y = - 1 y = O y = 2 fx 

x = 1 1 3 2 6 
IS IS IS IS 

x = 2 2 0 3 5 IS IS IS 
x = 3  0 4 3 7 

IS IS IS 
fy 3 7 8 

IS IS IS 
Table 3 . 1 .  The joint mass function of the random variables X and Y. The indicated row and 
column sums are the marginal mass functions fx and fy · 

A quick calculation gives 

JE(XY) = L xYf(x ,  y) = 29/ 1 8 ,  
X , Y  

JE(X) = L xfx (x ) = 37/ 1 8 ,  JE(Y)  = 1 3 / 1 8 , 
x 

var(X) = JE(X2) - JE(X)2 = 233/324, var(y) = 46 1 /324, 

cov(X, Y) = 4 1 /324, p (X, Y)  = 4 1 /-v'1074 1 3 . • 
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Exercises for Section 3 . 6  

1 .  Show that the collection o f  random variables o n  a given probability space and having finite 
variance forms a vector space over the reals. 

2. Find the marginal mass functions of the multinomial distribution of Exercise (3 .5 . 1 ) . 

3. Let X and Y be discrete random variables with joint mass function 

c 
f (x , y) = , (x + y - 1 ) (x + y) (x + y + 1 )  x , y = 1 , 2 , 3 , . . . .  

Find the marginal mass functions of X and Y, calculate C, and also the covariance of X and Y. 
4. Let X and Y be discrete random variables with mean 0, variance 1 ,  and covariance p .  Show that 
JE (max{X2 , y2 } ) ::::: 1 + J1=P2. 
5. Mutual information. Let X and Y be discrete random variables with joint mass function f. 
(a) Show that JE(log fx (X» :::: JE(log fy (X» . 
(b) Show that the mutual information 

I - JE (10 { f(X, Y) }) 
- g 

fx (X) fy (Y) 

satisfies I :::: 0, with equality if and only if X and Y are independent. 

6. Voter paradox. Let X, Y, Z be discrete random variables with the property that their values are 
distinct with probability 1 . Let a = JP'(X > Y) , b = JP'(Y > Z),  c = JP'(Z > X) . 
(a) Show that min{a ,  b ,  c }  ::::: � ,  and give an example where this bound is attained. 

(b) Show that, if X, Y, Z are independent and identically distributed, then a = b = c = � .  
(c) Find min {a , b ,  c }  and sUPp min{a ,  b ,  c } when JP'(X = 0) = 1 ,  and Y, Z are independent with 

JP'(Z = 1) = JP'(Y = - 1 )  = p, JP'(Z = -2) = JP'(Y = 2) = 1 - p. Here, sUPp denotes the 
supremum as p varies over [0, 1 ] .  

[Part (a) i s  related to the observation that, i n  an  election, i t  i s  possible for more than half of  the voters 
to prefer candidate A to candidate B, more than half B to C, and more than half C to A.] 

7. Benford's distribution, or the law of anomalous numbers. If one picks a numerical entry at 
random from an almanac, or the annual accounts of a corporation, the first two significant digits, X, 
Y, are found to have approximately the joint mass function 

f (x , y) = 10g lO  ( 1 + lOx1+ y ) ' 1 ::::: x ::::: 9, 0 ::::: y ::::: 9. 

Find the mass function of X and an approximation to its mean. [A heuristic explanation for this 
phenomenon may be found in the second of Feller's  volumes ( 1 97 1 ) . ]  

8. Let X and Y have joint mass function 

. 
k _ c(j + k)aHk 

f (} , ) - . ' k ' 
' j , k :::: 0, 

} . .  

where a is a constant. Find c, JP'(X = j ) ,  JP'(X + Y = r ) ,  and JE(X) .  
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3.7 Conditional distributions and conditional expectation 
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In Section 1 .4 we discussed the conditional probability JP'( B I A ) .  This may be set in the more 
general context of the conditional distribution of one variable Y given the value of another 
variable X; this reduces to the definition of the conditional probabilities of events A and B if 
X = I A and Y = lB . 

Let X and Y be two discrete variables on (r.! ,  F ,  JP') . 

(1) Definition. The conditional distribution function of Y given X = x. written FYIX(' f x), 
is defined by 

FYIX(Y I x) = P(Y � Y I X = x) 
for any x such that P(X = x) > O. The conditional (probability) mass function of Y given 
X = x, written fYlx (' I x) ,  is defined by 

(2) !YIX(Y I x) = P(Y = Y I X = x) 

for any x such that P(X = x) > O. 
Formula (2) is easy to remember as !YIX = /x, y / fx . Conditional distributions and mass 

functions are undefined at values of x for which JP'(X = x) = O. Clearly X and Y are 
independent if and only if fY l x = fy . 

Suppose we are told that X = x .  Conditional upon this, the new distribution of Y has 
mass function fY lx (Y I x) , which we think of as a function of y . The expected value of this 
distribution, Ly yfY lx (Y I x) , is called the conditional expectation of Y given X = x and is 
written 1/I(x ) = JE(Y I X = x ) . Now, we observe that the conditional expectation depends on 
the value x taken by X, and can be thought of as a function 1/1 (X) of X itself. 

(3) Definition. Let 1/1 (x ) = JE(Y I X = x ) . Then 1/1 (X) is called the conditional expectation 
of Y given X, written as JE(Y I X) . 

Although 'conditional expectation' sounds like a number, it i s  actually a random variable. 
It has the following important property. 

(4) Theorem. The conditional expectation ",, (X) = ECY I X) satisfies 

E('!fr(X» = lE(y). 

Proof. By Lemma (3 . 3 . 3) ,  

JE(1/I (X» = L 1/I(x)fx (x) = LyfY l x (y I x )fx (x) 
x x , y = LYfx, y (x , y) = Lyfy (y) = JE(Y) . • 

x , y y 

This is an extremely useful theorem, to which we shall make repeated reference. It often 
provides a useful method for calculating JE(Y) , since it asserts that 

JE(Y) = LJE(Y I X = x)JP'(X = x ) . 
x 



68 3 .7  Discrete random variables 

(5) Example. A hen lays N eggs, where N has the Poisson distribution with parameter A . 
Each egg hatches with probability p (= 1 - q) independently of  the other eggs. Let K be the 
number of chicks . Find lE(K I N) ,  lE(K) ,  and lE(N I K) .  
Solution. We are given that 

Therefore 

An fN (n) = _e-A , n ! 
(n) k n k /KIN (k I n) = k 

p ( 1 - p) - . 

1/I (n) = lE(K I N = n) = L k/K IN (k I n) = pn . 
k 

Thus lE(K I N) = 1/I (N) = pN and 

lE(K) = lE(1/I (N)) = plE (N) = pl.. . 
To find lE(N I K)  we need to know the conditional mass function f N IK of N given K.  
However, 

Hence 

fNIK  (n I k) = JP>(N = n I K = k) 
JP>(K = k i N = n)JP>(N = n) 

JP>(K = k) 
mpk ( 1 - p)n-k (An /n ! )e-A 

Lm?:k (�)pk ( 1 - p)m-k (Am /m ! )e-A 
(q A)n-k -qA = e . (n - k) ! 

(qA)n-k 
lE(N I K = k) = '" n e-qA = k + qA , � (n - k) ! n?:k 

giving lE(N I K) = K + qA . 

i f  n ::: k 

There is a more general version of Theorem (4) ,  and this will be of interest later. 

(6) Theorem. The conditional expectation 1/1 (X) = lE(Y I X) satisfies 
(7) lE(1/I (X)g (X)) = lE (Yg (X)) 
for any function g for which both expectations exist. 

• 

Setting g (x ) = 1 for all x , we obtain the result of (4) . Whilst Theorem (6) is useful in its 
own right, we shall see later that its principal interest lies elsewhere. The conclusion of the 
theorem may be taken as a definition of conditional expectation-as a function 1/I(X) of X 
such that (7) holds for all suitable functions g . Such a definition is convenient when working 
with a notion of conditional expectation more general than that dealt with here. 

Proof. As in the proof of (4), 

lE(1/I (X)g (X)) = L 1/I (x)g (x )fx (x ) = L yg (x )fY l x (y I x)fx (x) 
x X , Y  

= L yg (x )fx, y (x , y) = lE(Yg(X)) . • 
X , Y  
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Exercises for Section 3 . 7  

1 .  Show the following: 
(a) JE(aY + bZ I X) = aJE(Y I X) + bJE(Z I X) for a, b E �, 
(b) JE(Y I X) � 0 if Y � 0, 
(c) JE(l I X) = 1 ,  
(d) i f  X and Y are independent then JE(Y I X) = JE(Y) ,  
(e) ( 'pull-through property' )  JE(Y g (X) I X) = g (X)JE(Y I X) for any suitable function g,  
(f) ( ' tower property' )  JE{JE(Y I X, Z) I X}  = JE(Y I X) = JE{JE(Y I X) I X, Z } .  
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2. Uniqueness of conditional expectation. Suppose that X and Y are discrete random variables, 
and that </> (X) and 1/f (X) are two functions of X satisfying 

JE (</> (X)g (X) ) = JE (1/f (X)g (X) ) = JE (Yg(X) ) 
for any function g for which all the expectations exist. Show that </> (X) and 1/f (X) are almost surely 
equal, in that lP'(</> (X) = 1/f (X)) = 1 .  

3. Suppose that the conditional expectation of Y given X i s  defined as the (almost surely) unique 
function 1/f (X) such that JE(1/f (X)g(X)) = JE(Y g (X)) for all functions g for which the expectations 
exist. Show (a)-(f) of Exercise ( 1 )  above (with the occasional addition of the expression 'with 
probability I ' ) . 

4. How should we define var(Y I X),  the conditional variance of Y given X? Show that var(Y) = 
JE(var(Y I X)) + var(JE(Y I X)) .  

5. The lifetime of a machine (in days) is a random variable T with mass function f .  Given that the 
machine is working after t days, what is the mean subsequent lifetime of the machine when: 
(a) f(x) = (N + 1 ) - 1 for x E {O, 1 ,  . . .  , N} ,  
(b) f(x) = Z-X for x = 1 , 2, . . . .  
(The first part of Problem (3 . 1 1 . 1 3) may be useful.) 

6. Let XI , X2 , . . .  be identically distributed random variables with mean f,L, and let N be a random 
variable taking values in the non-negative integers and independent of the Xi . Let S = XI + X 2 + 
. . .  + XN . Show that JE(S I N) = f,LN, and deduce that JE(S) = f,LJE(N) . 

7. A factory has produced n robots, each of which is faulty with probability </> .  To each robot a test 
is applied which detects the fault (if present) with probability 8. Let X be the number of faulty robots, 
and Y the number detected as faulty. Assuming the usual independence, show that 

JE(X I y) = {n</> ( I - 8) + ( 1 - </» y } / ( l - </>8) . 

8. Families. Each child is equally likely to be male or female, independently of all other children. 
(a) Show that, in a family of predetermined size, the expected number of boys equals the expected 
number of girls. Was the assumption of independence necessary? 
(b) A randomly selected child is male; does the expected number of his brothers equal the expected 
number of his sisters? What happens if you do not require independence? 

9. Let X and Y be independent with mean f,L. Explain the error in the following equation:  

'JE(X I X + Y = z) = JE(X I X = z - y) = JE(z - Y) = z - f,L' . 

10. A coin shows heads with probability p. Let Xn be the number of flips required to obtain a run of 
n consecutive heads. Show that JE(Xn ) = L:k=1  p-k . 
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3.8 Sums of random variables 

Much of the classical theory of probability concerns sums of random variables. We have seen 
already many such sums; the number of heads in n tosses of a coin is one of the simplest 
such examples, but we shall encounter many situations which are more complicated than 
this .  One particular complication is when the summands are dependent. The first stage in 
developing a systematic technique is to find a formula for describing the mass function of the 
sum Z = X + Y of two variables having joint mass function f (x , y ) .  

( 1 )  Theorem. We have that lP'(X + Y = z) = L f (x , z - x). 
x 

Proof. The union 
{X + Y = z} = U({X = x } n {Y = z - x l) 

x 

is disjoint, and at most countably many of its contributions have non-zero probability. There­
fore 

lP'(X + Y = z) =  LlP'(X = x , Y = z - x) =  L f(x , z - x) .  • 
x x 

If X and Y are independent, then 

IP'(X + Y = z) = fx+Y(z) == L fx(x)fy (z - x) == L fx (z - y)fy (y)· 
x y 

The mass function of X + Y is called the convolution of the mass functions of X and Y, 
and i s  written 

(2) fx+Y = fx * fy · 

(3) Example (3.5.6) revisited. Let X I and X2 be independent geometric variables with com­
mon mass function 

f (k) = p ( l - p)k- I , k = 1 , 2 , . . . .  

By (2), Z = XI + X2 has mass function 

lP'(Z = z) = L lP'(X1 = k)lP'(X2 = Z - k) 
k 

z- I  
= L p ( l - p)k- I p ( l _ p)Z-k- 1 

k= 1  
= (z - 1 )p2 ( 1 - p)Z-2 , z = 2, 3 ,  . . .  

in agreement with Example (3 .5 .6) .  The general formula for the sum of a number, r say, of 
geometric variables can easily be verified by induction .  • 
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Exercises for Section 3 . 8  

1 .  Let X and Y be independent variables, X being equally likely to take any value in {O, 1 ,  . . .  , m } ,  
and Y similarly i n  {O, 1 ,  . . .  , n } .  Find the mass function o f  Z = X + Y .  The random variable Z is 
said to have the trapezoidal distribution. 
2. Let X and Y have the joint mass function 

c f (x ,  y) = , (x + y - l ) (x + y) (x + y + 1 )  
x ,  y = 1 , 2 , 3 ,  . . . .  

Find the mass functions of U = X + Y and V = X - Y. 
3. Let X and Y be independent geometric random variables with respective parameters a and f3 .  
Show that 

IP'(X + Y = z) = � { (l - f3)z- l - ( 1  - a)Z- l } . a - f3 

4. Let {Xr : 1 � r :::: n} be independent geometric random variables with parameter p .  Show that 
Z = L:�=l Xr has a negative binomial distribution. [Hint: No calculations are necessary.] 

5. Pepys's problemt. Sam rolls 6n dice once; he needs at least n sixes. Isaac rolls 6(n + 1 )  dice; 
he needs at least n + 1 sixes . Who is more likely to obtain the number of sixes he needs? 

6. Let N be Poisson distributed with parameter A . Show that, for any function g such that the 
expectations exist, IE(N g(N)) = AIEg (N + 1 ) .  More generally, if S = L:�l Xr , where {Xr : r ::: O} 
are independent identically distributed non-negative integer-valued random variables, show that 

IE (Sg (S») = AIE (g (S + Xo)Xo ) . 

3.9 Simple random walk 

Until now we have dealt largely with general theory; the final two sections of this chapter 
may provide some lighter relief. One of the simplest random processes is so-called ' simple 
random walk' :!: ;  this process arises in many ways, of which the following is traditional . A 
gambler G plays the following game at the casino. The croupier tosses a (possibly biased) 
coin repeatedly ; each time heads appears, he gives G one franc, and each time tails appears 
he takes one franc from G. Writing Sn for G's fortune after n tosses of the coin, we have 
that Sn+ l = Sn + Xn+ l where Xn+ l is a random variable taking the value 1 with some fixed 
probability p and - 1  otherwise; furthermore, Xn+ 1 is assumed independent of the results of 
all previous tosses. Thus 

(1) 
n 

Sn = so +  L X; , 
;= 1 

tPepys put a simple version of this problem to Newton in 1 693 ,  but was reluctant to accept the correct reply 
he received. 

tKarl Pearson coined the term 'random walk' in 1 906, and (using a result of Rayleigh) demonstrated the 
theorem that "the most likely place to find a drunken walker is somewhere near his starting point", empirical 
verification of which is not hard to find. 
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so that Sn is obtained from the initial fortune So by the addition of. n independent random 
variables.  We are assuming here that there are no constraints on G's fortune imposed externally, 
such as that the game is terminated if his fortune is reduced to zero . 

An alternative picture of ' simple random walk' involves the motion of a particle-a particle 
which inhabits the set of integers and which moves at each step either one step to the right, 
with probability p, or one step to the left, the directions of different steps being independent of 
each other. More complicated random walks arise when the steps of the particle are allowed 
to have some general distribution on the integers, or the reals, so that the position Sn at time 
n is given by ( 1 )  where the Xi are independent and identically distributed random variables 
having some specified distribution function. Even greater generality is obtained by assuming 
that the Xi take values in ]Rd for some d ::::: 1 ,  or even some vector space over the real numbers. 
Random walks may be used with some success in modelling various practical situations, such 
as the numbers of cars in a toll queue at 5 minute intervals, the position of a pollen grain 
suspended in fluid at 1 second intervals, or the value of the Dow-Jones index each Monday 
morning. In each case, it may not be too bad a guess that the (n + l )th reading differs from the 
nth by a random quantity which is independent of previous jumps but has the same probability 
distribution . The theory of random walks is a basic tool in the probabilist's kit, and we shall 
concern ourselves here with ' simple random walk' only. 

At any instant of time a particle inhabits one of the integer points of the real line. At time 
o it starts from some specified point, and at each subsequent epoch of time 1 ,  2, . . .  it moves 
from its current position to a new position according to the following law. With probability 
p it moves one step to the right, and with probability q = 1 - P it moves one step to the left; 
moves are independent of each other. The walk is called symmetric if p = q = ! . Example 
( 1 .7 .4) concerned a symmetric random walk with 'absorbing' barriers at the points 0 and N. 
In general, let Sn denote the position of the particle after n moves, and set So = a .  Then 

(2) 
n 

Sn = a +  L Xi 
i= ! 

where X! , X 2 ,  . . .  is a sequence of independent Bernoulli variables taking values + 1 and - 1  
(rather than + 1 and 0 as before) with probabilities p and q . 

We record the motion of the particle as the sequence { en ,  Sn ) : n ::::: O} of Cartesian 
coordinates of points in the plane. This collection of points, joined by solid lines between 
neighbours, is called the path of the particle. In the example shown in Figure 3 .2 ,  the particle 
has visited the points 0, 1 ,  0, - 1 ,  0, 1 ,  2 in succession . This representation has a confusing 
aspect in that the direction of the particle's steps is parallel to the y-axis, whereas we have 
previously been specifying the movement in the traditional way as to the right or to the left. 
In future, any reference to the x-axis or the y-axis will pertain to a diagram of its path as 
exemplified by Figure 3 .2 .  

The sequence (2)  of  partial sums has three important properties. 

(3) Lemma. The simple random walk is spatially homogeneous; that is 

JP'(Sn = j I So = a) = JP'(Sn = j + b I So = a + b) . 

Proof. Both sides equal JP'(L� Xi = j - a) . • 
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Figure 3 .2. A random walk Sn . 

(4) Lemma. The simple random walk is temporally homogeneous;  that is 

JP>(Sn = j I So = a) = JP>(Sm+n = j I Sm = a ) .  

Proof. The left- and right-hand sides satisfy 

LHS � p ( � X; � j - a ) � p (% X; � j - a) � RHS . 

(5) Lemma. The simple random walk has the Markov property ; that is 

n :::: O.  

73 

• 

Statements such as JP>(S = j I X, Y)  = JP>(S = j I X) are to be interpreted in the obvious 
way as meaning that 

JP>(S = j I X = x ,  Y = y) = JP>(S = j I X = x)  for all x and y ; 

this is a slight abuse of notation. 

Proof. If one knows the value of Sm , then the distribution of Sm+n depends only on the 
jumps Xm+ 1 , . . .  , Xm+n , and cannot depend on further information concerning the values of 
So ,  Sj , . . . , Sm- l . • 

This 'Markov property' is often expressed informally by saying that, conditional upon 
knowing the value of the process at the mth step, its values after the mth step do not depend 
on its values before the mth step . More colloquially : conditional upon the present, the future 
does not depend on the past. We shall meet this property again later. 
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(6) Example. Absorbing barriers. Let us revisit Example ( 1 .7 .4) for general values of p. 
Equation ( 1 .7 .5 )  gives us  the following difference equation for the probabilities {Pk } where 
Pk is the probability of ultimate ruin starting from k :  

(7) Pk = p . PHI + q . Pk- I if 1 S k S N - 1 

with boundary conditions Po = 1 ,  PN = O. The solution of such a difference equation 
proceeds as follows. Look for a solution of the form Pk = (Jk . Substitute this into (7) and 
cancel out the power (Jk- I to obtain p(J2 - (J + q = 0, which has roots (JI = 1 ,  (J2 = q / p. If 
P =1= � then these roots are distinct and the general solution of (7) is Pk = A I (J� + A2(J� for 
arbitrary constants A l  and A2 . Use the boundary conditions to obtain 

(q /p)k _ (q/p)N 
Pk = 

1 _ (q /p)N 

If P = � then (JI = (J2 = 1 and the general solution to (7) is Pk = A l  + A2k .  Use the 
boundary conditions to obtain Pk = 1 - (k/ N) .  

A more complicated equation i s  obtained for the mean number Dk of  steps before the 
particle hits one of the absorbing barriers, starting from k. In this case we use conditional 
expectations and (3 .7 .4) to find that 

(8) 

with the boundary conditions Do = DN = O. Try solving this ;  you need to find a general so­
lution and a particular solution, as in the solution of second-order linear differential equations. 
This answer is 

(9) Dk = { q � P 
[k - N ( ; � �:: ;� ) ] if P =1= � ,  

k eN - k) if P = � .  
• 

(10) Example. Retaining barriers. In Example ( 1 .7 .4), suppose that the Jaguar buyer has 
a rich uncle who will guarantee all his losses. Then the random walk does not end when the 
particle hits zero, although it cannot visit a negative integer. Instead lP'(Sn+ l = 0 I Sn = 0) = q 
and lP'(Sn+ 1 = 1 I Sn = 0) = p. The origin is said to have a 'retaining' barrier (sometimes 
called 'reflecting' ) . 

What now is the expected duration of the game? The mean duration Fk ,  starting from k, 
satisfies the same difference equation (8)  as before but subject to different boundary conditions. 
We leave it as an exercise to show that the boundary conditions are FN = 0, p Fo = 1 + pFI , 
and hence to find Fk . • 

In such examples the techniques of ' conditioning' are supremely useful. The idea is that 
in order to calculate a probability lP'(A) or expectation JE(Y)  we condition either on some 
partition of Q (and use Lemma ( 1 .4.4» or on the outcome of some random variable (and use 
Theorem (3 .7 .4) or the forthcoming Theorem (4.6 .5» . In this section this technique yielded 
the difference equations (7) and (8) .  In later sections the same idea will yield differential 
equations, integral equations, and functional equations, some of which can be solved. 
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Exercises for Section 3 . 9  
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1.  Let T be the time which elapses before a simple random walk is absorbed at either of the absorbing 
barriers at O and N, having started at k where 0 :s k :s N. Show that IP'(T < 00) = 1 and JE(Tk ) < 00 
for all k :::: 1 .  

2. For simple random walk S with absorbing barriers at 0 and N ,  let W be the event that the particle 
is absorbed at 0 rather than at N, and let Pk = IP'(W I So = k) . Show that, if the particle starts at 
k where 0 < k < N, the conditional probability that the first step is rightwards, given W, equals 
PPk+ 1 /  Pk · Deduce that the mean duration h of the walk, conditional on W, satisfies the equation 

PPk+1 Jk+ l - Pk h + (Pk - PPk+ ] ) Jk- I = - Pk . for 0 < k < N. 

Show that we  may take as  boundary condition JO = O. Find h in  the symmetric case, when P = � .  
3. With the notation of Exercise (2), suppose further that at any step the particle may remain where 
it is with probability r where P + q + r = 1 .  Show that h satisfies 

PPk+l Jk+I - (1 - r)Pk h + qPk- I Jk- l = -Pk 

and that, when p = q / P I=- 1 ,  

h = _I _ . 1 
{k(pk + pN) _ 2NpN ( I - pk )

} . 
P _ q pk _ pN 1 _ pN 

4. Problem of the points. A coin is tossed repeatedly, heads turning up with probability P on each 
toss .  Player A wins the game if m heads appear before n tails have appeared, and player B wins 
otherwise. Let Pmn be the probability that A wins the game. Set up a difference equation for the pmn .  
What are the boundary conditions? 

5. Consider a simple random walk on the set {O, 1 , 2 ,  . . .  , N} in which each step is to the right with 
probability P or to the left with probability q = 1 - p. Absorbing barriers are placed at 0 and N. 
Show that the number X of positive steps of the walk before absorption satisfies 

where Dk is the mean number of steps until absorption and Pk is the probability of absorption at O. 

6. (a) "Millionaires should always gamble, poor men never" [J. M. Keynes] . 
(b) "If I wanted to gamble, I would buy a casino" [Po Getty] . 
(c) "That the chance of gain is naturally overvalued, we may learn from the universal success of 

lotteries" [Adam Smith, 1776] . 
Discuss.  

3.10 Random walk: counting sample paths 

In the previous section, our principal technique was to condition on the first step of the walk 
and then solve the ensuing difference equation. Another primitive but useful technique is 
to count. Let X I , X 2 ,  . . .  be independent variables, each taking the values - 1  and 1 with 
probabilities q = 1 - P and p, as before, and let 

(1) 
n 

Sn = a +  LX; 
;= 1  
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be the position of the corresponding random walker after n steps, having started at So = a .  
The set of realizations of the walk i s  the set of vectors s = (so , S 1 , . . .  ) with So = a and 
Si+ l - Si = ± I ,  and any such vector may be thought of as a 'sample path' of the walk, drawn 
in the manner of Figure 3 .2 .  The probability that the first n steps of the walk follow a given path 
s = (so , S 1 , . . .  , sn ) is pr ql where r is the number of steps of S to the right and 1 is the number 
to the leftt ; that is to say, r = I { i : Si+ l - Si = I } I and 1 = I { i  : Si+ l - Si = - I } I . Any event 
may be expressed in terms of an appropriate set of paths, and the probability of the event is the 
sum of the component probabilities. For example, lP'(Sn = b) = Lr M� (a , b)pr qn-r where 
M� (a , b) is the number of paths (so , SI , . . .  , sn ) with So = a ,  Sn = b, and having exactly r 
rightward steps. It is easy to see that r + 1 = n, the total number of steps, and r - I = b - a,  
the aggregate rightward displacement, so  that r = ! (n + b - a) and 1 = ! (n - b + a) .  Thus 

(2) lP'(Sn = b) = ( 1 n ) p ! (n+b-a)q ! (n-b+a) , 
2 (n + b - a) 

since there are exactly G) paths with length n having r rightward steps and n - r leftward 

steps. Formula (2) is useful only if ! (n + b - a) is an integer lying in the range 0, I ,  . . .  , n ;  
otherwise, the probability i n  question equals O .  

Natural equations o f  interest for the walk include : 
(a) when does the first visit of the random walk to a given point occur; and 
(b) what is the furthest rightward point visited by the random walk by time n?  

Such questions may be answered with the aid o f  certain elegant results and techniques for 
counting paths. The first of these is the 'reflection principle' .  Here is some basic notation. As 
in Figure 3 .2, we keep a record of the random walk S through its path { (n , Sn ) : n :::: OJ .  

Suppose we know that So = a and Sn = b .  The random walk may or may not have visited 
the origin between times 0 and n. Let Nn (a , b) be the number of possible paths from (0, a) to 
(n , b) ,  and let N� (a , b) be the number of such paths which contain some point (k , 0) on the 
x -axis. 

(3) Theorem. The reflection principle. If a, b > 0 then N� (a , b) = Nn ( -a , b) . 

Proof. Each path from (0, -a) to (n , b) intersects the x-axis at some earliest point (k , 0) . 
Reflect the segment of the path with 0 .:'S x .:'S k in the x-axis to obtain a path joining 
(0, a) to (n , b) which intersects the x-axis (see Figure 3 .3 ) .  This operation gives a one-one 
correspondence between the collections of such paths, and the theorem is proved. • 

We have, as before, a formula for Nn (a , b) . 

(4) Lemma. Nn (a , b ) = ( 1 

n 

) . 
2 (n + b - a) 

Proof. Choose a path from (0, a)  to (n , b) and let ex and f3 be the numbers of positive and 
negative steps, respectively, in this path. Then ex + f3 = n and ex - f3 = b - a, so that 
ex = ! (n + b - a) .  The number of such paths is the number of ways of picking ex positive 
steps from the n available. That is 

(5) Nn (a , b) = C) = (! (n +
n
b _ a») . • 

tThe words 'right' and 'left' are to be interpreted as meaning in the positive and negative directions respec­
tively, plotted along the y-axis as in Figure 3 .2 .  
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Figure 3 . 3 .  A random walk; the dashed line is the reflection of the first segment of the walk. 
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The famous 'ballot theorem' is a consequence of these elementary results ; it was proved 
first by W. A. Whitworth in 1 878 .  

(6) CoroUaryt. Ballot theorem. If b > 0 then the number of paths from (0, 0) to (n , b) 
which do not revisit the x -axis equals (b/n)Nn (O, b) .  

Proof. The first step of all such paths is to ( 1 ,  1 ) ,  and so the number of such path is 

Nn- l ( 1 ,  b) - N�_ l ( 1 ,  b) = Nn- l ( 1 ,  b) - Nn- l (- 1 ,  b) 

by the reflection principle. We now use (4) and an elementary calculation to obtain the required 
re� • 

As an application, and an explanation of the title of the theorem, we may easily answer 
the following amusing question. Suppose that, in a ballot, candidate A scores a votes and 
candidate B scores f3 votes where a > f3 .  What is the probability that, during the ballot, A was 
always ahead of B? Let Xi equal 1 if the i th vote was cast for A, and - 1  otherwise. Assuming 
that each possible combination of a votes for A and f3 votes for B is equally likely, we have 
that the probability is question is the proportion of paths from (0, 0) to (a + f3, a - (3) which 
do not revisit the x-axis .  Using the ballot theorem, we obtain the answer (a - (3)/ (a + (3) .  

Here are some applications o f  the reflection principle to random walks. First, what i s  the 
probability that the walk does not revisit its starting point in the first n steps? We may as well 
assume that So = 0, so that Sl =1= 0, . . . , Sn =1= 0 if and only if Sl S2 . . . Sn =1= O. 

(7) Theorem. If So = 0 then, for n :::: 1 ,  

I b l 
(8) lP'(SI S2 ' "  Sn =1= 0, Sn = b) = -lP'(Sn = b) , 

n 
and therefore 

(9) 

tDerived from the Latin word 'corollarium' meaning 'money paid for a garland' or 'tip ' . 

NIED ::' �. ' \ STAAT:. U UrJIV .. 
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Proof. Suppose that So = 0 and Sn = b (> 0). The event in question occurs if and only if the 
path of the random walk does not visit the x -axis in the time interval [ 1 , n] . The number of 
such paths is, by the ballot theorem, (b/n)Nn (O, b) , and each such path has ! (n +b) rightward 

steps and ! (n - b) leftward steps .  Therefore 

as required. A similar calculation is valid if b < O. • 

Another feature of interest is the maximum value attained by the random walk. We write 
Mn = max{Sj : 0 S i S n } for the maximum value up to time n, and shall suppose that 
So = 0, so that Mn � O. Clearly Mn � Sn , and the first part of the next theorem is therefore 
trivial. 

(10) Theorem. Suppose that So = O. Then, for r � 1 , 

{ lP'(Sn = b) if b � r, 
(11) lP'(Mn � r ,  Sn = b) = 

(q /py-blP'(Sn = 2r _ b) if b < r. 

It follows that, for r � 1 ,  

r- l 
(12) lP'(Mn � r ) = lP'(Sn � r ) + L (q / py-blP'(Sn = 2r - b) 

b=-oo 
00 

= lP'(Sn = r ) + L [1 + (q /p)c-r ]lP'(Sn = c) , 
c=r+l 

yielding in the symmetric case when p = q = ! that 

(13) lP'(Mn � r ) = 2lP'(Sn � r + 1 )  + lP'(Sn = r ) , 

which is easily expressed in terms of the binomial distribution. 

Proof of (10). We may assume that r � 1 and b < r . Let N� (0, b) be the number of paths 
from (0, 0) to (n , b) which include some point having height r ,  which is to say some point 
(i , r ) with 0 < i < n ; for such a path Jr ,  let (in , r ) be the earliest such point. We may 
reflect the segment of the path with in S x S n in the line y = r to obtain a path Jr ' joining 
(0, 0) to (n , 2r - b) . Any such path Jr ' is obtained thus from a unique path Jr ,  and therefore 
N� (0, b) = Nn (0, 2r - b) . It follows as required that 

lP'(Mn � r, Sn = b) = N� (O, b)p � (n+b)q � (n-b) 

= (q /py-bNn (O, 2r _ b)p � (n+2r-b)q � (n-2r+b) 
= (q / py-blP'(Sn = 2r - b) . • 
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What is the chance that the walk reaches a new maximum at a particular time? More 
precisely, what is the probability that the walk, starting from 0, reaches the point b (> 0) for 
the time time at the nth step? Writing fb (n) for this probability, we have that 

fb (n) = lP'(Mn- l = Sn- l = b - 1 , Sn = b) = p [lP'(Mn- l :::: b - 1 , Sn- l = b - 1) - lP'(Mn- l :::: b , Sn- l = b - 1 )] = p [lP'(Sn- l = b - 1 ) - (q /p)lP'(Sn- l = b + 1 )] by ( 1 1 )  
b = -lP'(Sn = b) n 

by a simple calculation using (2). A similar conclusion may be reached if b < 0, and we 
arrive at the following. 

(14) Hitting time theorem. The probability fb (n) that a random walk S hits the point b for 
the first time at the nth step, having started from 0, satisfies 
(15) 

I b l fb (n) = -lP'(Sn = b) if n :::: 1 .  n 

The conclusion here has a close resemblance to that of the ballot theorem, and particularly 
Theorem (7). This is no coincidence: a closer examination of the two results leads to another 
technique for random walks, the technique of 'reversal ' .  If the first n steps of the original 
random walk are 

then the steps of the reversed walk, denoted by 0, Tl ,  . . . , Tn , are given by 

{O, Tl , T2 , . . . , Tn } = [0, Xn , Xn + Xn- l ,  . . . , � Xi ) . 
Draw a diagram to see how the two walks correspond to each other. The Xi are independent 
and identically distributed, and it follows that the two walks have identical distributions even 
if p =1= ! .  Notice that the addition of an extra step to the original walk may change every step 
of the reversed walk. 

Now, the original walk satisfies Sn = b (> 0) and Sl S2 . . .  Sn =1= 0 if and only if the reversed 
walk satisfied Tn = b and Tn - Tn-i = Xl + . . .  + Xi > 0 for all i :::: 1 ,  which is to say that 
the first visit of the reversed walk to the point b takes place at time n . Therefore 

(16) 

This is the 'coincidence' remarked above; a similar argument is valid if b < O. The technique 
of reversal has other applications. For example, let /Lb be the mean number of visits of the 
walk to the point b before it returns to its starting point. If So = 0 then, by ( 1 6) , 

00 00 
(17) /Lb = L lP'(SI S2 ' "  Sn =1= 0, Sn = b) = L fb (n) = lP'(Sn = b for some n) , 

n=l n= l 
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the probability of ultimately visiting b. This leads to the following result. 

(18) Theorem. If p = ! and So = 0, for any b (=f. 0) the mean number I1b of visits of the 
walk to the point b before returning to the origin equals 1 . 
Proof. Let fb = JP>(Sn = b for some n ::: 0). We have, by conditioning on the value of Sl , 
that fb = ! (fb+ 1 + fb- l ) for b > 0, with boundary condition fa = 1 .  The solution of this 
difference equation is fb = Ab + B for constants A and B .  The unique such solution lying 
in [0, 1 ]  with fa = 1 is given by fb = 1 for all b ::: O. By symmetry, fb = 1 for b S O. 
However, fb = I1b for b =f. 0, and the claim follows .  • 

'The truly amazing implications of this result appear best in the language of fair games . A 
perfect coin is tossed until the first equalization of the accumulated numbers of heads and tails. 
The gambler receives one penny for every time that the accumulated number of heads exceeds 
the accumulated number of tails by m . The "fair entrance fee "  equals 1 independently of m. ' 
(Feller 1 968 , p. 367) . 

We conclude with two celebrated properties of the symmetric random walk. 

(19) Theorem. Arc sine law for last visit to the origin. Suppose that p = ! and So = O. The 
probability that the last visit to 0 up to time 2n occurred at time 2k is JP>(S2k = 0)JP>(S2n-2k = 0). 

In advance of proving this ,  we note some consequences. Writing a2n (2k) for the probability 
referred to in the theorem, it follows from the theorem that a2n (2k) = U2kU2n-2k where 

(2k) -2k U2k = JP>(S2k = 0) = k 2 . 

In order to understand the behaviour of U2k for large values of k, we use Stirling 's formula: 

(20) 

which is to say that the ratio of the left-hand side to the right-hand side tends to 1 as n -+ 00. 
Applying this formula, we obtain that U2k '" 1 /...fi[k as k -+ 00. This gives rise to the 
approximation 

1 a2 (2k) '" -----r.::.:;==� n - n ../k(n - k) 
, 

valid for values of k which are close to neither 0 nor n . With T2n denoting the time of the last 
visit to 0 up to time 2n , it follows that 

1 lxn 1 2 JP>(T2n < 2xn) � L '" du = - sin- 1 ..jX, -
k n../k(n - k) u=o n"/u (n - u) n sxn 

which is to say that T2n/ (2n) has a distribution function which is approximately (2/n) sin- 1 ..jX 
when n is sufficiently large. We have proved a limit theorem. 

The arc sine law is rather surprising . One may think that, in a long run of 2n tosses of a 
fair coin , the epochs of time at which there have appeared equal numbers of heads and tails 
should appear rather frequently. On the contrary, there is for example probability ! that no 

such epoch arrived in the final n tosses, and indeed probability approximately ! that no such 

epoch occurred after the first !n tosses . One may think that, in a long run of 2n tosses of a 
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fair coin, the last time at which the numbers of heads and tails were equal tends to be close to 
the end. On the contrary, the distribution of this time is symmetric around the midpoint. 

How much time does a symmetric random walk spend to the right of the origin? More 
precisely, for how many values of k satisfying 0 :'S k :'S 2n is it the case that Sk > O? 
Intuitively, one might expect the answer to be around n with large probability, but the truth is 
quite different. With large probability, the proportion of time spent to the right (or to the left) 
of the origin is near to 0 or to 1 ,  but not near to ! .  That is to say, in a long sequence of tosses 
of a fair coin, there is large probability that one face (either heads or tails) will lead the other 
for a disproportionate amount of time. 

(21) Theorem. Arc sine law for sojourn times. Suppose that p = ! and So = O. The 
probability that the walk spends exactly 2k intervals a/time, up to time 2n, to the right a/the 
origin equals JP'(S2k = 0)JP'(S2n-2k = 0). 

We say that the interval (k , k + 1) is spent to the right of the origin if either Sk > 0 or 
Sk+l > O. It is clear that the number of such intervals is even if the total number of steps is 
even. The conclusion of this theorem is most striking . First, the answer is the same as that 
of Theorem ( 1 9) . Secondly, by the calculations following ( 1 9) we have that the probability 
that the walk spends 2xn units of time or less to the right of the origin is approximately 
(2In ) sin- 1 ,JX. 

Proof of (19). The probability in question is 

(){2n (2k) = JP'(S2k = 0)JP'(S2k+l S2k+2 . . .  S2n =f. 0 I S2k = 0) 
= JP'(S2k = O)JP'(SI S2 . . .  S2n-2k =f. 0) . 

Now, setting m = n - k , we have by (8) that 

(22) 

= 2 (�) 2mt [( 2m - l ) _ (2m - l) ] 2 m + k - l m + k k=l 

= 2 (�rm Cm
m
- 1) 

(2m) ( 1 ) 2m = m "2 = JP'(S2m = 0) . 

In passing, note the proof in (22) that 

(23) 

for the simple symmetric random walk. 

• 

Proof of (21). Let fhn (2k) be the probability in question, and write U2m = JP'(S2m = 0) as 
before. We are claiming that, for all m � 1 ,  

(24) f32m (2k) = U2kU2m-2k if O :'S k :'S m .  
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First, 

lP'(S] S2 · · · S2m > 0) = lP'(S] = 1 ,  S2 2: 1 ,  . . .  , S2m 2: 1 ) = ilP'(S] 2: 0, S2 2: 0, . . .  , S2m- ] 2: 0) , 

where the second line follows by considering the walk S] - 1 ,  S2 - 1 ,  . . .  , S2m - 1 . Now 
S2m- ] is an odd number, so that S2m- ] 2: 0 implies that S2m 2: 0 also. Thus 

yielding by (23) that 

and (24) follows for k = m, and therefore for k = 0 also by symmetry. 
Let n be a positive integer, and let T be the time of the first return of the walk to the origin. 

If S2n = 0 then T S 2n ; the probability mass function hr = lP'(T = 2r) satisfies 

n n 
lP'(S2n = 0) = L lP'(S2n = 0 I T = 2r)lP'(T = 2r ) = L lP'(S2n-2r = O)lP'(T = 2r) ,  

r=] 

which is to say that 

(25) 
n 

U2n = L U2n-2r hr . 
r=] 

r=] 

Let 1 S k S n - 1, and consider fhn (2k) . The corresponding event entails that T = 2r 
for some r satisfying 1 S r < n . The time interval (0, T) is spent entirely either to the right 
or the left of the origin, and each possibility has probability i .  Therefore, 

k n-k 
(26) /32n (2k) = L ilP'(T = 2r)fhn-2r (2k - 2r) + L ilP'(T = 2r)/32n-2r (2k) . 

r=l r=] 

We conclude the proof by using induction . Certainly (24) is valid for all k if m = 1 . Assume 
(24) is valid for all k and all m < n . 

From (26) , 

k n-k 
/32n (2k) = i L hrU2k-2r U2n-2k + i L hrU2kU2n-2k-2r 

r=] r=] 

by (25) , as required. • 
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Exercises for Section 3 . 1 0  

1 .  Consider a symmetric simple random walk S with So = O .  Let T = min{n 2: 1 : Sn = O}  be the 
time of the first return of the walk to its starting point. Show that 

JP'(T = 2n) = _1 _ (2n) 2-2n , 
2n - 1 n 

and deduce that JE(TO!) < 00 if and only if ex < i. You may need Stirling's formula: n !  � 

nn+ i e-n./2ii . 
2. For a symmetric simple random walk starting at 0, show that the mass function of the maximum 
satisfies JP'(Mn = r) = JP'(Sn = r ) + JP'(Sn = r + 1 )  for r 2: O. 

3. For a symmetric simple random walk starting at 0, show that the probability that the first visit to 
S2n takes place at time 2k equals the product JP'(S2k = 0)JP'(S2n-2k = 0) ,  for 0 ::::: k ::::: n . 

3.11 Problems 

1. (a) Let X and Y be independent discrete random variables, and let g, h : � � R Show that g(X) 
and h (Y) are independent. 

(b) Show that two discrete random variables X and Y are independent if and only if fx, y (x ,  y) = 
fx (x)fy (y) for all x ,  y E R 

(c) More generally, show that X and Y are independent if and only if fx, Y (x , y) can be factorized 
as the product g(x)h (y) of a function of x alone and a function of y alone. 

2. Show that if var(X) = 0 then X is almost surely constant; that i s ,  there exists a E � such that 
JP'(X = a) = 1 .  (First show that if JE(X2) = 0 then JP'(X = 0) = 1 . )  

3. (a) Let X be a discrete random variable and let g : � � R Show that, when the sum is absolutely 
convergent, 

JE(g(X)) = L g(x)JP'(X = x) .  
x 

(b) If X and Y are independent and g ,  h : � � �, show that JE(g(X)h (Y)) = JE(g (X))JE(h (Y)) 
whenever these expectations exist. 

4. Let Q = {W\ , W2 , W3 } ,  with JP'(Wl ) = JP'(W2 ) = JP'(W3 ) = 1 .  Define X, Y, Z : Q � � by 

X(Wt )  = 1 ,  X(W2) = 2, X(W3 ) = 3 , 

Y (W\ ) = 2 ,  Y (W2) = 3 , Y (W3 ) = 1 ,  

Z(W\ ) = 2,  Z(W2) = 2,  Z(W3 ) = 1 .  

Show that X and Y have the same mass functions . Find the mass functions of X + Y ,  X Y ,  and X / Y .  
Find the conditional mass functions fY lz and fZ I Y . 
5. For what values of k and ex is f a mass function, where: 
(a) f en) = k/{n (n + I ) } ,  n = 1 , 2, . . . , 
(b) f en) = knO! , n = 1 , 2 ,  . . .  (zeta or Zipf distribution)? 
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6. Let X and Y be independent Poisson variables with respective parameters A and /-t. Show that: 
(a) X + Y is Poisson, parameter A + /-t, 
(b) the conditional distribution of X,  given X + Y = n, is binomial, and find its parameters. 

7. If X is geometric, show that JP'(X = n + k I X > n) = JP'(X = k) for k, n 2: 1 . Why do you think 
that this is called the 'lack of memory' property? Does any other distribution on the positive integers 
have this property? 

8. Show that the sum of two independent binomial variables, bin(m , p) and bin(n ,  p) respectively, 
is bin(m + n, p) . 
9. Let N be the number of heads occurring in n tosses of a biased coin. Write down the mass function 
of N in terms of the probability p of heads turning up on each toss .  Prove and utilize the identity 

in order to calculate the probability Pn that N is even. Compare with Problem ( 1 .8 .20) . 
10. An urn contains N balls, b of which are blue and r (= N - b) of which are red. A random sample 
of n balls is withdrawn without replacement from the urn. Show that the number B of blue balls in 
this sample has the mass function 

This is called the hypergeometric distribution with parameters N, b, and n. Show further that if N, b, 
and r approach 00 in such a way that b / N � p and r / N � 1 - p, then 

You have shown that, for small n and large N, the distribution of B barely depends on whether or not 
the balls are replaced in the urn immediately after their withdrawal. 

11. Let X and Y be independent bin(n , p) variables, and let Z = X + Y. Show that the conditional 
distribution of X given Z = N is the hypergeometric distribution of Problem (3 . 1 1 . 1 0) . 
12. Suppose X and Y take values in {O, I} ,  with joint mass function f (x , y) .  Write f(O, 0) = a, 
f(O, 1 )  = b, f ( 1 , 0) = c, f( l ,  1 ) = d, and find necessary and sufficient conditions for X and Y to 
be: (a) uncorrelated, (b) independent. 

13. (a) If X takes non-negative integer values show that 

00 
JB:(X) = L JP'(X > n) .  

n=O 

(b) An urn contains b blue and r red balls .  Balls are removed at random until the first blue ball is 
drawn. Show that the expected number drawn is (b + r + 1 ) / (b + 1 ) .  

(c) The balls are replaced and then removed at random until all the remaining balls are of the same 
colour. Find the expected number remaining in the urn. 
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14. Let XJ , X2 , . . .  , Xn be independent random variables, and suppose that Xk is Bernoulli with 
parameter Pk . Show that Y = Xl + X2 + . . . + Xn has mean and variance given by 

n n 
JE.(Y) = L Pk , 

I 
var(Y) = L Pk ( l - Pk ) · 

I 

Show that, for JE.(Y) fixed, var(Y) is a maximum when PI = P2 = . . .  = Pn . That is to say, the 
variation in the sum is greatest when individuals are most alike. Is this contrary to intuition? 

15. Let X = (XI , X2 , . . .  , Xn ) be a vector of random variables .  The covariance matrix VeX) of X is 
defined to be the symmetric n by n matrix with entries (Vij : 1 :'0 i, j :'0 n) given by Vij = COV(Xi , Xj ) . 
Show that IV(X) I = 0 if and only if the Xi are linearly dependent with probability one, in that 
lP'(aI X j  + a2X2 + . . . + anXn = b) = 1 for some a and b. ( IV I  denotes the determinant of V.)  

16. Let X and Y be independent Bernoulli random variables with parameter �. Show that X + Y and 
I X - Y I are dependent though uncorrelated. 

17. A secretary drops n matching pairs of letters and envelopes down the stairs, and then places the 
letters into the envelopes in a random order. Use indicators to show that the number X of correctly 
matched pairs has mean and variance 1 for all n 2: 2. Show that the mass function of X converges to 
a Poisson mass function as n -7 00. 

18. Let X = (X I , X 2 , . . .  , X n ) be a vector of independent random variables each having the Bernoulli 
distribution with parameter p. Let f : {O, l }n -7 lR be increasing, which is to say that f (x) :'0 f ey) 
whenever Xi :'0 Yi for each i .  
(a) Let e (p) = JE.(f (X» . Show that e (P I ) :'0 e (P2 ) if P I  :'0 P2 · 
(b) FKG inequalityt. Let f and g be increasing functions from {O, l }n into R Show by induction 

on n that cov(f(X) , g (X» 2: O. 

19. Let R (p) be the reliability function of a network G with a given source and sink, each edge of 
which is working with probability p, and let A be the event that there exists a working connection 
from source to sink. Show that 

R(p) = L IA (W)pN(m) ( l - p)m-N(m) 
m 

where w is a typical realization (i .e . ,  outcome) of the network, N(w) is the number of working edges 
of w, and m is the total number of edges of G . 

Deduce that R'(p) = cov(lA , N)/ {p( l  - p) } ,  and hence that 

R(p) ( l - R(p» 
< R' ( ) < 

p( l  - p) - P -
mR(p) ( l  - R(p» 

p(l - p) 

20. Let R(p) be the reliability function of a network G, each edge of which is working with probability 
p. 
(a) Show that R(PI P2 ) :'0 R(PI )R(P2 ) if 0 :'0 PI , P2 :'0 1 .  
(b) Show that R(pY ) :'0 R(p)Y for all 0 :'0 P :'0 l and Y 2: 1 .  
21. DNA fingerprinting. I n  a certain style o f  detective fiction, the sleuth i s  required to declare "the 
criminal has the unusual characteristics . . .  ; find this person and you have your man". Assume that 
any given individual has these unusual characteristics with probability 1 0-7 independently of all other 
individuals, and that the city in question contains 107 inhabitants. Calculate the expected number of 
such people in the city. 

tNamed after C. Fortuin, P. Kasteleyn, and J. Ginibre ( 1 97 1 ), but due in this fonn to T. E. Harris ( 1 960) . 
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(a) Given that the police inspector finds such a person, what is the probability that there is at least 
one other? 

(b) If the inspector finds two such people, what is the probability that there is at least one more? 
(c) How many such people need be found before the inspector can be reasonably confident that he 

has found them all? 
(d) For the given population, how improbable should the characteristics of the criminal be, in order 

that he (or she) be specified uniquely? 

22. In 1 7 1 0, J .  Arbuthnot observed that male births had exceeded female births in London for 82 
successive years . Arguing that the two sexes are equally likely, and 2-82 is very small, he attributed 
this run of masculinity to Divine Providence. Let us assume that each birth results in a girl with 
probability p = 0 .485 , and that the outcomes of different confinements are independent of each other. 
Ignoring the possibility of twins (and so on), show that the probability that girls outnumber boys in 2n 
live births is no greater than e:) pnqn {q/ (q - p) } , where q = 1 - p. Suppose that 20,000 children 
are born in each of 82 successive years . Show that the probability that boys outnumber girls every 
year is at least 0.99. You may need Stirling's formula. 

23. Consider a symmetric random walk with an absorbing barrier at N and a reflecting barrier at 0 
(so that, when the particle is at 0, it moves to 1 at the next step). Let iXk (j) be the probability that 
the particle, having started at k, visits 0 exactly j times before being absorbed at N. We make the 
convention that, if k = 0, then the starting point counts as one visit. Show that 

j :::: 1 ,  0 � k � N.  

24. Problem of the points (3.9.4) . A coin i s  tossed repeatedly, heads turning up with probability p 
on each toss.  Player A wins the game if heads appears at least m times before tails has appeared n 
times; otherwise player B wins the game. Find the probability that A wins the game. 

25. A coin is tossed repeatedly, heads appearing on each toss with probability p. A gambler starts 
with initial fortune k (where 0 < k < N); he wins one point for each head and loses one point for 
each tail. If his fortune is ever 0 he is bankrupted, whilst if it ever reaches N he stops gambling to buy 
a Jaguar. Suppose that p < i .  Show that the gambler can increase his chance of winning by doubling 
the stakes. You may assume that k and N are even. 

What is the corresponding strategy if p :::: i ? 

26. A compulsive gambler is never satisfied. At each stage he wins £ 1 with probability p and loses 
£ 1  otherwise. Find the probability that he is ultimately bankrupted, having started with an initial 
fortune of £k. 
27. Range of random walk. Let {Xn : n :::: I} be independent, identically distributed random 
variables taking integer values. Let So = 0, Sn = 2::7= 1 Xi . The range Rn of SO , SI , . . .  , Sn is the 
number of distinct values taken by the sequence. Show that JP'(Rn = Rn- I + 1 ) = JP'(S 1 S2 . . .  Sn =f. 0) , 
and deduce that, as n -7 00, 

1 
-JB:(Rn ) -7 JP'(Sk =f. 0 for all k :::: 1 ) .  n 

Hence show that, for the simple random walk, n- 1JB:(Rn ) -7 I p  - q l as n -7 00. 

28. Arc sine law for maxima. Consider a symmetric random walk S starting from the origin, and 
let Mn = max {Si : 0 � i � n } .  Show that, for i = 2k , 2k + 1 ,  the probability that the walk reaches 
M2n for the first time at time i equals i JP'(S2k = 0)JP'(S2n-2k = 0) . 
29. Let S be a symmetric random walk with So = 0, and let Nn be the number of points that have 
been visited by S exactly once up to time n .  Show that JB:(Nn ) = 2. 
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30. Family planning. Consider the following fragment of verse entitled 'Note for the scientist' . 
People who have three daughters try for more, 
And then its fifty-fifty they' ll have four, 
Those with a son or sons will let things be, 
Hence all these surplus women, QED. 

(a) What do you think of the argument? 
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(b) Show that the mean number of children of either sex in a family whose fertile parents have 
followed this policy equals 1 . (You should assume that each delivery yields exactly one child 
whose sex is equally likely to be male or female.) Discuss .  

31 .  Let fJ > 1 ,  let PI , P2 , . . .  denote the prime numbers, and let N(1 ) ,  N(2) , . . .  be independent 
random variables, N(i ) having mass function JP'(N (i ) = k) = ( 1 - Yi)Yi

k for k ::: 0, where Yi = pifJ 
for all i .  Show that M = rr�1 pf (i ) is a random integer with mass function JP'(M = m) = Cm-fJ 
for m ::: 1 (this may be called the Dirichlet distribution), where C is a constant satisfying 

00 ( I ) ( 00 I ) - I 

C = !! 1 -
pf 

= E mfJ 
32. N + I plates are laid out around a circular dining table, and a hot cake is passed between them in 
the manner of a symmetric random walk: each time it  arrives on a plate, it  is tossed to one of the two 
neighbouring plates, each possibility having probability i .  The game stops at the moment when the 
cake has visited every plate at least once. Show that, with the exception of the plate where the cake 
began, each plate has probability 1 /  N of being the last plate visited by the cake. 

33. Simplex algorithm. There are (;) points ranked in order of merit with no matches. You seek to 
reach the best, B. If you are at the j th best, you step to any one of the j - 1 better points, with equal 
probability of stepping to each. Let rj be the expected number of steps to reach B from the j th best 

vertex. Show that rj = ��:: k- I . Give an asymptotic expression for the expected time to reach B 
from the worst vertex, for large m ,  n . 
34. Dimer problem. There are n unstable molecules in a row, m I , m2 , . . . , mn . One of the n - 1 
pairs of neighbours, chosen at random, combines to form a stable dimer; this process continues until 
there remain Un isolated molecules no two of which are adjacent. Show that the probability that m I 
remains isolated is ��;:6 (- l r /r ! ---+ e- I as n ---+ 00. Deduce that limn ..... oo n- I EUn = e-2 . 
35. Poisson approximation. Let {Ir : 1 .::: r .::: n }  be independent Bernoulli random variables with 
respective parameters {Pr : 1 .::: r .::: n} satisfying Pr .::: c < 1 for all r and some c. Let A = ��= I Pr 
and X = ��= l Xr . Show that 

)...k e-J.. { ( k2 ) } 
JP'(X = k) = -k-! - 1 + 0 )... m� Pr + T max Pr . 

36. Sampling. The length of the tail of the rth member of a troop of N chimeras is Xr . A random 
sample of n chimeras is taken (without replacement) and their tails measured. Let Ir be the indicator 
of the event that the rth chimera is in the sample. Set 

_ 1 N 
y = - L Xr , n r= 1 

Show that E(¥) = J.t, and var(Y) = (N - n)a2/ {n (N - 1 ) } . 
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37. Berkson's fallacy. Any individual in a group G contracts a certain disease C with probability 
y ; such individuals are hospitalized with probability c . Independently of this, anyone in G may be 
in hospital with probability a, for some other reason. Let X be the number in hospital, and Y the 
number in hospital who have C (including those with C admitted for any other reason) . Show that the 
correlation between X and Y is 

p (X, Y) = 

where p = a + c - ac . 

yp ( l  - a ) ( 1 - yc) 

It has been stated erroneously that, when p (X ,  Y) is near unity, this is evidence for a causal 
relation between being in G and contracting C. 

38. A telephone sales company attempts repeatedly to  sell new kitchens to  each of the N families 
in a village. Family i agrees to buy a new kitchen after it has been solicited K; times, where the K; 
are independent identically distributed random variables with mass function f(n) = IP'(K; = n) .  The 
value 00 is allowed, so that f(oo) :::: O. Let Xn be the number of kitchens sold at the nth round of 
solicitations, so that Xn = 2:�1 I{Ki =n} .  Suppose that N is a random variable with the Poisson 
distribution with parameter v .  
(a) Show that the X n  are independent random variables, Xr having the Poisson distribution with 

parameter vf (r) .  
(b) The company loses heart after the Tth round o f  calls, where T = inf {n : Xn = OJ . Let 

S = XI + X 2 + . . .  + X T be the number of solicitations made up to time T .  Show further that 
JE(S) = vJE(F(T»  where F(k) = f( l )  + f(2) + . . .  + f(k) .  

39. A particle performs a random walk o n  the non-negative integers a s  follows.  When at the point n 
(> 0) its next position is uniformly distributed on the set {O, 1 , 2 , . . .  , n + 1 } .  When it hits 0 for the 
first time, it is absorbed. Suppose it starts at the point a .  
(a) Find the probability that its position never exceeds a, and prove that, with probability 1 , i t  is 

absorbed ultimately. 
(b) Find the probability that the final step of the walk is from 1 to 0 when a = 1 . 
(c) Find the expected number of steps taken before absorption when a = 1 . 

40. Let G be a finite graph with neither loops nor multiple edges, and write dv for the degree of 
the vertex v .  An independent set is a set of vertices no pair of which is joined by an edge. Let 
a (G) be the size of the largest independent set of G . Use the probabilistic method to show that 
a (G) :::: 2:v 1 / (dv + 1 ) .  [This conclusion is sometimes referred to as Turtin 's theorem.] 
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Continuous random variables 

Summary. The distribution of a continuous random variable may be specified 
via its probability density function. The key notion of independence is explored 
for continuous random variables . The concept of expectation and its conse­
quent theory are discussed in depth. Conditional distributions and densities 
are studied, leading to the notion of conditional expectation. Certain specific 
distributions are introduced, including the exponential and normal distribu­
tions, and the multivariate normal distribution. The density function following 
a change of variables is derived by the Jacobian formula. The study of sums 
of random variables leads to the convolution formula for density functions. 
Methods for sampling from given distributions are presented. The method of 
coupling is discussed with examples, and the Stein-Chen approximation to 
the Poisson distribution is proved. The final section is devoted to questions of 
geometrical probability. 

4.1 Probability density functions 

Recall that a random variable X is continuous if its distribution function F(x ) = JP'(X S x ) 
can be  written ast 

(1) F(x) = i� f eu) du 
for some integrable f : lR -+ [0, (0) .  

(2) Definition. The function f is called the (probability) density function of the continuous 
random variable X. 

The density function of F is not prescribed uniquely by ( 1 )  since two integrable functions 
which take identical values except at some specific point have the same integrals .  However, 
if F is differentiable at u then we shall normally set feu) = F' (u ) . We may write fx (u) to 
stress the role of X .  

tNever mind what type of integral this is, at this stage. 
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(3) Example (2.3.4) revisited. The random variables X and Y have density functions 

{ (2n )- 1 
fx (x ) = 

0 
if O s x s 2n ,  

otherwise, 

{ y- ! /(4n ) if 0 S y S 4n2 , fy (y ) = . o otherWIse. 
• 

These density functions are non-zero if and only if x E [0, 2n ] and y E [0 , 4n2] .  In such 
cases in the future, we shall write simply fx (x ) = (2n )- 1 for O S x S 2n , and similarly for 
fy ,  with the implicit implication that the functions in question equal zero elsewhere. 

Continuous variables contrast starkly with discrete variables in that they satisfy JP>(X = 
x) = 0 for all x E JR; this may seem paradoxical since X necessarily takes some value. 
Very roughly speaking, the resolution of this paradox lies in the observation that there are 
uncountably many possible values for X ; this number is so large that the probability of X 
taking any particular value cannot exceed zero . 

The numerical value f (x) is not a probability. However, we can think of f (x) dx as the 
element of probability JP>(x < X S x + dx) , since 

JP>(x < X s x + dx) = F(x + dx ) - F(x) :::::: f (x ) dx . 

From equation ( 1 ) , the probability that X takes a value in the interval [a , b] is 

JP>(a S X S b) = lb f(x) dx .  
Intuitively speaking, in order to calculate this probability, we simply add up all the small 
elements of probability which contribute. More generally, if B is a sufficiently nice subset of 
JR (such as an interval, or a countable union of intervals, and so on), then it is reasonable to 
expect that 

(4) JP>(X E B)  = In f (x) dx , 
and indeed this turns out to be the case. 

We have deliberately used the same letter f for mass functions and density functionst 
since these functions perform exactly analogous tasks for the appropriate classes of random 
variables. In many cases proofs of results for discrete variables can be rewritten for continuous 
variables by replacing any summation sign by an integral sign, and any probability mass f (x) 
by the corresponding element of probability f (x) dx . 
(5) Lemma. If X has density function f then 

(a) f�oo f(x) dx = 1 , 
(b) JP>(X = x ) = Of or all x E JR, 

(c) JP>(a S X S b) = f: f (x) dx. 
Proof. Exercise. • 

tSome writers prefer to use the letter p to denote a mass function, the better to distinguish mass functions 
from density functions. 
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Part (a) of the lemma characterizes those non-negative integrable functions which are 
density functions of some random variable. 

We conclude this section with a technical note for the more critical reader. For what sets B 
is (4) meaningful, and why does (Sa) characterize density functions? Let 'if. be the collection 
of all open intervals in R By the discussion in Section 1 .6, 'if. can be extended to a unique 
smallest a -field :E = a ('if. ) which contains 'if. ; :E is called the Borel a -field and contains Borel 
sets .  Equation (4) holds for all B E :E .  Setting IP'x (B ) = IP'(X E B) ,  we can check that 
(JR, :E ,  IP'x ) is a probability space. Secondly, suppose that f : JR -+ [0, (0) is integrable and 
J�oo f (x ) dx = 1 .  For any B E :E,  we define 

IP'(B ) = In f (x ) dx . 

Then (JR, :E ,  IP') is a probability space and f is the density function of the identity random 
variable X : JR -+ JR given by X (x ) = x for any x E R Assiduous readers will verify the 
steps of this argument for their own satisfaction (or see Clarke 1 975,  p. 53) .  

Exercises for Section 4. 1 

1. For what values of the parameters are the following functions probability density functions? 
1 

(a) f (x) = C {x ( l - x) }- :Z ,  0 < x < 1, the density function of the 'arc sine law ' .  
(b) f(x) = C exp( -x - e-X ) ,  x E JR, the density function o f  the 'extreme-value distribution' . 
(c) f (x) = C ( l + x2)-m , x E R 

2. Find the density function of Y = aX,  where a > 0, in terms of the density function of X. Show 
that the continuous random variables X and -X have the same distribution function if and only if 
fx (x) = fx ( -x) for all x E R 

3. If f and g are density functions of random variables X and Y, show that af + ( l  - a)g is a 
density function for 0 :5 a :5 I ,  and describe a random variable of which it is the density function. 

4. Survival. Let X be a positive random variable with density function f and distribution function 
F. Define the hazardfunction H(x) = - log[ 1 - F(x) ] and the hazard rate 

Show that: 

. 1 
r (x) = hm -JP'(X :5 x + h I X > x) ,  

h,!.O h 

(a) r (x) = H' (x) = f(x)/ { l - F(x) } ,  
(b) I f  r (x) increases with x then H (x) / x increases with x ,  

x � o .  

(c) H(x)/x increases with x i f  and only i f  [ l  - F(x)]O! :5 1 - F(ax) for all 0 :5  a :5 1 ,  
(d) I f  H(x)/x increases with x, then H(x + y) � H(x) + H(y) for all x ,  y � o. 

4.2 Independence 

This section contains the counterpart of Section 3 . 2  for continuous variables, though it con­
tains a definition and theorem which hold for any pair of variables, regardless of their types 
(continuous, discrete, and so on) . We cannot continue to define the independence of X and Y 
in terms of events such as {X = x } and {Y  = y } ,  since these events have zero probability and 
are trivially independent. 
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(1) DefinItion. Random variables X and Y are called independent if 

(2) {X :$ x} and {Y :$ y} are independent events for all x .  y E ]i. 

The reader should verify that discrete variables satisfy (2) if and onl y if they are independent 
in the sense of Section 3 .2 .  Definition ( 1 )  is the general definition of the independence of any 
two variables X and Y, regardless of their types. The following general result holds for the 
independence of functions of random variables . Let X and Y be random variables, and let 
g ,  h : JR � R Then g (X) and h eY) are functions which map Q into JR by 

g (X) (w) = g (X (w» , h (Y) (w) = h (Y (w» 

as in Theorem (3 .2 .3 ) .  Let us suppose that g (X) and h eY) are random variables. (This holds 
if they are :F -measurable; it is valid for instance if g and h are sufficiently smooth or regular 
by being, say, continuous or monotonic . The correct condition on g and h is actually that, for 
all Borel subsets B of JR, g- I (B) and h- I (B) are Borel sets also .)  In the rest of this book, 
we assume that any expression of the form 'g (X) ', where g is afunction and X is a random 
variable, is itself a random variable. 

(3) Theorem. If X and Y are independent, then so are g (X) and h (Y) . 

Move immediately to the next section unless you want to prove this. 

Proof. Some readers may like to try and prove this on their second reading. The proof does not 
rely on any property such as continuity. The key lies in the requirement of Definition (2. 1 .3 )  
that random variables be :F -measurable, and in the observation that g (X) is :F -measurable if 
g : JR � JR is Borel measurable, which is to say that g- I (B) E :13 ,  the Borel a -field, for all 
B E :13 .  Complete the proof yourself (exercise) . • 

Exercises for Section 4 .2 

1. I am selling my house, and have decided to accept the first offer exceeding £ K . Assuming 
that offers are independent random variables with common distribution function F, find the expected 
number of offers received before I sell the house. 

2. Let X and Y be independent random variables with common distribution function F and density 
function f .  Show that V = max{X, Y } has distribution function lP'(V .::: x) = F(x)2 and density 
function fv (x) = 2f(x )F (x) ,  x E R Find the density function of U = min{X, Y } . 
3. The annual rainfall figures in Bandrika are independent identically distributed continuous random 
variables {X r : r 2: I } . Find the probability that: 
(a) X I < X2 < X3 < X4, 
(b) XI > X2 < X3 < X4 · 

4. Let {X r : r 2: I }  be independent and identically distributed with distribution function F satisfying 
F(y) < 1 for all y, and let Y(y) = min{k : Xk > y } . Show that 

lim lP' (Y(y) .::: lE.Y (y») = 1 - e- I . 
y---+oo 
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4.3 Expectation 

The expectation of a discrete variable X is lEX = Lx xlP'(X = x) . This is an average of the 
possible values of X, each value being weighted by its probability. For continuous variables, 
expectations are defined as integrals .  

(1) Definition. The expectation of a continuous random variable X with density function f 
is given by 

lEX = i: xf(x) dx 

whenever this integral exists. 
There are various ways of defining the integral of a function g : JR -+ JR, but it is not 

appropriate to explore this here. Note that usually we shall allow the existence of J g (x )  dx 
only if J I g (x ) 1 dx < 00.  

(2) Examples (2.3.4) and (4.1 .3) revisited. The random variables X and Y of  these examples 
have mean values i2rr X 

lE(X) = - dx = Jr, 
o 2Jr • 

Roughly speaking, the expectation operator lE has the same properties for continuous vari­
ables as it has for discrete variables. 

(3) Theorem. If X and g(X) are continuous random variables then 

E(g(X» = f: g(x)fx(x) dx . 

We give a simple proof for the case when g takes only non-negative values, and we leave 
it to the reader to extend this to the general case. Our proof is a corollary of the next lemma. 

(4) Lemma. If X has densityfunction f with f (x )  = 0 when x < 0, anddistributionfunction 
F, then 

lEX = 1
00
[ 1 - F(x) ]  dx . 

Proof. [00
[ 1 _ F(x ) ] dx = [00 lP'(X > x) dx = [00 [00 f (y) dy dx . 10 10 10 

1
y=x 

Now change the order of integration in the last term. 

Proof of (3) when g ::::: O. By (4) , 

lE(g (X» = 100 
lP'(g (X) > x ) dx = 1

00 
(Is fx (y) dY) dx 

where B = {y : g (y) > x } .  We interchange the order of integration here to obtain 
[00 [g (y) [00 

lE(g(X» = 10 10 
dx fx (y) dy = 10 g (y )fx (y) dy . 

• 

• 
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(5) Example (2) continued. Lemma (4) enables us to find E(Y) without calculating fy , for 

• 

We were careful to describe many characteristics of discrete variables-such as moments, 
covariance, correlation, and linearity ofE (see Sections 3 . 3  and 3 .6)-in terms of the operator 
E itself. Exactly analogous discussion holds for continuous variables . We do not spell out 
the details here but only indicate some of the less obvious emendations required to establish 
these results . For example, Definition (3 . 3 . 5 )  defines the kth moment of the discrete variable 
X to be 

(6) 

we define the kth moment of a continuous variable X by the same equation . Of course, the 
moments of X may not exist since the integral 

may not converge (see Example (4 .4.7) for an instance of this) . 

Exercises for Section 4 .3  

1. For what values of  a i s  E( I  X I O! )  finite, i f  the density function of  X is :  
(a) f(x)  = e-x for x 2: 0, 
(b) f(x)  = CO + x2)-m for x E lR? 
If a is not integral, then E( IX IO! )  is called the fractional moment of order a of X, whenever the 
expectation is well defined; see Exercise (3 . 3 .5) .  

2. Let Xl , X 2 , . . .  , Xn be independent identically distributed random variables for which E(X;- l ) 
exists. Show that, if m :'0 n, then E(SmISn ) = min ,  where Sm = Xl + X2 + . . .  + Xm . 

3. Let X be a non-negative random variable with density function f. Show that 

for any r 2: 1 for which the expectation is finite. 

4. Show that the mean /-L, median m, and variance CT2 of the continuous random variable X satisfy 
(/-L - m)2 :'0 CT2 . 
S. Let X be a random variable with mean /-L and continuous distribution function F. Show that 

if and only if a = /-L. 

fa F(x) dx = roo [1 - F(x) ] dx ,  -00 Ja 
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4.4 Examples of continuous variables 
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(1) Uniform distribution. The random variable X is uniform on [a , b] if it has distribution 
function { 0 

x - a 
F(x )  = 

t - a 

if x � a ,  

i f  a < x � b ,  

if x > b .  
Roughly speaking, X takes any value between a and b with equal probability. Example (2 .3 .4) 
describes a uniform variable X.  • 

(2) Exponential distribution. The random variable X is exponential with parameter 'A (>  0) 
if it has distribution function 

(3) x 2: o. 
This arises as the 'continuous limit' of the waiting time distribution of Example (3 .5 .5) and 
very often occurs in practice as a description of the time elapsing between unpredictable 
events (such as telephone calls, earthquakes, emissions of radioactive particles, and arrivals 
of buses, girls, and so on) . Suppose, as in Example (3 .5 .5) ,  that a sequence of Bernoulli trials 
is performed at time epochs 8 ,  28 , 38 ,  . . .  and let W be the waiting time for the first success. 
Then 

JP'(W > k8) = ( 1  _ p)k and lEW = 8/p . 

Now fix a time t . By this time, roughly k = t/8 trials have been made. We shall let 8 -I- O. In 
order that the limiting distribution lim8tO JP'(W > t) be non-trivial, we shall need to assume 
that p -I- 0 also and that p/8 approaches some positive constant 'A. Then 

JP'(W > t) = JP' ( W > (�) 8) � ( 1  - /..8) t/8 � e-At 
which yields (3) .  

The exponential distribution (3) has mean 

100 1 lEX = [ 1  - F(x) ]  dx = - .  

o 'A 

Further properties of the exponential distribution will be discussed in Section 4.7 and Problem 
(4. 1 1 .5) ;  this distribution proves to be the cornerstone of the theory of Markov processes in 
continuous time, to be discussed later. • 

(4) Normal distribution. Arguably the most important continuous distribution is the normalt 
(or Gaussian) distribution, which has two parameters 11 and a2 and density function 

1 ( X - I1)2 ) f (x) = r;:;;--;) exp - 2 ' v 2na2 2a 
-00 < x < 00. 

tProbably first named 'normal' by Francis Galton before 1 885 ,  though some attribute the name to c. S .  
Peirce, who i s  famous for his erroneous remark "Probability i s  the only branch of mathematics in which good 
mathematicians frequently get results which are entirely wrong". 
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It is denoted by N (f.J" a2 ) . If f.J, = ° and a2 = 1 then 

-00 < x < 00,  

i s  the density of  the standard normal distribution. It i s  an exercise i n  analysis (Problem 
(4 . 1 1 . 1 ) to show that / satisfies Lemma (4. 1 .5a) ,  and is indeed therefore a density function. 

The normal distribution arises in many ways. In particular it can be obtained as a continuous 
limit of the binomial distribution bin(n , p) as n � 00 (this is the 'de Moivre-Laplace limit 
theorem' ) . This result is a special case of the central limit theorem to be discussed in Chapter 
5 ;  it transpires that in many cases the sum of a large number of independent (or at least not too 
dependent) random variables is approximately normally distributed. The binomial random 
variable has this propel1y because it is the sum of Bemoulli variables (see Example (3 .5 .2» . 

Let X be N (f.J" a2) ,  where a > 0, and let 

(5) 

For the distribution of Y ,  

lP'(Y S Y) = lP' ( X - f.J,)/a S Y) = lP'(X S ya + f.J,) 
1 jya+/L ( x - f.J,)2 ) 

- -- exp - dx - av'2ii -00 2a2 

= � jY 
e- � v2 dv by substituting x = va + f.J,. 

v 21T -00 
Thus Y is N(O, 1 ) .  Routine integrations (see Problem (4. l l . 1 »  show that EY = 0, var(Y) = 1 ,  
and it follows immediately from (5) and Theorems (3 .3 .8 ) ,  (3 .3 . 1  1 ) that the mean and variance 
of the N (f.J" a2) distribution are f.J, and a2 respectively, thus explaining the notation. 

Traditionally we denote the density and distribution functions of Y by ¢ and CP :  

• 

(6) Gamma distribution. The random variable X has the gamma distribution with parameters 
A. ,  t > 0, denotedt r (A. , t) ,  if it has density 

x :::: 0.  

Here, r et) is the gamma/unction 

t Do not confuse the order of the parameters. Some authors denote this distribution r (t , A) .  
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If t = 1 then X is exponentially distributed with parameter A . We remark that if A = � ,  
t = �d, for some integer d ,  then X i s  said to have the chi-squared distribution X 2 (d) with d 
degrees of freedom (see Problem (4. 1 1 . 1 2» . • 

(7) Cauchy distribution. The random variable X has the Cauchy distribution t if it has density 
function 

1 f (x ) = n ( 1 + x2) ' -00 < x < 00 .  

This distribution i s  notable for having no moments and for its frequent appearances in counter­
examples (but see Problem (4. 1 1 .4» . • 

(8) Beta distribution. The random variable X is beta, parameters a ,  b > 0, if it has density 
function 

1 f(x ) = __ xa- 1 ( I _ x)b- l , 
B(a ,  b) 

We denote this distribution by f3 (a , b). The 'beta function ' 

is chosen so that f has total integral equal to one. You may care to prove that B(a ,  b) = 
r(a)r (b)/r (a + b) . If a = b = 1 then X is uniform on [0 , 1 ] .  • 

(9) Weibull distribution. The random variable X is Weibull, parameters a, f3 > 0, if it has 
distribution function 

F(x) = 1 - exp(-axf\ x 2: 0. 
Differentiate to find that 

f(x) = af3xfJ- 1 exp( -axfJ) , x 2: 0. 

Set f3 = 1 to obtain the exponential distribution . • 

Exercises for Section 4.4 

1. Prove that the gamma function satisfies r (t) = (t - l )r (t - 1 )  for t > 1 , and deduce that 
r(n) = (n - I) ! for n = 1 , 2 ,  . . . .  Show that r ( � ) = .,fii and deduce a closed form for r (n + ! )  
for n = 0, 1 , 2 ,  . . . .  
2. Show, as claimed in (4.4.8), that the beta function satisfies B(a ,  b) = r (a )r(b)/ r (a + b) .  
3. Let X have the uniform distribution on [0, 1 ] .  For what function g does Y = g(X) have the 
exponential distribution with parameter 1 ? 
4. Find the distribution function of a random variable X with the Cauchy distribution. For what 
values of a does I X I  have a finite (possibly fractional) moment of order a?  

5. Log-normal distribution. Let Y = eX where X has the N(O, 1 ) distribution. Find the density 
function of Y.  

tThis distribution was considered first b y  Poisson, and th e  name i s  another example o f  Stigler's law of 
eponymy. 



98 4.5 Continuous random variables 

6. Let X be N(/-t ,  0"2) .  Show that JB:{(X - /-t)g(X» ) = 0"2JB:(g'(X» when both sides exist. 

7. With the terminology of Exercise (4. 1 .4), find the hazard rate when: 
(a) X has the Wei bull distribution, JP'(X > x) = exp( -ax,B- l ) , x :::: 0, 
(b) X has the exponential distribution with parameter A ,  
(c) X has density function af + ( 1  - a )g , where 0 < a < 1 and f and g are the densities of 

exponential variables with respective parameters A and /-t. What happens to this last hazard rate 
r (x )  in the limit as x --+ oo? 

8. Mills's ratio. For the standard normal density ¢ (x) , show that ¢' (x) + x¢ (x) = O. Hence show 
that 

1 1 1 - <1> (x) 1 1 3 
- - - < ----'---'-- < - - - + -
x x3 ¢ (x) x x3 x5 ' 

4.5 Dependence 

x >  O. 

Many interesting probabilistic statements about a pair X, Y of variables concern the way X 
and Y vary together as functions on the same domain Q.  

(1) Definition. The joint distribution function of X and Y is  the function F : JR2 -+ [0, 1] 
given by 

F(x, y) = P(X s x ,  Y s y). 
If X and Y are continuous then we cannot talk of their joint mass function (see Definition 

(3 .6 .2» since this is identically zero . Instead we need another density function . 

(2) Definition. The random variables X and Y are (jointly) continuous with joint (proba­
biUty) density function f : JR2 -+ [0, (0) if 

F(x ,  y) = 1:-00 1:-00 f(u ,  v)  du  du for each x, y E JR. 

If F is sufficiently differentiable at the point (x , y ) ,  then we usually specify 

a2 
f (x ,  y )  = -- F(x ,  y ) .  

axay 

The properties of joint distribution and density functions are very much the same as those of 
the corresponding functions of a single variable, and the reader is left to find them. We note 
the following facts . Let X and Y have joint distribution function F and joint density function 
f. (Sometimes we write Fx, y and fx, y to stress the roles of X and Y . )  

(3) Probabilities. 

JP'(a S X S b, c S Y S d) = F(b, d) - F(a ,  d) - F(b ,  c) + F(a ,  c) 

= i:c l�a f(x ,  y )  dx dy . 
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Think of f(x ,  y) dxdy as the element ofprobability lP'(x < X S x +dx ,  y < Y S y +dy) ,  
so  that if  B i s  a sufficiently nice subset of  JR2 (such as  a rectangle or  a union of  rectangles and 
so on) then 

(4) lP'( (X, Y) E B ) = fl f(x , y) dX dy .  

We can think of (X, Y)  as a point chosen randomly from the plane; then lP'( (X, Y) E B) i s  the 
probability that the outcome of this random choice lies in the subset B .  

(5) Marginal distributions. The marginal distribution functions of X and Y are 

Fx (x ) = lP'(X S x)  = F(x ,  00) , Fy (y) = lP'(Y S y) = F(oo, y ) ,  

where F(x ,  00) i s  shorthand for limy--->oo F(x ,  y ) ;  now, 

Fx (x ) = i� (i: f eu , Y ) dY) du 

and it follows that the marginal density function of X is 

fx (x ) = i: f (x ,  y) dy .  

Similarly, the marginal density function of Y is 

fy (y) = i: f(x ,  y)  dx .  

(6) Expectation. If g : JR2 � JR is a sufficiently nice function (see the proof of Theorem 
(4 .2 .3) for an idea of what this means) then 

lE(g (X, Y) )  = i: i: g (x ,  y )f (x ,  y) dx dy ;  

in  particular, setting g (x ,  y) = ax + by , 

lE(aX + bY)  = alEX + blEY. 

(7) Independence. The random variables X and Y are independent if and only if 

F(x ,  y) = Fx (x ) Fy (y) for all x ,  y E JR, 

which, for continuous random variables, is equivalent to requiring that 

f (x ,  y) = fx (x ) fy (y) 



1 00 4 .5 Continuous random variables 

whenever F is differentiable at (x , y) (see Problem (4 . 14.6) also) where I, lx , Iy are taken 
to be the appropriate derivatives of F, Fx and Fy . 

(8) Example. Buffon's needle. A plane is ruled by the lines y = n (n = 0, ± 1 ,  ±2, . . .  ) and 
a needle of unit length is cast randomly on to the plane. What is the probability that it intersects 
some line? We suppose that the needle shows no preference for position or direction. 
Solution. Let (X, Y)  be the coordinates of the centre of the needle and let 8 be the angle, 
modulo Jr ,  made by the needle and the x-axis .  Denote the distance from the needle's centre 
and the nearest line beneath it by Z = Y - LY J , where LY J is the greatest integer not greater 
than Y .  We need to interpret the statement ' a  needle is cast randomly ' , and do this by assuming 
that : 

(a) Z is uniformly distributed on [0, 1 ] ,  so that fz(z) = 1 if ° :s z :s 1 ,  
(b) 8 is uniformly distributed on [0, Jr ] ,  so that le (e) = 1 /Jr if O :s e :s Jr ,  
(c) Z and 8 are independent, so that fz,e (z , e ) = Iz (z)le (e ) . 

Thus the pair Z,  8 has joint density function I (z , e ) = 1 I Jr for ° :s z :s 1 ,  ° :s e :s Jr .  Draw 
a diagram to see that an intersection occurs if and only if (Z ,  8) E B where B S; [0, 1 ]  x [0, Jr ]  
i s  given by 

B = { (z , e) : Z :s ! sin e or 1 - z :s ! sin e } .  
Hence 

lh 
1 in (i ! Sin e / 1  ) 2 

lP'(intersection) = I (z , e ) dz de = - dz + dz de = - . 
B Jr 0 0 I - ! sin e Jr 

Buffont designed the experiment in order to estimate the numerical value of Jr .  Try it if you 
have time. • 

(9) Example. Bivariate normal distribution. Let I : ]R2 -+ ]R be given by 

(10) I(x ,  y )  = � exp (- 1 
2 (x2 - 2pxy + y2)) 

2Jr 1 - p2 2 ( 1  - p ) 

where p is a constant satisfying - 1  < p < 1 .  Check that I is a joint density function by 
verifying that 

I (x ,  y) ::: 0, i:i: I (x ,  y) dx dy = 1 ;  

I is called the standard bivariate normal density function of some pair X and Y .  Calculation ot 
its marginals shows that X and Y are N(O, 1) variables (exercise) . Furthermore, the covariance 

cov(X, Y) = JE(XY) - JE(X)JE(Y) 

is  given by 

cov(X, Y) = i:i: xyl (x , y) dx dy = p; 

tGeorges LeClerc, Comte d e  Buffon. I n  1 777 h e  investigated th e  St Petersburg problem b y  flipping a coi l 
2084 times, perhaps the first recorded example of a Monte Carlo method in use. 
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you should check this. Remember that independent variables are uncorrelated, but the converse 
is not true in general . In this case, however, if p = 0 then 

and so X and Y are independent. We reach the following important conclusion. Standard 
bivariate normal variables are independent if and only if they are uncorrelated . 

The general bivariate normal distribution is more complicated. We say that the pair X, Y has 
the bivariate normal distribution with means ILl and IL2 , variances at and a} , and correlation 
p if their joint density function is 

f (x , y )  = � exp [- ! Q(X
' Y) ] 

bra1 a2 1 - p2 

where a1 , a2 > 0 and Q is the following quadratic form 

Q(x ,  y )  = 
1 [(X 

-
ILI ) 2 _ 2p (�) ( y 

- IL2 ) + ( y - IL2 ) 2] . 
( 1  

- p2) al al a2 a2 

Routine integrations (exercise) show that: 
(a) X is N(IL1 , at) and Y is N(IL2 , a}) ,  
(b) the correlation between X and Y is p ,  
(c) X and Y are independent if and only if p = O .  
Finally, here i s  a hint about calculating integrals associated with normal density functions. 

It is an analytical exercise (Problem (4. 1 1 . 1 »  to show that 

and hence that 
1 1 2 f (x )  = __ e- 2X 

.j2ii 
is indeed a density function. Similarly, a change of variables in the integral shows that the 
more general function 

1 [ 1 (X - IL ) 2] f(x )  = -- exp - - --
a.j2ii 2 a 

is itself a density function . This knowledge can often be used to shorten calculations . For 
example, let X and Y have joint density function given by ( 1 0) .  By completing the square in 
the exponent of the integrand, we see that 

cov(X, Y) = ff xyf (x ,  y) dx dy 

= f y �e- !Y2 (f xg(x ,  Y) dX) dy 
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1 ( 1 (x _ py )2 ) g (X ,  y) = exp - - --� 
J2JT ( 1 - p2) 2 ( 1 - p2 ) 

is the density function of the N (py , 1 - p2 ) distribution . Therefore J xg (x , y) dx is the mean, 
py , of this distribution, giving 

However, the integral here is, in turn, the variance of the N(O, 1 )  distribution, and we deduce 
that cov(X, Y) = p, as was asserted previously. • 

(11) Example. Here is another example of how to manipulate density functions . Let X and 
Y have joint density function 

f (x , y) = t exp 
( -y - �) , 

Find the marginal density function of Y .  
Solution. We have that 

O < x , y < oo. 

fy (y) = rJO f (x ,  y ) dx = rJO � exp 
(-y - ::.) dx = e-Y , 1-00 10 y y 

and hence Y is exponentially distributed. 

y > 0, 

• 

Following the final paragraph of Section 4 .3 ,  we should note that the expectation operator 
lE has similar properties when applied to a family of continuous variables as when applied to 
discrete variables. Consider just one example of this .  

(12) Theorem. Cauchy-Schwarz inequality. For any pair X, Y ofjointly continuous vari­
ables, we have that 

with equality if and only iflP'(aX = bY) = 1 for some real a and b, at least one of which is 
non-zero. 

Proof. Exactly as for Theorem (3 .6 .9) .  

Exercises for Section 4.5  

1. Let 
I x l { 1 2 2 } f(x , y) = to= exp - Ix l - :Ix y , 

y 8n 

• 

x , y E JR. 

Show that f is a continuous joint density function, but that the (first) marginal density function 
g (x) = J�oo f(x , y) dy is not continuous.  Let Q = {qn : n 2: 1 }  be a set of real numbers, and define 

00 
fQ (x , y) = L(i)n f(x - qn , y) . n= l  
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Show that f Q is a continuous joint density function whose first marginal density function is discon­
tinuous at the points in Q. Can you construct a continuous joint density function whose first marginal 
density function is continuous nowhere? 

2. Buffon's needle revisited. Two grids of parallel lines are superimposed: the first grid contains 
lines distance a apart, and the second contains lines distance b apart which are perpendicular to those 
of the first set. A needle of length r « min {a ,  b } )  is dropped at random. Show that the probability it 
intersects a line equals r (2a + 2b - r)/ (rrab) . 
3. Buffon's cross. The plane is ruled by the lines y = n ,  for n = 0, ± 1 ,  . . .  , and on to this plane 
we drop a cross formed by welding together two unit needles perpendicularly at their midpoints. Let 
Z be the number of intersections of the cross with the grid of parallel lines. Show that JB:(Z/2) = 2/rr 
and that 

3 - ../2  4 
var(Z/2) = -- - 2 .  

rr rr 

If you had the choice of using either a needle of unit length, or the cross, in estimating 2/rr , which 
would you use? 

4. Let X and Y be independent random variables each having the uniform distribution on [0 , 1]. Let 
U = min{X,  Y} and V = max{X,  Y} .  Find JB:(U) ,  and hence calculate cov(U,  V) .  

5 .  Let X and f b e  independent continuous random variables. Show that 

JB: (g(X)h (Y» ) = JB:(g (X»JB:(h (Y» , 

whenever these expectations exist. If X and f have the exponential distribution with parameter 1 ,  find 
JB:{ exp(� (X + f» } . 

6. Three points A, B, C are chosen independently at random on the circumference of a circle. Let 
b(x) be the probability that at least one of the angles of the triangle ABC exceeds xrr . Show that 

{ I - (3x - 1 )2 
b (x ) = 

3( 1 - x)2 

Hence find the density and expectation of the largest angle in the triangle. 

7. Let {X r : 1 ::s r ::s n }  be independent and identically distributed with finite variance, and define 
X = n- 1 2:�= 1 Xr . Show that cov(X, Xr - X) = o. 
8. Let X and f be independent random variables with finite variances, and let U = X + Y and 
V = Xf.  Under what condition are U and V uncorrelated? 

9. Let X and f be independent continuous random variables, and let U be independent of X and f 
taking the values ±1  with probability � .  Define S = UX and T = U f .  Show that S and T are in 
general dependent, but S2 and T2 are independent. 
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4.6 Conditional distributions and conditional expectation 

Suppose that X and Y have joint density function ! .  We wish to discuss the conditional 
distribution of Y given that X takes the value x . However, the probability IP'(Y S y I X = x) 
is undefined since (see Definition ( 1 .4. 1 »  we may only condition on events which have strictly 
positive probability. We proceed as follows. If !x (x ) > 0 then, by equation (4.5 .4), 

( I 
) IP'(Y S y , x S X S x + dx) 

IP' Y < y x < X < x + dx = ---'--------- - - lP'(x S X S x + dx) 

� 
J:=-oo ! (x , v) dx dv 

!x (x) dx 

= lY ! (x , v) dv .  
v=-oo !x (x) 

As dx .J, 0, the left-hand side of this equation approaches our intuitive notion of the probability 
that Y S y given that X = x , and it is appropriate to make the following definition. 

(1) Definition. The conditional distribution function of Y given X = x is the function 
FYIX { '  I x) given by ly lex ,  v) FYlx (Y I x) = -00 !x(x) dv 
for any x such that ix(X) > o. It is sometimes denoted JP>(Y :::: y I X = x) .  

Remembering that distribution functions are integrals of  density functions , we are led to 
the following definition. 

(2) Definition. The conditional density function of FYlx .  written !YIX,  is given by 

for any x such that ix(x) > O. 

f(x ,  y) !Y1X (Y I x) = ix(x) 

Of course, !x (x ) = J�oo ! (x , y) dy , and therefore 

! (x ,  y) !Y lx (y I x ) = foo
!( ) d

' -00 x ,  y y 

Definition (2) is easily remembered as !Y IX = !x. y  /!x . Here is an example of a conditional 
density function in action. 

(3) Example. Let X and Y have joint density function 

1 
!x. y (x , y) = - , x 

Show for yourself (exercise) that 

O S y S x S l . 

1 
!x (x ) = 1  if O s x S l , frlx (y I x ) = - if 0 S y S x S 1 ,  x 
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which is to say that X is uniformly distributed on [0 , 1 ]  and, conditional on the event {X = x } ,  
Y i s  uniform o n  [0, x ] . In order to calculate probabilities such as lP'(X2 + y2 S 1 I X = x) , 
say, we  proceed a s  follows. I f  x > 0, define 

A (x) = {y E � : ° S Y S x , x2 + y2 S I } ; 

clearly A(x) = [0, min Ix ,  .Jl - x2 } ] . Also, 

lP'(X2 + y2 S 1 I X = x ) = ( jY lx (y l x) dy 
lA (x) 

= � min {x ,  Jl - x2 } = min { 1 ,  J x-2 - t } . X 
Next, let us calculate lP'(X2 + y2 S 1 ) . Let A = { (x , y) : ° S Y S x S 1 ,  x2 + y2 S I } . 
Then 

(4) lP'(X2 + y2 S 1 ) = Ii ix,y (x ,  y) dx dy 

= t jx (x) ( jY IX (Y I x) dy dx 
lx=o lYEA(x) 

= 101 min { l ,  Jx-2 - I }  dx = log(1  + ..(2) . • 

From Definitions ( 1 ) and (2) it is easy to see that the conditional expectation of Y given X 
can be defined as in Section 3 .7  by lE(Y I X) = 1{! (X) where 

1{! (x) = lE(Y I X = x) = i: yjY lx (Y I x ) dy ; 

once again, lE(Y I X ) has the following important property 

(5) Theorem. The conditional expectation 1/t(X) = E(Y I X) satisfies 
E(1/t(X) = E(Y). 

We shall use this result repeatedly; it is normally written as lE (lE(Y I X» ) = lE(Y) ,  and it 
provides a useful method for calculating lE(Y) since it asserts that 

lE(Y) = i: lE(Y I X = x)jx (x ) dx .  

The proof of (5) proceeds exactly as for discrete variables (see Theorem (3 .7 .4» ; indeed the 
theorem holds for all pairs of random variables, regardless of their types. For example, in 
the special case when X is continuous and Y is the discrete random variable I B , the indicator 
function of an event B, the theorem asserts that 

(6) lP'(B) = lE(1{! (X» = i: lP'(B I X = x)jx (x) dx , 
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of which equation (4) may be seen as an application. 

(7) Example. Let X and Y have the standard bivariate normal distribution of Example (4.5 .9) .  
Then 

1 ( (y - pX)2 ) 
frIX (Y I x ) = ix, y (x , y)lfx (x ) = 

J 2 exp -
2 ( 1  2) 2n ( 1  - p ) - P 

is the density function of the N (px , 1 - p2) distribution. Thus lEe Y I X = x) = px ,  giving 
that lE(Y I X) = pX. • 

(8) Example. Continuous and discrete variables have mean values, but what can we say about 
variables which are neither continuous nor discrete, such as X in Example (2.3 .5) ?  In that 
example, let A be the event that a tail turns up. Then 

lE(X) = lE(lE (X I fA ») 
= lE(X I fA = 1 )lP'(IA = 1)  + lE(X I fA = O)lP'(IA = 0) 

= lE(X I tail)lP'(tail) + lE(X I head)lP'(head) 

= - 1  . q + n . p = np - q 

since X is uniformly distributed on [0, 2n 1 if a head turns up. • 

(9) Example (3) revisited. Suppose, in the notation of Example (3) , that we wish to calculate 
lE(Y) . By Theorem (5), 

lE(Y) = 1a
1
lE(Y I X = x)fx (x ) dx = 101 !x dx = ! 

since, conditional on {X = x } ,  Y is uniformly distributed on [0, x l . 
There is a more general version of Theorem (5) which will be of interest later. 

(10) Theorem. The conditional expectation 1jI (X ) = lE(Y I X) satisfies 

(11) lE( 1jI (X)g(X») = lE(Y g(X» 

for any function g for which both expectations exist. 

• 

As in Section 3 .7 , we recapture Theorem (5) by setting g (x ) = 1 for all x . We omit the 
proof, which is an elementary exercise . Conclusion ( 1 1 )  may be taken as a definition of the 
conditional expectation of Y given X, that is as a function 1jI (X) such that ( 1 1 )  holds for all 
appropriate functions g . We shall return to this discussion in later chapters. 

Exercises for Section 4 .6  

1. A point is picked uniformly at random on the surface of  a unit sphere. Writing e and <1> for its 
longitude and latitude, find the conditional density functions of e given <1>, and of <1> given e.  
2 .  Show that the conditional expectation 1/J (X) = JE(Y I X) satisfies JE(1/J (X)g (X)) = JE(Yg(X)),  
for any function g for which both expectations exist. 

3. Construct an example of two random variables X and Y for which JE(Y) = 00 but such that 
JE(Y I X) < 00 almost surely. 
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4. Find the conditional density function and expectation of Y given X when they have joint density 
function: 
(a) f(x ,  y) = )..2e-J..y for O ::s: x ::s:  y < 00, 

(b) f(x ,  y ) = xe-x (y+ l ) for x, y :::: o. 
5. Let Y be distributed as bin(n , X) ,  where X is a random variable having a beta distribution on 
[0, } ]  with parameters a and b . Describe the distribution of Y, and find its mean and variance. What 
is the distribution of Y in the special case when X is uniform? 

6. Let {Xr : r :::: I }  be independent and uniformly distributed on [0, 1 ] .  Let 0 < x < 1 and define 

N = min{n :::: 1 : X I + X2 + . . .  + Xn > x } .  

Show that P(N > n) = xn In ! ,  and hence find the mean and variance o f  N.  
7. Let X and Y be random variables with correlation p. Show that JE(var(Y I X)) ::s: (1 - p2) var Y .  

8. Let X, Y, Z be independent and exponential random variables with respective parameters ).. , /1-, v .  
Find P(X < Y < Z) .  

9. Let X and Y have the joint density f (x ,  y) = cx (y - x)e-y , O ::s:  x ::s: y < 00.  

(a) Find c . 
(b) Show that: 

fx l Y (x I y) = 6x (y - x)y-3 , 
fy lX (y I x) = (y - x)ex-y , 

O ::s:  x ::s:  y , 
O ::s:  x ::s: y < 00. 

(c) Deduce that JE(X I Y) = i Y and JE(Y I X) = X + 2. 
10. Let {Xr : r :::: O} be independent and identically distributed random variables with density 
function f and distribution function F . Let N = min{n :::: 1 : Xn > Xo} and M = min{n :::: 1 : 
Xo :::: X I :::: . . . :::: Xn- I < Xn } .  Show that XN has distribution function F + ( l  - F) log e }  - F), 
and find P(M = m). 

4.7 Functions of random variables 

Let X be a random variable with density function I, and let g : IR � IR be a sufficiently nice 
function (in the sense of the discussion after Theorem (4.2 .3 » . Then y = g (X) is a random 
variable also. In order to calculate the distribution of Y , we proceed thust : 

lP'(Y � y) = lP'(g (X) � y) = lP'(g (X) E (-00, yJ) 

= lP'(X E g- I (-00, yJ) = ( I (x )  dx . Jg-l (-OO, y] 

Example (2 . 3 .4) contains an instance of this calculation, when g (x ) = x2 . 
(1) Example. Let X be N(O, 1 )  and let g (x )  = x2 . Then Y = g (X) = X2 has distribution 
function 

lP'(Y � y) = lP'(X2 � y) = lP'( -� � X � �) 

= <I> (�) - <I> (-�) = 2<1> (�) - 1 if y � 0, 

tIf A � lR then g- 1 A = {x E lR : g(x )  E A}.  
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by the fact that <I> (X ) = 1 - <1> (  -x ) . Differentiate to obtain 

d 1 I 1 1 
fy (y) = 2 - <I> (Jy) = - <I> (Jy) = --e- 'Y dy Jy ,J2ny 

for y ::: O. Compare with Example (4.4.6) to see that X2 is r ( � ,  � ) ,  or chi-squared with one 
degree of freedom. See Problem (4. 14 . 12 )  also. • 

(2) Example. Let g (x ) = ax + b for fixed a , b E JR. Then Y = g (X) = aX + b has 
distribution function 

{ IP'(X < (y - b)/a) 
IP'(Y � y)  = lP'(aX + b � y)  = -

IP'(X ::: (y - b)/a) 

Differentiate to obtain fy (y) = la l- l fx « y - b)/a ) . 

i f  a >  0 ,  

i f  a < O .  

• 

More generally, if X 1 and X2 have joint density function f,  and g ,  h are functions mapping 
JR2 to R then what is the joint density function of the pair Yl = g (X l , X2) ,  Y2 = h (X l , X2) ?  
Recall how to change variables within an integral. Let Yl = Yl (X l , X2) , Y2 = Y2 (X l , X2) 
be a one-one mapping T : (X l , X2 ) t-+ (Yl , Y2) taking some domain D � �2 onto some 
range R � JR2 . The transformation can be inverted as Xl = X l (Y l , Y2) ,  X2 = X2 (Y l , Y2) ;  the 
lacobiant of this inverse is defined to be the determinant 

aXl aX2 - -

1 = aYl aYl aX l aX2 aX l aX2 - - - - -
aX l aX2 aYl aY2 aY2 aY l - -
aY2 aY2 

which we express as a function I = l (Yl , Y2 ) .  We assume that these partial derivatives are 
continuous.  

(3) Theorem. If g : �2 -+ JR, and T maps the set A � D onto the set B � R then 

(4) Corollary. If X l ,  X 2 have joint density function /, then the pair Yl . Y2 given by (Yl , Y2) = 
T (X 1 ,  X 2) has joint density junction 

A similar result holds for mappings of �n into �n . This technique is sometimes referred 
to as the method of change of variables . 

tIntroduced by Cauchy ( 1 8 1 5 )  ahead of Jacobi ( 1 84 1 ) ,  the nomenclature conforming to Stigler's law. 
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Proof of Corollary. Let A S; D, B S; R be typical sets such that T(A) 
(XI , X2) E A i f  and only if  (YI , Y2) E B . Thus 

lP'( YI , Y2) E B) = lP'( XI , X2) E A) = Ii J (X l , X2) dx l dx2 
= lin J (X I (Yl , Y2) , X2 (YI , Y2») I J (YI , Y2) 1 dYI dY2 

1 09 

B . Then 

by Example (4.5 .4) and Theorem (3) .  Compare this with the definition of the joint density 
function of YI and Y2 , 

to obtain the result. • 

(5) Example. Suppose that 

where ad - be =1= O. Check that 

• 

(6) Example. If X and Y have joint density function J, show that the density function of 
U = XY is 

Ju (u) = i: J(x , u/x) lx l - 1 dx . 
Solution. Let T map (x , y) to (u , v) by 

u = xy , v = x . 

The inverse T- I maps (u , v) to (x , y) by x = v, Y = u/v , and the Jacobian is 

J (u , v) = 

ax ay 
au au 
ax ay v 
av a v 

Thus Ju, v (u , v) = J(v , u/v) l v l - l . Integrate over v to obtain the result. • 

(7) Example. Let X l and X2 be independent exponential variables, parameter A .  Find the 
joint density function of 

and show that they are independent. 
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Solution. Let T map (X I , X2 ) to (Yl , Y2) by 

YI = Xl + X2 , X l , X2 , YI , Y2 � o. 
The inverse T- I maps (YI , Y2) to (X l , X2) by 

and the Jacobian is 

giving 
( ) 

I Y I I  
fYI , Y2 (Y l , Y2 ) = fXI , X2 Yl Y2/ ( 1  + Y2) ,  yJ / ( 1  + Y2) 

( 1  + Y2)2 · 

However, X I and X 2 are independent and exponential, so that 

whence 
A2e-AYI YI 

frI , Y2 (Y l , Y2) = 
( 1  + Y2)2 

if Yl , Y2 � 0 

is the joint density function of YI and Y2 . However, 

fy Y (YI Y2) - [A2Yl e-AY1 1 __ l_-=-1 , 2 , - ( 1  + Y2)2 

factorizes as the product of a function of YI and a function of Y2 ; therefore, by Problem 
(4 . 14.6) , they are independent. Suitable normalization of the functions in this product gives 

(8) Example. Let X 1 and X 2 be given by the previous example and let 

By Corollary (4) ,  X and S have joint density function 

f (X , s ) = A2e-AS if O s x S s .  

• 

This may look like the product of a function of X with a function of s ,  implying that X and S 
are independent; a glance at the domain of f shows this to be false. Suppose we know that 
S = s .  What now is the conditional distribution of X, given S = s ?  
Solution. 

JP>(X S X I S = s) = i� f eu ,  s ) du / i: feu, s ) du 

X 
s 

if 0 S X S s .  
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Therefore, conditional on S = s , the random variable X is uniformly distributed on [0, s ] . 
This result, and its later generalization, i s  o f  great interest to statisticians. • 

(9) Example. A warning. Let Xl and X2 be independent exponential variables (as in Ex­
amples (7) and (8» . What is the conditional density function of Xl + X2 given Xl = X2? 
'Solution ' 1 .  Let YI = Xl + X2 and Y2 = XJ / X2 . Now Xl = X2 if and only if Y2 = 1 .  
We have from (7) that YI and Y2 are independent, and it follows that the conditional density 
function of YI is its marginal density function 

(10) 

'Solution ' 2. 
!Yl , Y3 (YI , Y3 ) 

Let YI = Xl + X2 and Y3 = X I  - X2 . It is an exercise to show that 
� A2e-AYl for I Y3 1 S YI , and therefore the conditional density function 

of YI given Y3 i s  

!Y1 I Y3 (YI I Y3 ) = Ae-A(Yl - IY3 1 ) for I Y3 1 S YI · 

Now X I = X 2 if and only if Y3 = 0, and the required conditional density function is therefore 

(11) 

Something is wrong: ( 1 0) and ( 1 1 )  are different. The error derives from the original ques­
tion: what does it mean to condition on the event {X I = X2 } ,  an event having probability O? 
As we have seen, the answer depends upon how we do the conditioning-one cannot condition 
on such events quite so blithely as one may on events having strictly positive probability. In 
Solution 1 ,  we are essentially conditioning on the event {XI S X2 S (1 + h )Xd for small h ,  
whereas in Solution 2 we are conditioning on  {X I S X 2 S X I + h } ;  these two events contain 
different sets of information . • 

(12) Example. Bivariate normal distribution. Let X and Y be independent random vari­
ables each having the normal distribution wth mean 0 and variance 1 .  Define 

(13) 

(14) 

U = aI X, 

V = a2pX + a2Hy. 

where ai , a2 > 0 and I p i < 1 .  By Corollary (4) , the pair U, V has joint density function 

(15) 

where 

Q(u ,  v) = 
1 [(�) 2 

_ 2p (�) (�) + (�) 2] . 
( 1  - p2) al al a2 a2 

We deduce that the pair U, V has a bivariate normal distribution. 
This fact may be used to derive many properties of the bivariate normal distribution without 

having recourse to unpleasant integrations. For example, we have that 
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whence the correlation coefficient of U and V equals p . 
Here is a second example . Conditional on the event {U = u } ,  we have that 

Hence JE(V  I U) = (o-zp/O'I )U , and var(V I U) = O'iO _ p2) . • 

The technology above is satisfactory when the change of variables is one-one, but a problem 
can arise if the transformation is many-one. The simplest examples arise of course for one­
dimensional transformations. For example, if y = x2 then the associated transformation 
T : x � x2 is not one-one, since it loses the sign of x .  It is easy to deal with this complication 
for transformations which are piecewise one-one (and sufficiently smooth). For example, the 
above transformation T maps (-00, 0) smoothly onto (0, 00) and similarly for [0, 00) : there 
are two contributions to the density function of Y = X2 , one from each of the intervals ( -00, 0) 
and [0, 00) . Arguing similarly but more generally, one arrives at the following conclusion, the 
proof of which is left as an exercise. 

Let It , h . . .  , In be intervals which partition IR (it is not important whether or not these 
intervals contain their endpoints) , and suppose that Y = g (x )  where g is strictly monotone 
and continuously differentiable on every Ii .  For each i ,  the function g : Ii -+ IR is invertible 
on g (Ii ) , and we write hi for the inverse function. Then 

n 
(16) fY (y) = L fx (hi (y» l h; (y) 1 

i= l 

with the convention that the i th summand is ° if hi is not defined at y . There is a natural 
extension of this formula to transformations in two and more dimensions. 

Exercises for Section 4.7 

1. Let X,  Y, and Z be independent and unifonnly distributed on [0, 1 ] .  Find the joint density function 
of XY and Z2 , and show that JP'(XY < Z2) = � .  
2. Let X and Y be independent exponential random variables with parameter 1 .  Find the joint density 
function of U = X + Y and V = X/eX + y), and deduce that V is unifonnly distributed on [0, 1 ] .  

3. Let X be uniformly distributed on [0, 1n] .  Find the density function of Y = sin X.  

4. Find the density function of Y = sin- l X when: 
(a) X is unifonnly distributed on [0, 1 ] ,  
(b) X is unifonnly distributed on [- 1 ,  1 ] .  
5 .  Let X and Y have the bivariate normal density function 

f (x , y) = n exp { - 1 
2 (x2 - 2pxy + i) } . 

2n 1 - p2 2 ( 1  - P ) 

Show that X and Z = (Y - pX) / y'i:7 are independent N (0, 1) variables, and deduce that 

1 1 
JP'(X > 0, Y > 0) = - + - sin- I 

p . 
4 2n 
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6. Let X and Y have the standard bivariate normal density function of Exercise (5), and define 
Z = max{X, Y } .  Show that E(Z) = .J(l - p)/rr , and E(Z2) = 1 .  

7. Let X and Y be independent exponential random variables with parameters A and /-t .  Show that 
Z = minIX, Y }  is independent of the event {X < Y } .  Find: 
(a) IP'(X = Z), 
(b) the distributions of U = max{X - Y, O} ,  denoted (X - Y)+ , and V = max{X,  Y} - minIX,  Y } ,  
(c) IP' ( X  ::::: t < X + Y) where t > O. 
8. A point (X, Y)  is picked at random uniformly in the unit circle. Find the joint density of R and 
X, where R2 = X2 + y2

. 
9. A point (X, Y, Z) is picked uniformly at random inside the unit ball of ]R.3 . Find the joint density 
of Z and R, where R2 = X2 + y2 + Z2 . 

10. Let X and Y be independent and exponentially distributed with parameters A and /-t. Find the 
joint distribution of S = X + Y and R = XI (X + Y) .  What is the density of R? 

11. Find the density of Y = al(l + X2) ,  where X has the Cauchy distribution. 

12. Let (X, Y) have the bivariate normal density of Exercise (5) with 0 ::::: p < 1 .  Show that 

pcp (b) [ l  - <l> (d) ]  [ l  - <l> (a) ] [ l - <l> (e) ]  ::::: IP' ( X  > a ,  Y > b )  ::::: [ l  - <l> (a) ] [ l - <l> (e) ] + cp (a) , 

where e = (b - pa) I �, d = (a - pb) I �, and cp and <l> are the density and distribution 
function of the N(O, 1) distribution. 

13. Let X have the Cauchy distribution. Show that Y = X- I has the Cauchy distribution also. Find 
another non-trivial distribution with this property of invariance. 

14. Let X and Y be independent and gamma distributed as r CA ,  ex) ,  r CA ,  fJ) respectively. Show that 
W = X + Y and Z = X I (X + Y) are independent, and that Z has the beta distribution with parameters 
ex, fJ .  

4.8 Sums of random variables 

This section contains an important result which is a very simple application of the change of 
variable technique. 

(1) Theorem. If X and Y have joint density function f then X + Y has density function 

fx+Y (z) = i: f (x ,  z - x) dx . 

Proof. Let A = { (x ,  y) : x + y S z } .  Then 

by the substitution x = U, Y = v + u .  Reverse the order of integration to obtain the result. • 
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If X and Y are independent, the result becomes 

fx+y(z) = L: /x (x)fy(Z - x) dx = L: /x (z - !)fy (y) dy. 

The function fx+y is called the convolution of fx and fy , and is written 

(2) fx+Y = fx * fy ·  

(3) Example. Let X and Y be independent N(O, 1 )  variables .  Then Z = X + Y has density 
function 

by the substitution v = (x - �z).J2. Therefore, 

showing that Z is N(O, 2) . More generally, if X is N(J-L l , at) and Y is N(J-L2 , ai) ,  and X and 
Y are independent, then Z = X + Y is N (J-L l + J-L2 , at + ai ) .  You should check this .  • 

(4) Example (4.6.3) revisited. You must take great care in applying ( 1 )  when the domain of 
f depends on x and y .  For example, in the notation of Example (4 .6 .3) ,  

fx+Y (z) = f � dx , 
A X 

O s  z S 2,  

where A = {x : 0 S z - x S x S 1 } = [�z , rnin{z ,  1 } ] .  Thus 

{ log 2 0 S z S 1 ,  
fx+Y (z) = 

log(2/z) 1 s z S 2 .  
• 

(5) Example. Bivariate normal distribution. It is required to calculate the distribution of 
the linear combination Z = aU' + b V' where the pair U' , V' has the bivariate normal density 
function of equation (4.7 . 1 5) .  Let X and Y be independent random variables, each having 
the normal distribution with mean 0 and variance 1 ,  and let V and V be given by equations 
(4. 7. 1 3) and (4. 7. 14). It follows from the result of that example that the pairs (V, V) and 
(V' ,  V') have the same joint distribution. Therefore Z has the same distribution as a V  + bV, 
which equals (aal + ba2P) X + ba2 Y�. The distribution of the last sum is easily found 
by the method of Example (3) to be N(O, a2at + 2abal a2P + b2

ai ) .  • 



4.9 Multivariate normal distribution 1 1 5 

Exercises for Section 4 . 8  

1 .  Let X and Y b e  independent variables having the exponential distribution with parameters A and 
/1- respectively. Find the density function of X + Y .  

2. Let X and Y b e  independent variables with the Cauchy distribution. Find the density function of 
aX + {3Y  where a{3 I=- O. (Do you know about contour integration?) 

3. Find the density function of Z = X + Y when X and Y have joint density function f (x , y) = 
! (x + y)e-(X+Y) , x ,  y � O. 
4. Hypoexponential distribution. Let {Xr : r � I }  be independent exponential random variables 
with respective parameters {Ar : r � I }  no two of which are equal. Find the density function of 
Sn = I:�=l Xr . [Hint: Use induction.] 

5. (a) Let X, Y, Z be independent and uniformly distributed on [0, 1 ] . Find the density function of 
X + Y + Z. 

(b) If {Xr : r � I }  are independent and uniformly distributed on [0, 1 ] ,  show that the density of 
I:�= I Xr at any point x E (0, n) is a polynomial in x of degree n - 1 .  

6. For independent identically distributed random variables X and Y ,  show that U = X + Y and 
V = X - Y are uncorrelated but not necessarily independent. Show that U and V are independent if 
X and Y are N(O, 1 ) .  

7 .  Let X and Y have a bivariate normal density with zero means, variances a2 , 1'2 , and correlation 
p. Show that: 

(a) JE.(X I y) = pa 
Y ,  

l' 
(b) var(X I y) = a2 ( 1 - p2) ,  

(a2 + pa 1')Z 
(c) JE.(X I X + Y = z) = 2 2 ' a + 2pa1'  + l' 

a21'2 ( 1 _ p2) 
(d) var(X I X + Y = z) = 2 2 · l' + 2pa 1'  + a 
8. Let X and Y be independent N(O, 1 )  random variables, and let Z = X + Y. Find the distribution 
and density of Z given that X > 0 and Y > O. Show that 

JE.(Z I X > 0, Y > 0) = 2J2/lr . 

4.9 Multivariate normal distribution 

The centerpiece of the normal density function is the function exp( _x2) ,  and of the bivariate 
normal density function the function exp( _x2 - bxy - y2) for suitable b . Both cases feature 
a quadratic in the exponent, and there is a natural generalization to functions of n variables 
which is of great value in statistics .  Roughly speaking, we say that X I ,  X2 , . . .  , Xn have the 
multivariate normal distribution if their joint density function is obtained by 'rescaling ' the 
function exp ( - Li xl - 2 Lkj bijXiXj) of the n real variables Xl , X2 , . . .  , Xn . The exponent 
here is a 'quadratic form' , but not all quadratic forms give rise to density function . A quadratic 
form is a function Q : lRn -+ lR of the form 

(1) Q(x) = L aijXiXj = xAx' 
l :'Oi, j :'On 
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where x = (X l , X2 , • • •  , Xn ) ,  x' is the transpose of x, and A = (aij ) is a real symmetric matrix 
with non-zero determinant. A well-known theorem about diagonalizing matrices states that 
there exists an orthogonal matrix B such that 

(2) A = BAB' 

where A is the diagonal matrix with the eigenvalues A I , A2 , . . .  , An of A on its diagonal . 
Substitute (2) into ( 1 )  to obtain 

(3) Q(x) = yAy' = L Ai Y; 
where y = xB. The function Q (respectively the matrix A) is called a positive definite 
quadratic lorm (respectively matrix) if Q(x) > 0 for all vectors x having some non-zero 
coordinate, and we write Q > 0 (respectively A > 0) if this holds. From (3) , Q > 0 if and 
only if Ai > 0 for all i . This is all elementary matrix theory. We are concerned with the 
following question: when is the function I : lRn -+ lR given by 

I (x) = K exp (- ! Q(x») , 

the joint density function of some collection of n random variables? It is necessary and 
sufficient that: 

(a) I (x) ::: o for all x E lRn , 
(b) J'Rn I (x) dx = 1 ,  

(this integral is shorthand for r · ·  J I(X I , . . .  , Xn ) dX 1  . . .  dXn ) .  
It i s  clear that (a) holds whenever K > O .  Next we  investigate (b) . First note that Q must be 
positive definite, since otherwise I has an infinite integral. If Q > 0, 

by (4 .7 .3) and (3) , since I I I  = 1 for orthogonal transformations 

= K n i: exp(- !Ai y;) dYi 
I 

where IA I  denotes the determinant of A. Hence (b) holds whenever K = J(2n)-n IA I .  
We have seen that �A I l ' I(x) = - - exp(- 2xAx ) , 

(2n )n 

is a joint density function if and only if A is positive definite. Suppose that A > 0 and that 
X = (X I , X2 , . . .  , Xn ) is a sequence of variables with joint density function I. It is easy 
to see that each Xi has zero mean; just note that I (x) = I (-x) , and so (X I ,  . . .  , Xn ) and 
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(-Xl , . . .  , -Xn )  are identically distributed random vectors ; however, E I Xi i < 00 and so 
E(Xi ) = E(-Xi ) ,  giving E (Xi ) = O. The vector X is said to have the multivariate normal 
distribution with zero means. More generally, if Y = (Yl , Y2 , . . . , Yn ) is given by 

for some vector p, = (It] , 1t2 , . . .  , Itn ) of constants, then Y is said to have the multivariate 
normal distribution. 

(4) Definition. The vector X = (X I , X2 , . . .  , Xn ) has the multivariate normal distribution 
(or multinormal distribution) , written N (p" V) , if its joint density function is 

where V is a positive definite symmetric matrix. 

We have replaced A by V- I in this definition. The reason for this lies in part (b) of the 
following theorem. 

(5) Theorem. If X is N(p" V) then 
(a) lE(X) = p" which is to say that lE(Xi ) = Iti for all i ,  
(b) V = (Vi} ) is called the covariance matrix, because Vi} = COV(Xi , X} ) .  

Proof. Part (a) follows by the argument before (4) .  Part (b) may be proved by performing 
an elementary integration, and more elegantly by the forthcoming method of characteristic 
functions; see Example (5 . 8 .6) .  • 

We often write 
V = lE«X - p,)' (X - p,)) 

since (X - p,)' (X - p,) is a matrix with (i , j) th entry (Xi - lti ) (X) - It} ) .  

A very important property o f  this distribution i s  its invariance o f  type under linear changes 
of variables. 

(6) Theorem. [f X = (Xl , X2 , . . .  , Xn ) is N(O, V) and Y = (YI , Y2 , . . .  , Ym) is given by 
Y = XD for some matrix D of rank m S n, then Y is N (0 , D'VD) .  

Proof when m = n. The mapping T : x t-+ y = xD is a non-singular and can be inverted as 
T-I : y t-+ X = yD- i . Use this change of variables in Theorem (4 .7 .3) to show that, if A, 
B S; ]Rn and B = T(A) ,  then 

JP>(Y E B)  = f f(x) dx = r 1 
exp(- �xV- Ix') dx 

A fA .J(2n)n lV l 
- ex _ 1 W-I , d 1 1 
-

B J(2n)n IWI 
p( 2 Y y ) Y 

where W = D'VD as required. The proof for values of m strictly smaller than n is more 
difficult and is omitted (but see Kingman and Taylor 1 966, p .  372) . • 

A similar result holds for linear transformations of N (p" V) variables. 
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There are various (essentially equivalent) ways of defining the multivariate normal distri­
bution, of which the above way is perhaps neither the neatest nor the most useful . Here is 
another. 

(7) Definition. The vector X = (X I , X2 , . . .  , Xn ) of random variables is said to have the 
multivariate normal distribution whenever, for all a E IRn , the linear combination Xa' = 
a l X I + a2X2 + . . .  + an Xn has a normal distribution. 

That is to say, X is multivariate normal if and only if every linear combination of the 
X; is univariate normal. It often easier to work with this definition, which differs in one 
important respect from the earlier one. Using (6), it is easy to see that vectors X satisfying 
(4) also satisfy (7) . Definition (7) is, however, slightly more general than (4) as the following 
indicates. Suppose that X satisfies (7), and in addition there exists a E IRn and b E IR such that 
a =1= 0 and lP'(Xa' = b) = 1 ,  which is to say that the X; are linearly related; in this case there 
are strictly fewer than n 'degrees of freedom' in the vector X, and we say that X has a singular 
multivariate normal distribution . It may be shown (see Exercise (5 . 8 .6» that, if X satisfies (7) 
and in addition its distribution is non-singular, then X satisfies (4) for appropriate p, and V. 
The singular case is, however, not covered by (4) .  If (8) holds, then 0 = var(Xa') = aVa' , 
where V is the covariance matrix of X. Hence V is a singular matrix, and therefore possesses 
no inverse . In particular, Definition (4) cannot apply. 

Exercises for Section 4.9 

1. A symmetric matrix is called non-negative (respectively positive) definite if  its eigenvalues are 
non-negative (respectively strictly positive). Show that a non-negative definite symmetric matrix V 
has a square root, in that there exists a symmetric matrix W satisfying W2 = V. Show further that W 
is non-singular if and only if V is positive definite. 

2. If X is a random vector with the N(p" V) distribution where V is non-singular, show that Y = 
(X - p,)W- 1 has the N(O ,  I) distribution, where I is the identity matrix and W is a symmetric matrix 
satisfying W2 = V. The random vector Y is said to have the standard multivariate normal distribution. 

3. Let X = (X I , X2 , . . .  , Xn ) have the N(p" V) distribution, and show that Y = a l X I + a2X2 + 
. . .  + an Xn has the (univariate) N (/k , 0"2) distribution where 

n n 
/k = L a;lE. (X; ) ,  0"

2 = L ar var(X; )  + 2 L a;aj cov(X; , Xj ) . 
;= 1 ;= 1 i <j 

4. Let X and Y have the bivariate normal distribution with zero means, unit variances , and correlation 
p .  Find the joint density function of X + Y and X - Y, and their marginal density functions. 

5. Let X have the N(O, 1) distribution and let a > 0. Show that the random variable Y given by 

{ X if l X I  < a Y = 
-X if I X I  2: a 

has the N(O, 1 )  distribution, and find an expression for p (a) = cov (X, Y) in terms of the density 
function ¢ of X. Does the pair (X, Y) have a bivariate normal distribution? 

6. Let { Yr : 1 � r � n} be independent N(O, 1) random variables, and define Xj = 2::�=1 Cjr Yr , 
1 � r � n, for constants Cjr . Show that 
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What is var(Xj I Xk)? 

1 1 9 

7. Let the vector (Xr : I ::s r ::s n) have a multivariate normal distribution with covariance matrix 
V = (vij ) . Show that, conditional on the event L'i Xr = x, XI has the N(a ,  b) distribution where 
a = (ps / t)x ,  b = s 2 ( 1  - p2) , and s2 = V I I , t2 = Lij Vij ,  P = Li Vi l / (s t) . 
8. Let X, Y, and Z have a standard trivariate normal distribution centred at the origin, with zero 
means, unit variances ,  and correlation coefficients PI , P2 , and P3 . Show that 

I I IP'(X > 0, Y > 0, Z > 0) = - + - {sin- I PI + sin- I P2 + sin- I P3 } .  8 411 

9. Let X, Y, Z have the standard trivariate normal density of Exercise (8), with PI = P (X, Y) . Show 
that 

JE(Z I X, Y) = { (P3 - PI P2)X + (P2 - PI P3 ) Y} / ( l - pt) , 
var(Z I X, y) = { I - Pt - pi - pr + 2PI P2P3 } / ( l - pt) · 

4.10 Distributions arising from the normal distribution 

This section contains some distributional results which have applications in statistics. The 
reader may omit it without prejudicing his or her understanding of the rest of the book. 

Statisticians are frequently faced with a collection X I , X 2 , . . .  , X n of random variables 
arising from a sequence of experiments. They might be prepared to make a general assumption 
about the unknown distribution of these variables without specifying the numerical values 
of certain parameters. Commonly they might suppose that X I , X2 , . . .  , Xn is a collection 
of independent N(/-L,  a2) variables for some fixed but unknown values of /-L and a2 ;  this 
assumption is sometimes a very close approximation to reality. They might then proceed to 
estimate the values of /-L and a2 by using functions of X I , X2 , . . .  , Xn . For reasons which are 
explained in statistics textbooks, they will commonly use the sample mean 

1 
n 

X =  - L Xi 
n I 

as a guess at the value of /-L, and the sample variancet 

as a guess at the value of a2 ;  these at least have the property of being 'unbiased' in that 
JE(X) = /-L and JE(S2) = a2 .  The two quantities X and S2 are related in a striking and 
important way. 

(1) Theorem. If XI , X2 , . . .  are independent N(/-L ,  a2) variables then X and S2 are inde­
pendent. We have that X is N(/-L, a2 In) and (n - l )S21a2 is x 2 (n - 1 ) . 

tIn some texts the sample variance is defined with n in place of (n - 1 ) .  
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Remember from Example (4 .4.6) that X 2 (d) denotes the chi-squared distribution with d 
degrees of freedom. 

Proof. Define Yi = (Xi - J-L) I a, and 

- 1 � X - J-L  Y = - L...t Yi = -- .  

n 
1 

a 

From Example (4 .4 .5) ,  Yi is N(O, 1 ) ,  and clearly 

�(Yi _ y)2 = _
(n
_

-
----=-

1
_
)S

_
2 

L...t 0'2 
1 

The joint density function of Yl , Y2 , . . .  , Yn is 

This function f has spherical symmetry in the sense that, if A = (aij )  is an orthogonal rotation 
of lRn and 

(2) 
n 

Yi = L Zjaj i and 
j=l 

then Zl , Z2 , . . .  , Zn are independent N(O, 1 )  variables also . Now choose 

(3) 

It is left to the reader to check that Zl is N(O, 1 ) .  Then let Z2 , Z3 , . . .  , Zn be any collection 
of variables such that (2) holds, where A is orthogonal. From (2) and (3) , 

(4) 

Now, Zl is independent of Z2 , Z3 , . . .  , Zn , and so by (3) and (4), Y is independent of the 
random variable (n - l ) S21O'2 . By (3) and Example (4 .4.4), Y is N(O, l in) and so X is 
N(J-L ,  0'2 In ) .  Finally, (n - l ) S2 1O'2 is the sum of the squares of n - 1 independent N(O, 1 )  
variables , and the result of Problem (4 . 14 . 1 2) completes the proof. • 
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We may observe that a is only a scaling factor for X and S (= -vfs2). That is to say, 

U = 
n - 1 S2 is x 2 (n - 1 )  0'2 

which does not depend on a ,  and 

./ii -V = - (X - J-L) IS N(O, 1 )  
a 

which does not depend on a .  Hence the random variable 

V 
T = IJTi'U lTi(n

=
-�I)  

1 2 1  

has a distribution which does not depend on a .  The random variable T i s  the ratio of two 
independent random variables, the numerator being N(O, 1 )  and the denominator the square 
root of (n - 1 )- 1 times a x 2 (n - 1 )  variable ; T is said to have the t distribution with n - 1 
degrees of freedom, written t en - 1 ) .  It is sometimes called 'Student' s  t distribution ' in 
honour of a famous experimenter at the Guinness factory in Dublin . Let us calculate its 
density function. The joint density of U and V is 

( l ) r - .! u  '! r- l 1 z e 2 u 2 I 2 feu , v) = . -- exp(- z v ) 
r(!r ) 5 

where r = n - 1 .  Then map (u , v) to (s, t) by s = u , t = v.J"i7U. Use Corollary (4 .7 .4) to 
obtain 

fU,T (S , t) = a f (s , ta) 
and integrate over s to obtain 

r ( ! (r + 1 )) ( t2 ) - ! (r+ l ) 
fr et ) = I 1 + - , 

y0rTr(zr) r 

as the density function of the t (r) distribution. 

-00 < t < 00,  

Another important distribution in statistics i s  the F distribution which arises as  follows . 
Let U and V be independent variables with the x 2 (r) and X 2 (s ) distributions respectively. 
Then 

F = Ulr 
Vis 

is said to have the F distribution with r and s degrees of freedom, written F(r, s ) . The 
following properties are obvious :  

(a) F- 1 is F(s , r ) , 
(b) T2 i s  F( 1 ,  r) i f  T is t (r ) . 
As an exercise in  the techniques of  Section 4 .7 ,  show that the density function of  the F(r, s) 

distribution is 

rr ( ! (r + s)) (rx ls) ! r- l f�) = . l ' sr ( ! r )r ( ! s) [ 1  + (rx ls) ] 2 (r+s) 
x >  O. 

In Exercises (5 .7 .7 ,  8) we shall encounter more general forms of the X 2 , t , and F distribu­
tions; these are the (so-called) 'non-central' versions of these distributions .  
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Exercises for Section 4 . 1 0  

1 .  Let X I and X 2 be independent variables with the X 2 (m) and X 2 (n) distributions respectively. 
Show that Xl + X2 has the x 2 (m + n) distribution. 

2. Show that the mean of the t (r) distribution is 0, and that the mean of the F (r, s )  distribution i s  
s / (s - 2) if  s > 2. What happens if  s ::::: 2? 
3. Show that the t ( l )  distribution and the Cauchy distribution are the same. 

4. Let X and Y be independent variables having the exponential distribution with parameter 1 .  Show 
that XI Y has an F distribution. Which? 

5. Use the result of Exercise (4.5 .7) to show the independence of the sample mean and sample 
variance of an independent sample from the N(f,L,  0"2) distribution. 

6. Let {Xr : 1 ::::: r ::::: n} be independent N(O, 1) variables. Let IJI E [0, Jr] be the angle 
between the vector (X I , X2 , . . .  , Xn ) and some fixed vector in ]R.n . Show that IJI has density 
1 (1/1) = (sin 1/I )n-2 I B( i , in - !) ,  0 ::::: 1/1 < Jr ,  where B is the beta function. 

4.11  Sampling from a distribution 

It is frequently necessary to conduct numerical experiments involving random variables with 
a given distribution t. Such experiments are useful in a wide variety of settings , ranging from 
the evaluation of integrals (see Section 2.6) to the statistical theory of image reconstruction. 
The target of the current section is to describe a portfolio of techniques for sampling from 
a given distribution. The range of available techniques has grown enormously over recent 
years, and we give no more than an introduction here. The fundamental question is as follows . 
Let F be a distribution function. How may we find a numerical value for a random variable 
having distribution function F? 

Various interesting questions arise. What does i t  mean to say that a real number has a non­
trivial distribution function? In a universe whose fundamental rules may be deterministic, how 
can one simulate randomness? In practice, one makes use of deterministic sequences of real 
numbers produced by what are called 'congruential generators ' .  Such sequences are sprinkled 
uniformly over their domain, and statistical tests indicate acceptance of the hypothesis that 
they are independent and uniformly distributed. Strictly speaking, these numbers are called 
'pseudo-random' but the prefix is often omitted. They are commonly produced by a suitable 
computer program called a 'random number generator' .  With a little cleverness, such a 
program may be used to generate a sequence UI ,  U2 , . . .  of (pseudo-)random numbers which 
may be assumed to be independent and uniformly distributed on the interval [0, 1 ] .  Henceforth 
in this section we will denote by U a random variable with this distribution. 

A basic way of generating a random variable with given distribution function is to use the 
following theorem. 

(1) Theorem. Inverse transform technique. Let F be a distribution function, and let U be 
uniformly distributed on the interval [0, 1 ] . 

(a) If F is a continuous junction, the random variable X = F- 1 (U) has distribution 
junction F. 

tSuch experiments are sometimes referred to as ' simulations ' .  
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(b) Let F be the distribution function of a random variable taking non-negative integer 
values. The random variable X given by 

X = k if and only if F (k - 1 )  < U .:s F (k) 

has distribution function F. 

Proof. Part (a) is Problem (4 . 14 .4a) . Part (b) is a straightforward exercise, on noting that 

lP'(F(k - 1 ) < U .:s F(k» ) = F(k) - F(k - 1 ) .  

This part of the theorem i s  easily extended to more general discrete distributions . • 

The inverse transform technique is conceptually easy but has practical drawbacks . In 
the continuous case, it is required to know or calculate the inverse function F- 1 ; in the 
discrete case, a large number of comparisons may be necessary. Despite the speed of modem 
computers, such issues remain problematic for extensive simulations. 

Here are three examples of the inverse transform technique in practice .  Further examples 
may be found in the exercises at the end of this section. 

(2) Example. Binomial sampling. Let Ul , U2 , . . .  , Un , . . .  be independent random variables 
with the uniform distribution on [0, 1 ] .  The sequence Xk = I{uk:'!:.p) of indicator variables 
contains random variables having the Bernoulli distribution with parameter p .  The sum 
S = L�=1 Xk has the bin(n , p) distribution . • 

(3) Example. Negative binomial sampling. With the Xk as in the previous example, let Wr 
be given by 

Wr = min {n : t Xk = r } ,  
k=l 

the 'time of the rth success ' . Then Wr has the negative binomial distribution; see Example 
(3.5 .6) . • 

(4) Example. Gamma sampling. With the Uk as in Example (2), let 

It is an easy calculation (or use Problem (4 . 14 .4a» to see that the Xk are independent expo­
nential random variables with parameter A. .  It follows that S = L�=l Xk has the r (A. ,  n) 
distribution ;  see Problem (4 . 14 . 1 0) .  • 

Here are two further methods of sampling from a given distribution. 

(5) Example. The rejection method. It is required to sample from the distribution having 
density function f. Let us suppose that we are provided with a pair (U,  Z) of random variables 
such that: 

(i) U and Z are independent, 
(ii) U is uniformly distribution on [0, 1 ] ,  and 
(iii) Z has density function fz , and there exists a E lR such that f (z) .:s afz (z) for all z .  
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We note the following calculation : 

Now, 

f�oo P(aUfz (Z) :s f eZ) I Z = z)fz (z) dz 
p(z < x I aUfz (Z) < f eZ)) = . - - f�oo P(aUfz (Z) :s f eZ) I Z = z)fz (z) dz 

I f ez) 
P(aUfz(Z) :s f eZ) Z = z) = p(u :s f (z)/ {afz (z) l) = -­afz(z) 

whence 
p(Z :S x I a Ufz (Z) :s f eZ)) = i� f (z) dz . 

That is to say, conditional on the event E = {a Ufz (Z) :s feZ) } , the random variable Z has 
the required density function f . 

We use this fact in the following way. Let u s  assume that one may use a random number 
generator to obtain a pair (U , Z) as above. We then check whether or not the event E occurs . 
If E occurs, then Z has the required density function . If E does not occur, we reject the pair 
(U , Z) , and use the random number generator to find another pair (U' ,  Z/) with the properties 
(i)-(iii) above. This process is iterated until the event corresponding to E occurs , and this 
results in a sample from the given density function. 

Each sample pair (U , Z) satisfies the condition of E with probability a .  It follows by the 
independence of repeated sampling that the mean number of samples before E is first satisfied 
is a- I . 

A similar technique exists for sampling from a discrete distribution. • 

(6) Example. Ratio of uniforms. There are other 'rejection methods' than that described in 
the above example , and here is a further example . Once again, let f be a density function 
from which a sample is required. For a reason which will become clear soon, we shall assume 
that f satisfies f (x) = ° if x :s 0, and f (x ) :s min{ 1 ,  x-2 } if x > 0. The latter inequality 
may be relaxed in the following, but at the expense of a complication .  

Suppose that UI and U2 are independent and uniform on [0 ,  1 ] , and define R = U2/ UI . 
We claim that, conditional on the event E = {UI :s .J f (U2/ UI ) } , the random variable R 
has density function f . This provides the basis for a rejection method using uniform random 
variables only. We argue as follows in order to show the claim. We have that 

where T = { (U I , U2) : U I .:s .J f (U2/U J ) ,  U2 .:s x u t } .  We make the change of variables 
s = U2/U I , t = U I , to obtain that 

r [nw 
r p(E n {R :S x }) = 

Js=o Jt=o 
t dt dS = ! Jo 

f (s) ds , 

from which it follows as required that 

P(R :s x I E) = lax f (s) ds. • 
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In sampling from a distribution function F, the structure of F may itself propose a workable 
approach. 

(7) Example. Mixtures. Let Fl and F2 be distribution functions and let ° .:s a .:s 1 .  It is 
required to sample from the 'mixed' distribution function G = aFt + ( 1  - a)F2 . This may 
be done in a process of two stages :  

(i) first toss a coin which comes up heads with probability a (or, more precisely, utilize the 
random variable I(U:,,:a ) where U has the usual uniform distribution) , 

(ii) if the coin shows heads (respectively, tails) sample from Ft (respectively, F2) '  
As an example of this approach in action, consider the density function 

1 
g (x )  = "-----,, + 3x ( 1 - x ) ,  

Jr'\l 1 - x2 

and refer to Theorem ( 1 )  and Exercises (4. 1 1 .5 ) and (4 . l 1 . 1 3) .  • 

This example leads naturally to the following more general formulation . Assume that the 
distribution function G may be expressed in the form 

G(x) = lE(F(x ,  Y» ,  x E JR,  

where Y i s  a random variable, and where F( · ,  y) i s  a distribution function for each possible 
value y of Y. Then G may be sampled by: 

(i) sampling from the distribution of Y,  obtaining the value y ,  say, 
(ii) sampling from the distribution function F( · ,  y ) .  

(8) Example. Compound distributions. Here i s  a further illustrative example . Let Z have 
the beta distribution with parameters a and b, and let 

k = 0, 1 , 2 ,  . . .  , n .  

It is an exercise to show that 

Pk ex: G) r (a + k)r (n + b - k) , k = 0, 1 , 2 , . . . , n , 

where r denotes the gamma function; this distribution is termed a negative hypergeometric 
distribution . In sampling from the mass function (Pk : k = 0, 1 , 2 ,  . . .  , n) it is convenient to 
sample first from the beta distribution of Z and then from the binomial distribution bin(n , Z) ; 
see Exercise (4 . 1 1 .4) and Example (2) . • 

Exercises for Section 4. 1 1  

1. Uniform distribution. If U is uniformly distributed on [0 ,  1 ] ,  what is the distribution of X = 
LnUJ + l ?  
2. Random permutation. Given the first n integers i n  any sequence So ,  proceed thus:  
(a) pick any position Po from { l ,  2, . . .  , n } at random, and swap the integer in that place of So with 

the integer in the nth place of So ,  yielding St . 
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(b) pick any position PI from { I ,  2, . . .  , n - I }  at random, and swap the integer in that place of S 1 
with the integer in the (n - I) th place of SI , yielding S2 , 

(c) at the (r - I) th stage the integer in position Pr- l , chosen randomly from { I ,  2, . . .  , n - r + I } , 
is swapped with the integer at the (n - r + I ) th place of the sequence Sr- l . 

Show that Sn- l is equally likely to be any of the n !  permutations of { l ,  2 ,  . . .  , n } .  

3 .  Gamma distribution. Use the rejection method to sample from the gamma density r (A ,  t) where 
t (� 1 )  may not be assumed integral. [Hint: You might want to start with an exponential random 
variable with parameter l i t . ]  

4. Beta distribution. Show how to sample from the beta density f3 (a ,  f3) where a ,  f3 � 1 .  [Hint: 
Use Exercise (3) . ]  

5. Describe three distinct methods of sampling from the density f(x) = 6x ( l  - x) ,  0 :::: x :::: 1 .  

6. Aliasing method. A finite real vector is called a probability vector if it has non-negative entries 
with sum 1 .  Show that a probability vector p of length n may be written in the form 

1 
n 

P = - L Vr , n - 1 r=1 

where each Vr is a probability vector with at most two non-zero entries. Describe a method, based on 
this observation, for sampling from p viewed as a probability mass function. 

7. Box-Muller normals. Let UI and U2 be independent and uniformly distributed on [0, 1 ] , and 

let Ti = 2Ui - 1 .  Show that, conditional on the event that R = VTl + Ti :::: 1 ,  

X = � V-2 10g R2 , y =  ;V-2 10g R2 , 

are independent standard normal random variables. 

8. Let U be uniform on [0, 1 ]  and 0 < q < 1 .  Show that X = 1 + Llog U Ilog q J has a geometric 
distribution. 

9. A point (X, Y) is picked uniformly at random in the semicircle x2 + i :::: 1 ,  x � O. What is the 
distribution of Z = Y I X? 

10. Hazard-rate technique. Let X be  a non-negative integer-valued random variable with h er) = 
JP'(X = r I X � r ) .  If { Ui : i � O} are independent and uniform on [0, 1 ] ,  show that Z = min{n : 
Un :::: h en ) )  has the same distribution as X. 

11. Antithetic variables. Let g(Xl , X2 , . . . , xn ) be  an  increasing function in  all its variables ,  and 
let fUr : r � l }  be independent and identically distributed random variables having the uniform 
distribution on [0, 1 ] .  Show that 

[Hint: Use the FKG inequality of Problem (3. 10. 1 8) . ]  Explain how this can help in the efficient 
estimation of I = JJ g(x) dx . 

12. Importance sampling. We wish to estimate I = J g(x )fx (x) dx = JE(g (X) ) ,  where either it 
is difficult to sample from the density fx , or g (X) has a very large variance. Let fy be equivalent 
to fx , which is to say that, for all x ,  fx (x) = 0 if and only if fy (x) = O. Let {Yi : 0 :::: i :::: n } be 
independent random variables with density function fy , and define 
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(a) II':(J)  = [ = II': [ g (y )fx (Y) ] fy (Y) , 

(b) var(J ) = � [II': ( g(Y)2 fx (Y)2 ) _ [2] , 
n fy (Y)2 

(c) J � [ as n ---+ 00. (See Chapter 7 for an account of convergence.)  
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The idea here is that fy should be easy to sample from, and chosen if possible so that var J is 
much smaller than n- 1 [II':(g (X)2 ) - [2 ] . The function fy is called the importance density. 
13. Construct two distinct methods of sampling from the arc sin density 

2 f (x) = � '  
Ji V  1 - x-

4.12 Coupling and Poisson approximation 

It is frequently necessary to compare the distributions of two random variables X and Y .  
Since X and Y may not be  defined on  the same sample space Q, i t  i s  i n  general impossible 
to compare X and Y themselves. An extremely useful and modem technique is to construct 
copies X' and yl (of X and Y) on the same sample space Q, and then to compare X' and yl .  
This approach is known as couplingt, and i t  has many important applications. There is more 
than one possible coupling of a pair X and Y, and the secret of success in coupling is to find 
the coupling which is well suited to the particular application. 

Note that any two distributions may be coupled in a trivial way, since one may always find 
independent random variables X and Y with the required distributions ; this may be done via 
the construction of a product space as in Section 1 .6 .  This coupling has little interest, precisely 
because the value of X does not influence the value of y.  

(1 )  Example. Stochastic ordering. Let X and Y be random variables whose distribution 
functions satisfy 

(2) Fx (x) ::::: Fy (x ) for all x E lR. 

In this case, we say that X dominates Y stochastically and we write X 2:st y .  Note that X 
and Y need not be defined on the same probability space. 

The following theorem asserts in effect that X 2:st Y if and only if there exist copies of X 
and Y which are 'pointwise ordered' . 

(3) Theorem. Suppose that X 2:st Y. There exists a probability space (Q , F ,  lP') and two 
random variable X' and yl on this space such that :  

(a) X' and X have the same distribution, 
(b) yl and Y have the same distribution, 
(c) lP'(X' 2: yl) = 1 .  

tThe tenn 'coupling' was introduced by Frank Spitzer around 1 970. The coupling method was developed by 
W. Doeblin in 1 938 to study Markov chains. See Lindvall ( 1 992) for details of the history and the mathematics 
of coupling. 
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Proof. Take Q = [0, 1 ] ,  :F the Borel a -field of Q, and let JP' be Lebesgue measure, which is 
to say that, for any sub-interval I of Q, JP'(I ) is defined to be the length of I .  

For any distribution function F ,  we may define a random variable Z F on  (Q , :F ,  JP') by 

ZF (W) = inf {z :  W ::::: F(z) } .  W E Q .  

Note that 

(4) W ::::: F (z) if and only if ZF (W) ::::: z . 

It follows that 
JP'(ZF ::::: z) = JP'([O , F(z) 1 ) = F(z) ,  

whence Z F has distribution function F.  
Suppose now that X :=:st Y and write G and H for the distribution functions of X and 

Y . Since G(x )  ::::: H (x )  for all x ,  we have from (4) that ZH ::::: ZG . We set X' = ZG and 
y' = ZH .  • •  

Here is a more physical coupling. 

(5) Example. ButTon's weldings. Suppose we cast at random two of Buffon's needles (in­
troduced in Example (4 .5 .8 » , labelled NJ and N2 . Let X (respectively, Y) be the indicator 
function of a line-crossing by NJ (respectively, N2) .  Whatever the relationship between NJ 
and N2 , we have that JP'(X = 1 )  = JP' (Y = 1 )  = 2177: . The needles may however be coupled 
in various ways . 

(a) The needles are linked by a frictionless universal joint at one end. 
(b) The needles are welded at their ends to form a straight needle with length 2. 
(c) The needles are welded perpendicularly at their midpoints, yielding the Buffon cross of 

Exercise (4 .5 .3 ) .  
We leave i t  as an exercise to calculate for each of these weldings (or 'couplings ' )  the 

probability that both needles intersect a line. • 

(6) Poisson convergence. Consider a large number of independent events each having small 
probability. In a sense to be made more specific, the number of such events which actually 
occur has a distribution which is close to a Poisson distribution. An instance of this remarkable 
observation was the proof in Example (3 .5 .4) that the bin(n , 'Aln ) distribution approaches the 
Poisson distribution with parameter 'A ,  in the limit as n -+ 00. Here is a more general result, 
proved using coupling. 

The better to state the result, we introduce first a metric on the space of distribution functions. 
Let F and G be the distribution functions of discrete distributions which place masses fn and 
gn at the points xn , for n :=: 1 ,  and define 

(7) dTV (F, G) = L Ifk - gk l · 
k:o: J 

The definition of dTV (F, G) may be extended to arbitrary distribution functions as in Problem 
(7 . 1 1 . 1 6) ;  the quantity dTV (F, G) is called the total variation distancet between F and G. 

tSome authors define the total variation distance to b e  one half o f  that given i n  (7). 
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For random variables X and Y,  we define dTV (X , Y) = dTV (Fx , Fy ) .  We note from Exercise 
(4. 1 2 .3) (see also Problem (2.7 . 1 3)) that 

(8) dTV (X, y) = 2 sup 1lP'(X E A) - lP'(Y E A) I 
A S; S  

for discrete random variables X, Y. 

(9) Theoremt. Let {Xr : 1 S r S n }  be independent Bernoulli random variables with 
respective parameters {Pr : 1 S r S n} ,  and let S = .E�=l Xr . Then 

n 

dTV (S, P)  S 2 :L p; 
r=l 

where P is a random variable having the Poisson distribution with parameter A. = .E�=l Pr o 

Proof. The trick is to find a suitable coupling of S and P ,  and we do this as follows. Let 
(Xr , Yr ) ,  1 S r S n ,  be a sequence of independent pairs , where the pair (Xr , Yr ) takes values 
in the set {O, I }  x {O, 1 ,  2, . . .  } with mass function 

if x = Y = 0, 
if x = 1 ,  Y = 0, I �-�rP� 1 + Pr lP' (Xr = x , Yr = Y) = y Pr e-Pr if x = 1 ,  Y � 1 .  

Y ! 
It is easy to check that Xr is Bernoulli with parameter Pr ,  and Yr has the Poisson distribution 
with parameter Pr . 

We set n 

r=l r=l 
noting that P has the Poisson distribution with parameter A. = .E�=l Pr ; cf. Problem (3 . 1 1 .6a) . 

Now, 

whence 

1lP'(S = k) - lP'(P = k) 1 = 1lP'(S = k ,  P =1= k) - P (S =1= k, P = k) 1 
S lP'(S = k ,  S =1= P) + lP'(P = k ,  S =1= P ) ,  

dTV (S, P) = :L 1lP'(S = k )  - lP'(P = k) 1 S 2lP'(S =1= P) .  
k 

We have as required that 
n 

lP'(S =1= P) S lP'(Xr =1= Yr for some r )  S :L lP'(Xr =1= Yr ) 
r=l 

n 

r= l 
n n 

r=l r=l 

tProved by Lucien Le Cam in 1 960. 

• 
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(10) Example. Set Pr = ).. /n for 1 � r � n to obtain the inequality dTV (S, P) � 2)..2/n , 
which provides a rate of convergence in the binomial-Poisson limit theorem of Example 
0 5 � .  • 

In many applications of interest, the Bernoulli trials Xr are not independent. Nevertheless 
one may prove a Poisson limit theorem so long as they are not 'too dependent' .  A beautiful 
way of doing this is to use the so-called 'Stein-Chen method' ,  as follows . 

As before, we suppose that {Xr : 1 � r � n }  are Bernoulli random variables with 
respective parameters Pr , but we make no assumption concerning their independence. With 
S = .E�=I Xr , we assume that there exists a sequence VI , V2 , . . .  , Vn of random variables 
with the property that 

(11) JP'(Vr = k - 1 ) = JP'(S = k I Xr = 1 ) ,  1 � k � n .  

[We may assume that Pr =1= 0 for all r ,  whence JP'(Xr = 1 ) > 0 . ]  We shall see in the 
forthcoming Example ( 14) how such Vr may sometimes be constructed in a natural way. 

(12) Theorem. Stein-Chen approximation. Let P be a random variable having the Poisson 
distribution with parameter ).. = .E�=I pr o The total variation distance between S and P 
satisfies n 

dTV (S, P) � 2 ( 1 /\ )..- 1 ) LPrE I S - Vr l . 
r= 1 

Recall that x /\ y = min {x , y } .  The bound for dTV (X , Y) takes a simple form in a situation 
where JP'(S 2: Vr ) = 1 for every r .  If this holds, 

n n n 
L PrE I S - Vr l  = L Pr (E(S) - E(Vr ») = )..2 - L PrE(Vr ) .  
r= 1 r= 1 r= 1 

By ( 1 1 ) , 
n n 

PrE(Vr ) = Pr L(k - 1 )JP'(S = k I Xr = 1 ) = L(k - 1 )JP'(Xr = 1 I S = k)JP'(S = k) 
k= 1 k= 1 

n 
= L(k - I )E(Xr I S = k)JP'(S = k) , 

k=1 

whence n n 

r= 1 k= 1 
It follows by Theorem ( 1 2) that, in such a situation, 

(13) 

Before proving Theorem ( 1 2) , we give an example of its use. 

(14) Example. Balls in boxes. There are m balls and n boxes. Each ball is placed in a box 
chosen uniformly at random, different balls being allocated to boxes independently of one 
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another. The number S of empty boxes may be written as S = L�=l Xr where Xr is the 
indicator function of the event that the rth box is empty. It is easy to see that 

(n _ 1 )m 
Pr = lP'(Xr = 1 )  = -n- , 

whence A = npr = n ( 1  - n- l )m . Note that the Xr are not independent. 
We now show how to generate a random sequence Vr satisfying ( 1 1 )  in such a way that 

Lr PrlE l S - Vr I is small. If the rth box is empty, we set Vr = S - 1 .  If the rth box is not 
empty, we take the balls therein and distribute them randomly around the other n - 1  boxes; we 
let Vr be the number of these n - 1 boxes which are empty at the end of this further allocation. 
It becomes evident after a little thought that ( 1 1 )  holds , and furthermore Vr S S. Now, 

lE(S2) = L lE(XiXj )  = L lE(Xf) + 2 L lE(XiXj )  
�j i i <j 

= lEeS) + n (n - l )lE(X IX2) , 

where we have used the facts that Xl = Xi and lE(Xi Xj )  = lE(X 1 X2) for i =1= j .  Furthermore, 

whence, by ( 1 3) ,  

(n 2 )m 
lE(XI X2) = lP'(boxes 1 and 2 are empty) = -n- , 

Proof of Theorem (12). Let g : {a , 1 ,  2 , . . .  } -+ lR be bounded, and define 

/).g = sup { I g (r + 1 )  - g (r) I } , r 

so that 

(15) I g (l ) - g (k) 1 S I I - k l  . /).g . 

We have that 

(16) I lE{Ag (S + 1 )  - Sg (S) } 1  = It { PrlEg (S + 1 )  - lE (Xrg (S» }  I r=l 

= It PrlE{g (S + 1 )  - g (Vr + 1 ) } I by ( 1 1 )  
r=l 

n 

S /).g L PrlE l S - Vr l by ( 15 ) .  
r=l 

• 
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Let A be a set of non-negative integers . We choose the function g = gA in a special way 
so that gA (0) = 0 and 

(17) 

One may check that gA is given explicitly by 

(18) 
r '  eA { } gA (r + 1 )  = 
A
�+1 lP'({P :'S  r } n {P E A}) - lp'(P :'S r)lP'(P E A) , 

A bound for !'!..g A appears in the next lemma, the proof of which is given later. 

(19) Lemma. We have that !'!..gA :'S 1 /\ A- I . 

r ::: O. 

We now substitute r = S in ( 1 7) and take expectations, to obtain by ( 1 6) ,  Lemma ( 1 9), and 
(8) , that 

n 

dTV (S, P) = 2 sup I lP'(S E A) - lp'(P E A) I :'S 2( 1  /\ A- I ) L PrlE l S - Vr l · • 
A r=1 

Proof of Lemma (19) .  Let gj = g{j } for j ::: O. From ( 1 8) , 

if r < j , 

if r ::: j ,  

implying that gj (r + 1 )  i s  negative and decreasing when r < j , and is positive and decreasing 
when r ::: j .  Therefore the only positive value of gj (r + 1) - gj (r ) is when r = j , for which 

when j ::: 1 .  If j = 0, we have that gj (r + 1 )  - gj (r ) :'S 0 for all r .  
Since gA (r + 1 )  = LjEA gj (r + 1 ) ,  it follows from the above remarks that 

for all r ::: 1 .  

Finally, -gA = gAc , and therefore !'!..gA :'S A - I ( 1  - e-A ) .  The claim of the lemma follows 
on noting that A- I ( 1  - e-A) :'S 1 /\ A- I . • 
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Exercises for Section 4. 1 2  

1 .  Show that X i s  stochastically larger than Y if and only if E(u(X» ::: E(u(Y»  for any non­
decreasing function u for which the expectations exist. 

2. Let X and Y be Poisson distributed with respective parameters A and 11-. Show that X is stochas­
tically larger than Y if A :::: 11-. 
3. Show that the total variation distance between two discrete variables X,  Y satisfies 

dTV (X, Y) = 2 sup 11P'(X E A) - lP'(Y E A) I . 
A<;1R 

4. Maximal coupling. Show for discrete random variables X,  Y that 11"( X = Y) ::::: 1 - � dTV (X, y), 
where dTV denotes total variation distance. 

5. Maximal coupling continued. Show that equality is possible in the inequality of Exercise 
(4. 1 2.4) in the following sense. For any pair X, Y of discrete random variables, there exists a pair X', 
Y' having the same marginal distributions as X,  Y such that IP'(X' = Y') = I - idTV (X, Y) .  

6 .  Let X and Y be  indicator variables with EX = p, EY = q . What is the maximum possible value 
of lP'(X = y) , as a function of p, q? Explain how X, Y need to be distributed in order that IP'(X = Y) 
be: (a) maximized, (b) minimized. 

4.13 Geometrical probability 

In many practical situations, one encounters pictures of apparently random shapes . For exam­
ple, in a frozen section of some animal tissue, you will see a display of shapes ; to undertake 
any serious statistical inference about such displays requires an appropriate probability model . 
Radio telescopes observe a display of microwave radiation emanating from the hypothetical 
'Big Bang' . If you look at a forest floor, or at the microscopic structure of materials, or at 
photographs of a cloud chamber or of a foreign country seen from outer space, you will see 
apparently random patterns of lines, curves, and shapes. 

Two problems arise in making precise the idea of a line or shape 'chosen at random' .  The 
first is that, whereas a point in IRn is parametrized by its n coordinates, the parametrizations 
of more complicated geometrical objects usually have much greater complexity. As a con­
sequence, the most appropriate choice of density function is rarely obvious. Secondly, the 
appropriate sample space is often too large to allow an interpretation of 'choose an element 
uniformly at random' .  For example, there is no 'uniform' probability measure on the line, 
or even on the set of integers . The usual way out of the latter difficulty is to work with the 
uniform probability measure on a large bounded subset of the state space. 

The first difficulty referred to above may be illustrated by an example. 

(1) Example. Bertrand's paradox. What is the probability that an equilateral triangle, based 
on a random chord of a circle, is contained within the circle? This ill-posed question leads us 
to explore methods of interpreting the concept of a 'random chord' . Let C be a circle with 
centre 0 and unit radius .  Let X denote the length of such a chord, and consider three cases. 

(i) A point P is picked at random in the interior of C, and taken as the midpoint of AB . 
Clearly X > -J3 if and only if OP < � .  Hence JP>(X > -J3) = ( � )2 = � .  
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(ii) Pick a point P at random on a randomly chosen radius of C, and take P as the midpoint 
of AB . Then X > .J3 if and only if OP < � .  Hence IP'(X > .J3) = ! .  

(iii) A and B are picked independently at random on the circumference of C .  Then X > .J3 
if and only if B lies in the third of the circumference most distant from A. Hence 
IP'(X > .J3) = l .  • 

The different answers of this example arise because of the differing methods of interpreting 
'pick a chord at random' . Do we have any reason to prefer any one of these methods above 
the others? It is easy to show that if the chord L is determined by n and e, where n is the 
length of the perpendicular from 0 to L, and e is the angle L makes with a given direction, 
then the three choices given above correspond to the joint density function for the pair (n , e) 
given respectively by: 

(i) h (p, () ) = 2p /re , 
(ii) h(p , (} )  = l /re ,  

(iii) h (p , (} )  = 2/{re2JI="P2} ,  
for 0 S P S i , 0 S () S re .  (See Example (4. 1 3 . 1 ) . )  

It was shown by Poincare that the uniform density of case (ii) may be used as a basis 
for the construction of a system of many random lines in the plane, whose probabilities are 
invariant under translation, rotation, and reflection . Since these properties seem desirable for 
the distribution of a single 'random line' , the density function h is commonly used. With 
these preliminaries out of the way, we return to Buffon's needle. 

(2) Example. Buffon's needle : Example (4.5.8) revisited. A needle of length L is cast 'at 
random' onto a plane which is ruled by parallel straight lines, distance d (> L) apart. It is 
not difficult to extend the argument of Example (4.5 .8) to obtain that the probability that the 
needle is intersected by some line is 2L/(red) .  See Problem (4. 14 .3 1 ) .  

Suppose we change our viewpoint; consider the needle to be  fixed, and drop the grid of 
lines at random. For definiteness, we take the needle to be the line interval with centre at 0, 
length L,  and lying along the x-axis of lR2 . 'Casting the plane at random' is taken to mean the 
following. Draw a circle with centre 0 and diameter d .  Pick a random chord of C according 
to case (ii) above (re-scaled to take into account the fact that C does not have unit radius), and 
draw the grid in the unique way such that it contains this random chord. It is easy to show that 
the probability that a line of the grid crosses the needle is 2L / (re d) ; see Problem (4. 14 .3 1 b). 

If we replace the needle by a curve S having finite length L (S), lying inside C, then the 
mean number of intersections between S and the random chord is 2L(S)/ (red) . See Problem 
(4 . 1 4. 3 1 c) .  

An interesting consequence is the following. Suppose that the curve S is the boundary of 
a convex region . Then the number I of intersections between the random chord and S takes 
values in the set {O, 1 , 2 ,  oo} ,  but only the values 0 and 2 have strictly positive probabilities. 
We deduce that 

L (S) 
lP' (the random chord intersects S) = ! lE(l) = 

red 
. 

Suppose further that S' is the boundary of a convex subset of the inside of S, with length 
L (S') . If the random chord intersects S' then it must surely intersect S, whence the conditional 
probability that it intersects S' given that it intersects S is L (S') /  L (S) . This conclusion may 
be extended to include the case of two convex figures which are either disjoint or overlapping. 
See Exercise (4 . 1 3 .2) . • 
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Figure 4. 1 .  Two intersecting circles with radii a and x . The centre of the second circle lies 

on the first circle. The length of the emboldened arc is 2x cos -1 (x /2a) .  
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We conclude with a few simple illustrative and amusing examples. In a classical branch of 
geometrical probability, one seeks to study geometrical relationships between points dropped 
at random, where 'at random' is intended to imply a uniform density. An early example was 
recorded by Lewis Carroll : in order to combat insomnia, he solved mathematical problems in 
his head (that is to say, without writing anything down). On the night of 20th January 1 884 
he concluded that, if points A, B, C are picked at random in the plane, the probability that 
ABC is an obtuse triangle is � 1T / { � 1T - �.J3} . This problem is not well posed as stated. We 
have no way of choosing a point uniformly at random in the plane. One interpretation is to 
choose the points at random within some convex figure of diameter d, to obtain the answer 
as a function of d, and then take the limit as d � 00. Unfortunately, this can yield different 
answers depending on the choice of figure (see Exercise (4. 1 3 .5» . 

Furthermore, Carroll ' s solution proceeded by constructing axes depending on the largest 
side of the triangle ABC, and this conditioning affects the distribution of the position of the 
remaining point. It is possible to formulate a different problem to which Carroll ' s answer is 
correct. Other examples of this type may be found in the exercises . 

A useful method for tackling a class of problems in geometrical probability is a technique 
called Crofton 's method. The basic idea, developed by Crofton to obtain many striking results, 
is to identify a real-valued parameter of the problem in question, and to establish a differential 
equation for the probability or expectation in question, in terms of this parameter. This vague 
synopsis may be made more precise by an example. 

(3) Example. Two arrows A and B strike at random a circular target of unit radius. What is 
the density function of the distance X between the points struck by the arrows? 
Solution. Let us take as target the disk of radius a given in polar coordinates as { (r, 8)  : r .:s a } .  
We shall establish a differential equation in the variable a . Let f ( - , a) denote the density 
function of X. 

We have by conditional probability that 
(4) 
f(x ,  a+8a) = fo (x , a +8a)lP'a+8a (Ro) + f1 (x , a +8a)lP'a+8a (RI ) + h(x , a+8a)lP'a+8a (R2) ,  

where Ri be the event that exactly i arrows strike the annulus { (r, 8)  : a .:s r .:s a + 8a } , 
fi (x , a + 8a) i s  the density function o f  X given the event Ri , and lP' y i s  the probability measure 
appropriate for a disk of radius y .  



1 36 4. 1 3  Continuous random variables 

Conditional on Ro,  the arrows are unifonnly distributed on the disk of radius a, whence 
fo (x ,  a + 8a)  = f (x ,  a ) .  By considering Figure 4. 1 ,  we have thatt 

!1 (x , a + 8a)  = 
2x

2 cos- 1 (�) + 0( 1 ) ,  as 8a � 0, 
J W  2a 

and by the independence of the arrows, 

lP'a+8a (Ro) = (_
a
_)

4 
= 1 _ 

4 8a 
+ 0 (8a ) ,  

a + 8a a 
4 8a 

lP'a+8a (RI ) = - + 0 (8a ) , lP'a+8a (R2) = 0 (8a ) . 
a 

Taking the limit as 8a � 0, we obtain the differential equation 

(5) 
af 4 8x ( X  ) - (x ,  a )  = --f(x ,  a) + - cos- 1 - . 
aa a rca3 2a 

Subject to a suitable boundary condition, it follows that 

a4 f (x ,  a) = r 8xu 
cos- l (�) du 10 rc 2u 

2xa2 ! _ l ( X ) x l  ( X ) 2 j 
= ----;- 2 cos 2a - �V 1 - 2a ' O s  x S 2a . 

The last integral may be verified by use of a symbolic algebra package, or by looking it up 
elsewhere, or by using the fundamental theorem of calculus. Fans of unarmed combat may 
use the substitution e = cos- l {x j (2u) } .  The required density function is f (x ,  1 ) .  • 

We conclude with some amusing and classic results concerning areas of random triangles. 
Triangles have the useful property that, given any two triangles T and T' , there exists an 
affine transfonnation (that is, an orthogonal projection together with a change of scale) which 
transfonns T into T' . Such transfonnations mUltiply areas by a constant factor, leaving many 
probabilities and expectations of interest unchanged. In the following, we denote by IABC ! 
the area of the triangle with vertices A, B, C .  

(6)  Example. Area of a random triangle. Three points P, Q, R are picked independently at 
random in the triangle ABC. Show that 

(7) E IPQR I = lz IABC ! . 

Solution. We proceed via a sequence of lemmas which you may illustrate with diagrams. 

(8) Lemma. Let GI and G2 be the centres of gravity of ABM and AMC, where M is the 
midpoint ofBC. Choose P at random in the triangle ABM, and Q at random (independently 
ofP) in the triangle AMC. Then 

(9) 

tSee Subsection ( 1 0) of Appendix I for a reminder about Landau's 0/0 notation. 
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Proof. Elementary ; this is Exercise (4. 1 3 .7) .  • 

(10) Lemma. Choose P and Q independently at random in the triangle ABe. Then 

(11) E IAPQ I = 2� IABq .  

Proof. By the property of affine transformations discussed above, there exists a real number 
a, independent of the choice of ABC, such that 

(12) EIAPQI = a lABq .  

Denote ABM by TJ and AMC by T2 , and let Cij be the event that {P E Ii ,  Q E 1j } ,  for 
i , j E { l ,  2} . Using conditional expectation and the fact that lP'( Cij )  = ! for each pair i ,  j ,  

EIAPQI = L E( IAPQ I I Cij )lP'(Cij ) 
i, j 

= a IABM IlP'(Cl l ) + a IAMqlP'(C22) + � IABq (lP'(C12) + lP'(C21 ») by (9) 

= !a lABq + ! . � IABq .  

We use ( 1 2) and divide by IABq to obtain a = i" as required. • 

(13) Lemma. Let P and Q be chosen independently at random in the triangle ABC, and R 
be chosen independently alP and Q at random on the side Be. Then 

E IPQR I = � IABq . 

Proof. If the length of BC is a ,  then I BR I  is uniformly distributed on the interval (0, a ) .  
Denote the triangles ABR and ARC by  SJ and S2 , and let Dij = {P E Si ,  Q E Sj } for 
i ,  j E { I ,  2} .  Let x � 0, and let lP' x and Ex denote probability and expectation conditional on 
the event { IBR I = x } .  We have that 

(a X ) 2 
lP'x (D22) = -a-

By conditional expectation, 

By Lemma ( 1 0) ,  

and so on, whence 

Ex lPQRI = L Ex ( IPQR I I Dij )lP'(Dij ) .  
i, j 

4 4 x 
Ex ( IPQR I I Dl l ) = 27 Ex iABR I  = 

27 
. 
� IABq , 

1 4 (X ) 3 4 (a - x ) 3 2 X (a - X» ) 
Ex lPQR I = 

27 � + 
27 -a- + "9 a2 IABq .  
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Averaging over I BR I we deduce that 

l 1a 1 
lE lPQR I = - lEx lPQR I dx = - IABC ! .  

a 0 9 

We may now complete the proof of (7) .  

• 

Proof of (7). By the property of affine transformations mentioned above, it is sufficient to 
show that lElPQRI = tz I ABC ! for any single given triangle ABC. Consider the special choice 
A = (0, 0) , B = (x , 0) , C = (0, x ) ,  and denote by lP'x the appropriate probability measure 
when three points P, Q, R are picked from ABC. We write A (x )  for the mean area lEx IPQR I .  
We shall use Crofton's method, with x as the parameter to be  varied. Let I"!. be  the trapezium 
with vertices (0, x ) ,  (0, x + ox ) ,  (x + ox , 0) , (x , 0) . Then 

and 

{ X2 } 3 6 0x 
lP'x+ox (P, Q, R E ABC) = 2 = 1 - - + o(ox) 

(x + ox) x 

2 0x 
lP'x+ox ({P, Q E ABC} n {R E I"!.}) = - + o(ox ) .  

x 
Hence, by conditional expectation and Lemma ( 1 3) , 

A (x + ox )  = A (x )  1 - - + - . -x . - + o(ox ) ,  
( 6 ox ) 1 1 2 6 ox 

x 9 2 x 

leading, in the limit as ox -+ 0, to the equation 

dA 6A 1 
- = - - + -x,  
dx x 3 

with boundary condition A (0) = O. The solution is A (x )  = d4x2 . Since IABC ! = 1x2 , the 
proof is complete. • • 

Exercises for Section 4. 1 3  

With apologies to those who prefer their exercises better posed . . .  

1. Pick two points A and B independently at random on the circumference of a circle C with centre 
o and unit radius .  Let IT be the length of the perpendicular from 0 to the line AB, and let e be the 
angle AB makes with the horizontal. Show that (IT , e) has joint density 

1 
f(p, e ) =  2 � ' 

71: y l - p-
0 :::: p :::: 1, 0 :::: e < 271: . 

2. Let S1 and S2 be disjoint convex shapes with boundaries of length b(S1 ) ,  b(S2) ,  as illustrated 
in the figure beneath. Let b(H) be the length of the boundary of the convex hull of S1 and S2, 
incorporating their exterior tangents, and b(X) the length of the crossing curve using the interior 
tangents to loop round S1 and S2 . Show that the probability that a random line crossing S1 also 
crosses S2 is {b(X) - b(H)}/b(S1 ) ' (See Example (4. 1 3 .2) for an explanation of the term 'random 
line ' . )  How is this altered if Sl and S2 are not disjoint? 
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The circles are the shapes SI and S2 . The shaded regions are denoted A and B, and b(X) is 
the sum of the perimeter lengths of A and B. 
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3. Let S I and S2 be convex figures such that S2 S; S 1 . Show that the probability that two independent 
random lines A I  and A2 , crossing S] , meet within S2 is 2n I S2 1 Ib(SI )2 , where I S2 1 is the area of S2 
and b(SI ) is the length of the boundary of SI . (See Example (4. 1 3 .2) for an explanation of the term 
'random line ' . )  

4. Let Z be the distance between two points picked independently at  random in a disk of radius a .  
Show that E(Z) = 1 28al (45n) ,  and E(Z2) = a2 . 
5. Pick two points A and B independently at random in a ball with centre O. Show that the probability 
that the angle AoB is obtuse is � . Compare this with the corresponding result for two points picked 
at random in a circle. 

6. A triangle is formed by A, B, and a point P picked at random in a set S with centre of gravity G. 
Show that E IABP I = I ABGI . 

7. A point D is fixed on the side BC of the triangle ABC. Two points P and Q are picked independently 
at random in ABD and ADC respectively. Show that E IAPQ I = I AGI G2 1 = � IABC ! ,  where Gl and 
G2 are the centres of gravity of ABD and ADC.  

8. From the set of  all triangles that are similar to  the triangle ABC,  similarly oriented, and inside 
ABC, one is selected uniformly at random. Show that its mean area is to I ABC !  . 

9. Two points X and Y are picked independently at random in the interval (0, a) .  By varying a, 
show that F(z , a) = JP'( l X  - Y I :::: z) satisfies 

a F 2 2z 
- + -F = - , aa a a2 0 :::: z :::: a ,  

and hence find F (z ,  a) .  Let r 2: 1 ,  and show that mr (a) = E( l X - yn  satisfies 

Hence find mr (a) . 
10. Lines are laid down independently at random on the plane, dividing it into polygons. Show that 
the average number of sides of this set of polygons is 4. [Hint: Consider n random great circles of a 
sphere of radius R ;  then let R and n increase.] 

11. A point P is picked at random in the triangle ABC. The lines AP, BP, CP, produced, meet BC, 
AC, AB respectively at L, M, N. Show that E ILMNI = (10 - n 2) I ABC ! .  

12. Sylvester's problem. If four points are picked independently at random inside the triangle ABC, 
show that the probability that no one of them lies inside the triangle formed by the other three is � .  
13. If three points P, Q, R are picked independently at random in a disk of radius a ,  show that E I PQR I = 
35a2/(48n ) .  [You may find it useful that fer fer sin3 x sin3 y sin Ix - y l  dx dy = 35n 1 1 28 . ]  
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14. Two points A and B are picked independently at random inside a disk C .  Show that the probability 
that the circle having centre A and radius IAB l lies inside C is i .  
15. Two points A and B are picked independently at random inside a ball S .  Show that the probability 
that the sphere having centre A and radius IAB l lies inside S is do.  

4.14 Problems 

1. (a) Show that J::Ooo e-x2 dx = ../ii, and deduce that 

1 { (X - J-t)2 } f (x)  = I'C exp - 2 ' u'V  2:n: 2u 
-00 < x < 00, 

is a density function if u > O. 
(b) Calculate the mean and variance of a standard normal variable. 
(c) Show that the N (0, 1) distribution function <I> satisfies 

These bounds are of interest because <I> has no closed form. 

x >  O. 

(d) Let X be N(O, 1 ) ,  and a > O. Show that IP'(X > x + a/x I X > x) -7 e-a as x -7 O. 
2. Let X be continuous with density function f (x)  = C(x - x2) ,  where a < x < f3 and C > O. 
(a) What are the possible values of a and f3 ? 
(b) What is C ?  

3 .  Let X b e  a random variable which takes non-negative values only. Show that 

00 00 
L )i - 1) IAi .::: X < L i lAi ' i= l i=l 

where Ai = {i - 1 .::: X < i } . Deduce that 

00 00 
L IP'(X :::: i ) '::: E(X) < 1 + L IP'(X :::: i ) .  i= l i= 1 

4. (a) Let X have a continuous distribution function F. Show that 
(i) F(X) is uniformly distributed on [0, 1 ] ,  

(ii) - log F(X) is exponentially distributed. 
(b) A straight line I touches a circle with unit diameter at the point P which is diametrically opposed 

on the circle to another point Q. A straight line QR joins Q to some point R on I. If the angle PQR 
between the lines PQ and QR is a random variable with the uniform distribution on [ - �:n:, �:n:] ,  
show that the length of  PR has the Cauchy distribution (this length i s  measured positive or  negative 
depending upon which side of P the point R lies). 

5. Let X have an exponential distribution. Show that IP'(X > s + x I X > s) = JP'(X > x) ,  for 
x ,  s :::: O. This is the ' lack of memory' property again. Show that the exponential distribution is the 
only continuous distribution with this property. You may need to use the fact that the only non-negative 
monotonic solutions of the functional equation g(s + t) = g(s )g(t) for s, t :::: 0, with g(O) = 1, are 
of the form g(s) = elLS . Can you prove this? 
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6. Show that X and Y are independent continuous variables i f  and only i f  their joint density function 
f factorizes as the product f (x , y) = g(x)h (y) of functions of the single variables x and y alone. 

7. Let X and Y have joint density function f(x ,  y) = 2e-x-y , 0 < x < y < 00. Are they 
independent? Find their marginal density functions and their covariance. 

8. Bertrand's paradox extended. A chord of the unit circle is picked at random. What is the 
probability that an equilateral triangle with the chord as base can fit inside the circle if: 
(a) the chord passes through a point P picked uniformly in the disk, and the angle it makes with a 

fixed direction is uniformly distributed on [0, 211 ) ,  
(b) the chord passes through a point P picked uniformly at random o n  a randomly chosen radius, and 

the angle it makes with the radius is uniformly distributed on [0, 211 ) .  

9. Monte Carlo. It is required to estimate J = JJ g(x) dx where 0 � g(x) � 1 for all x, as 
in Example (2.6.3) .  Let X and Y be independent random variables with common density function 
f(x) = 1 if 0 < x < 1 ,  f(x) = 0 otherwise. Let U = l{y::.::g (x) } ,  the indicator function of the event 

that Y � g(X), and let V = g (X), W = ! {g(X) + g ( l - X) } . Show that JB:(U) = JB:(V)  = JB:(W) = J ,  
and that var(W) � var(V) � var(U),  so that, o f  the three, W i s  the most 'efficient' estimator o f  J .  

10. Let Xl , X 2 , . . .  , Xn be independent exponential variables, parameter A. Show b y  induction that 
S = Xl + X2 + . . .  + Xn has the r (A ,  n) distribution. 

11. Let X and Y be independent variables, r (A ,  m) and r (A ,  n) respectively. 
(a) Use the result of Problem (4. 14. 10) to show that X + Y is r (A ,  m + n) when m and n are integral 

(the same conclusion is actually valid for non-integral m and n) .  
(b) Find the joint density function of X + Y and X/(X + Y), and deduce that they are independent. 
(c) If Z is Poisson with parameter At,  and m is integral, show that JP'(Z < m) = JP'(X > t ) .  
(d) If  0 < m < n and B is independent of  Y with the beta distribution with parameters m and n - m, 

show that Y B has the same distribution as  X. 
12. Let Xl , X2 , . . . , Xn be independent N(O, 1) variables. 
(a) Show that Xf i s  x2 ( 1 ) .  

(b) Show that Xf + X� i s  x 2 (2) b y  expressing its distribution function a s  an integral and changing 
to polar coordinates .  

(c) More generally, show that Xf + X� + . . . + X; is x 2 (n) . 

13. Let X and Y have the bivariate normal distribution with means fJ, 1 , fJ,2 , variances o}, 0"1, and 
correlation p .  Show that 
(a) JB:(X I Y) = fJ, 1 + PO"l (Y - fJ,2)/0"2 , 
(b) the variance of the conditional density function fX I Y is var(X I Y) = O"t ( l - p2) . 
14. Let X and Y have joint density function f. Find the density function o f  Y IX .  
15. Let X and Y be independent variables with common density function f .  Show that tan- 1 (Y I X )  
has the uniform distribution o n  (- ! 11, ! 11)  i f  and only if 

100 f (x)f(xy) lx l dx = 
1 

2 ' -00 11( 1  + Y ) 
Y E R 

Verify that this is valid if either f is the N(O, 1) density function or f(x) = a ( l + x4) - 1 for some 
constant a .  

16. Let X and Y be independent N (0 ,  1 )  variables, and think of  (X,  Y) as a random point in  the plane. 
Change to polar coordinates (R ,  G) given by R2 = X2 + y2 , tan G = YI X;  show that R2 is X 2 (2) , 
tan G has the Cauchy distribution, and R and G are independent. Find the density of R .  

Find JB:(X2 I R2) and 

JB: 
{ min{ I X I ,  I f l } } 

. 
max { I X I ,  I f l }  
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17. If X and Y are independent random variables, show that U = min{X,  Y }  and V = max{X, Y }  
have distribution functions 

FU (u ) = 1 - { 1  - Fx (u) } { 1  - Fy (u) } ,  Fv (v) = Fx (v) Fy (v) . 

Let X and Y be independent exponential variables, parameter 1 .  Show that 
(a) U is exponential, parameter 2, 
(b) V has the same distribution as X + i Y .  Hence find the mean and variance of V. 

18 .  Let X and Y be  independent variables having the exponential distribution with parameters A and 
/l, respectively. Let U = min{X, Y} ,  V = max{X,  Y } ,  and W = V - U. 
(a) Find JP'(U = X) = JP'(X :'0 Y) .  
(b) Show that U and W are independent. 

19. Let X and Y be independent non-negative random variables with continuous density functions 
on (0, (0) . 
(a) If, given X + Y = u ,  X is uniformly distributed on [0, u] whatever the value of u, show that X 

and Y have the exponential distribution. 
(b) If, given that X + Y = u, X/u has a given beta distribution (parameters a and fJ, say) whatever 

the value of u ,  show that X and Y have gamma distributions. 
You may need the fact that the only non-negative continuous solutions of the functional equation 
g(s + t) = g(s )g(t) for s, t 2: 0, with g(O) = 1 ,  are of the form g(s) = elLS . Remember Problem 
(4. 14.5) .  

20. Show that it cannot be the case that U = X + Y where U is uniformly distributed on [0, 1 ]  and X 
and Y are independent and identically distributed. You should not assume that X and Y are continuous 
variables .  

21. Order statistics. Let XI ,  X2 , . . . , Xn be independent identically distributed variables with a com­
mon density function f . Such a collection is called a random sample. For each W E Q, arrange the sam­
ple values XI (W) ,  . . . , Xn (w) in non-decreasing order X( l ) (w) :'0 X(2) (W) :'0 . . .  :'0 X(n) (w) , where 
( 1 ) , (2) , . . .  , (n) is a (random) permutation of 1 ,  2, . . .  , n .  The new variables X( l ) , X(2) , · · · , X(n) 
are called the order statistics . Show, by a symmetry argument, that the joint distribution function of 
the order statistics satisfies 

JP'(X( l ) :'0 YI , . . .  , X(n) :'0 Yn )  = n ! JP'(XI :'0 YI , . . .  , Xn :'0 Yn ,  X l < X2 < . . . < Xn) 

where L is given by 

and x = (Xl , x2 , . . .  , Xn ) .  
n ! L (y) f (Y l ) · · ·  f (Yn ) · 

= J . . . (I '::: Y l L (XI , . . .  , Xn )n ! f (XI ) . . . f (xn ) dX I . . . dXn J�2':::Y2 

L (x) = { � if Xl < X2 < . . .  < Xn , 
otherwise, 

Deduce that the joint density function of X( 1 ) , . . . , X(n) is g (y) 

22. Find the marginal density function of the kth order statistic X(k) of a sample with size n :  
(a) b y  integrating the result o f  Problem (4. 14 .2 1 ) ,  
(b) directly. 

23. Find the joint density function of the order statistics of n independent uniform variables on [0, T) . 
24. Let Xl , X2 , . . .  , Xn be independent and uniformly distributed on [0, 1 ] ,  with order statistics 
XCI ) ' X(2) , . . .  , X(n) · 
(a) Show that, for fixed k, the density function of nX (k) converges as n ---+ 00, and find and identify 

the limit function. 
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(b) Show that log X (k) has the same distribution as - 'L,7=k i - I Yi , where the Yi are independent 
random variables having the exponential distribution with parameter 1 .  

(c) Show that Zl , Z2 , . . . , Zn , defined by Zk = (X(k) /  X(k+l ) k for k < n and Zn = (X(n) n , are 
independent random variables with the uniform distribution on [0, 1 ] . 

25. Let Xl , X2 , X3 be independent variables with the uniform distribution on [0, 1 ] . What is the 
probability that rods of lengths X b X2, and X3 may be used to make a triangle? Generalize your 
answer to n rods used to form a polygon. 

26. Let Xl and X 2 be independent variables with the uniform distribution on [0, 1 ] . A stick of unit 
length is broken at points distance Xl and X 2 from one of the ends. What is the probability that the 
three pieces may be used to make a triangle? Generalize your answer to a stick broken in n places . 

27. Let X, Y be a pair of jointly continuous variables .  
(a) HOlder's inequality. Show that if  p ,  q > 1 and p- 1 + q- 1 = 1 then 

Set p = q = 2 to deduce the Cauchy-Schwarz inequality JB:(XY)2 :::: JB:(x2)JB:(y2) . 
(b) Minkowski's inequality. Show that, if p ::: 1 ,  then 

Note that in both cases your proof need not depend on the continuity of X and Y ;  deduce that the same 
inequalities hold for discrete variables. 

28. Let Z be a random variable. Choose X and Y appropriately in the Cauchy-Schwarz (or Holder) 
inequality to show that g(p) = log JB:I ZP I is a convex function of p on the interval of values of p such 
that JB:I ZP I < 00. Deduce Lyapunov's inequality: 

You have shown in particular that, if Z has finite rth moment, then Z has finite s th moment for all 
positive s :::: r .  

29. Show that, using the obvious notation, JB:{JB:(X I Y, Z)  I y }  = JB:(X I Y) .  
30. Motor cars of  unit length park randomly in  a street in  such a way that the centre of  each car, in 
tum, is positioned uniformly at random in the space available to it. Let m(x) be the expected number 
of cars which are able to park in a street of length x . Show that 

1 loX m(x + l ) = - {m (y) + m (x - y) + I } dy .  
x 0 

It is possible to deduce that m(x) is about as big as �x when x is large. 

31. ButTon's needle revisited: ButTon's noodle. 
(a) A plane is ruled by the lines y = nd (n = 0, ± 1 ,  . . .  ) . A needle with length L « d) is cast 

randomly onto the plane. Show that the probability that the needle intersects a line is 2L/ (nd) . 
(b) Now fix the needle and let C be a circle diameter d centred at the midpoint of the needle. Let 

A be a line whose direction and distance from the centre of C are independent and uniformly 
distributed on [0, 2n] and [0, 1d] respectively. This is equivalent to 'casting the ruled plane at 
random' .  Show that the probability of an intersection between the needle and A is 2L/ (nd) . 

(c) Let S be a curve within C having finite length L (S) .  Use indicators to show that the expected 
number of intersections between S and A is 2L (S) / (nd) .  

This type of  result is used in  stereo logy, which seeks knowledge of  the contents of  a cell by  studying 
its cross sections. 
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32. Buffon's needle ingested. In the excitement of calculating n ,  Mr Buffon (no relation) inadver­
tently swallows the needle and is X-rayed. If the needle exhibits no preference for direction in the 
gut, what is the distribution of the length of its image on the X-ray plate? If he swallowed Buffon's 
cross (see Exercise (4.5 .3 »  also, what would be the joint distribution of the lengths of the images of 
the two arms of the cross? 

33. Let X I , X2 , . . . , Xn be independent exponential variables with parameter A, and let X( l )  < 
X(2) :::: . . . :::: X(n) be their order statistics .  Show that 

are also independent and have the same joint distribution as the Xi . 

34. Let X(l ) ,  X(2) ,  . . . , X(n) be the order statistics of a family of independent variables with common 
continuous distribution function F. Show that 

1 :::: r < n ,  

are independent and uniformly distributed o n  [0, 1 ] .  This i s  equivalent to Problem (4. 14 .33) .  Why? 

35. Secretary/marriage problem. You are permitted to inspect the n prizes at a fete in a given order, 
at each stage either rejecting or accepting the prize under consideration. There is no recall, in the sense 
that no rejected prize may be accepted later. It may be assumed that, given complete information, the 
prizes may be ranked in a strict order of preference, and that the order of presentation is independent 
of this ranking. Find the strategy which maximizes the probability of accepting the best prize, and 
describe its behaviour when n is large. 

36. Fisher's spherical distribution. Let R2 = X2 + y2 + Z2 where X, Y, Z are independent normal 
random variables with means A ,  j.t, v ,  and common variance 0-2 , where (A , j.t, v) =I (0, 0, 0) . Show 
that the conditional density of the point (X, Y, Z) given R = r, when expressed in spherical polar 
coordinates relative to an axis in the direction e = (A , j.t , v) ,  is of the form 

f (e , ¢» = � ea cos e sin e , 0 :::: e < n, 0 :::: ¢> < 2n, 
4n smh a 

where a = r ie l . 
37. Let ¢> be the N(O,  1 ) density function, and define the functions Hn , n :::: 0, by Ho = 1 ,  and 
( _ l)n Hn ¢> = ¢> (n) , the nth derivative of ¢>. Show that: 
(a) Hn (x) is a polynomial of degree n having leading term xn , and 

foo { O if m =I n ,  
-00 

Hm (x) Hn (x)¢> (x) dx = 
n ! if m = n .  

00 tn 
(b) '" Hn (x) - = exp(tx - 1 t2 ) .  � n !  n=O 
38. Lancaster's theorem. Let X and Y have a standard bivariate normal distribution with zero 
means, unit variances, and correlation coefficient p ,  and suppose U = u (X) and V = v(Y)  have finite 
variances .  Show that I p (U, V) I :::: I p l .  [Hint: Use Problem (4. 14 .37) to expand the functions u and 
v .  You may assume that u and v lie in the linear span of the Hn .]  
39. Let X( 1 ) ,  X(2) , . . .  , X(n) be the order statistics of  n independent random variables, uniform on 
[0, 1 ] .  Show that: 

r r (n - s + l )  
(a) JE(X(r) = n + l ' (b) cov(X(r) , X(s) = 

(n + 1 )2 (n + 
2) for r :::: s .  
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40. (a) Let X, Y, Z be independent N(O, 1 )  variables, and set R = VX2 + y2 + Z2 . Show that 
X2/ R2 has a beta distribution with parameters ! and 1 ,  and is independent of R2 . 

(b) Let X, Y, Z be independent and uniform on [- 1 ,  1 ]  and set R = V X2 + y2 + Z2 . Find the 
density of X2/ R2 given that R2 .::: 1 .  

41. Let c/J and <1> be the standard normal density and distribution functions. Show that: 
(a) <1> (x) = 1 - <1> (-x) , 
(b) f (x) = 2c/J (x)<1> (AX) , -00 < x < 00, is the density function of some random variable (denoted 

by Y), and that I Y I  has density function 2c/J . 
(c) Let X be a standard normal random variable independent of Y, and define Z = (X + A I Y I )  / Vi + A 2 . 

Write down the joint density of Z and I Y I ,  and deduce that Z has density function f .  
42. The six coordinates (Xi , Yi ) ,  1 .::: i .::: 3, of three points A, B ,  C in  the plane are independent 
N(O, 1 ) .  Show that the the probability that C lies inside the circle with diameter AB is ! .  
43. The coordinates (Xi , Yi , Zi ) ,  1 .::: i .::: 3 ,  of three points A, B ,  C are independent N (O, 1 ) .  Show 

that the probability that C lies inside the sphere with diameter AB is ! _ .J3 .  
3 411 

44. Skewness. Let X have variance 0'2 and write mk = JB:(Xk ) .  Define the skewness of X by 
skw(X) = JB:[(X - m l )3 ] jO' 3 . Show that: 
(a) skw(X) = (m3 - 3m l m2 + 2mi) /O'3 , 
(b) skw(Sn )  = skw(XI ) /..jn, where Sn = 2:�=1 Xr is a sum of independent identically distributed 

random variables, 
(c) skw(X) = (1 - 2p)/  -Jnpq, when X is bin(n , p) where p + q = 1, 
(d) skw(X) = 1 /...fi., when X is Poisson with parameter A, 
(e) skw(X) = 2/0, when X is gamma r (A ,  t ) ,  and t is integral. 
45. Kurtosis. Let X have variance 0'2 and JB:(Xk) = mk . Define the kurtosis of X by kur(X) 
JB:[(X - m l )4]/O'4 . Show that: 
(a) kur(X) = 3, when X is N(I-i,  0'2) ,  
(b) kur(X) = 9 ,  when X is exponential with parameter A ,  
(c) kur(X) = 3 + A - I , when X is Poisson with parameter A ,  
(d) kur(Sn ) = 3 + {kur(X I )  - 3 ) jn ,  where Sn = 2:�=1 Xr is a sum of independent identically 

distributed random variables. 
46. Extreme value. Fisher-Gumbel-Tippett distribution. Let Xr , 1 .::: r .::: n ,  be independent and 
exponentially distributed with parameter 1 .  Show that X(n) = max{Xr : 1 .::: r .::: n }  satisfies 

lim JP'(X(n) - log n .::: x)  = exp(-e-X ) .  n-+oo 

Hence show that Jooo { I  - exp( _e-X ) } dx = y where y is Euler's constant. 
47. Squeezing. Let S and X have density functions satisfying b(x) .::: fs (x) .::: a (x) and fs (x) .::: 
fx (x) .  Let U be uniformly distributed on [0, 1 ]  and independent of X. Given the value X, we 
implement the following algorithm: 

if Ufx (X) > a (X) ,  reject X; 
otherwise: if Ufx (X) < b(X) , accept X; 
otherwise: if Ufx (X) .::: fs (X) , accept X ;  
otherwise: reject X. 

Show that, conditional on ultimate acceptance, X is distributed as S. Explain when you might use this 
method of sampling. 
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48. Let X, Y, and {Ur : r :::: I }  be independent random variables, where: 

x 1 
IP'(X = x) = (e - l )e- , IP'(Y = y) = for x ,  y = 1 , 2 , . . . , 

(e - l )y ! 

and the Ur are uniform on [0, 1 ] .  Let M = max{UI , U2 , . . .  , Uy } ,  and show that Z = X - M is 
exponentially distributed. 
49. Let U and V be independent and uniform on [0, 1 ] .  Set X = _a- l log U and Y = - log V 
where a >  O. 

1 2 
(a) Show that, conditional on the event Y :::: 1 (X - a)2 , X has density function f(x) = ,J2/rre- 2x 

for x >  O. 
(b) In sampling from the density function f, it is decided to use a rejection method: for given a > 0, 

we sample U and V repeatedly, and we accept X the first time that Y :::: i (X - a)2 . What is the 
optimal value of a ?  

(c) Describe how to use these facts i n  sampling from the N(O,  1 )  distribution. 
50. Let S be a semicircle of unit radius on a diameter D.  
(a) A point P i s  picked a t  random on  D. If X is the distance from P to S along the perpendicular to 

D, show IE(X) = rr /4. 
(b) A point Q is picked at random on S .  If Y is the perpendicular distance from Q to D, show 

IE(Y) = 2/rr . 
51. (Set for the Fellowship examination of St John's College, Cambridge in 1 858 . )  'A large quantity 
of pebbles lies scattered uniformly over a circular field; compare the labour of collecting them one by 
one : 
(i) at the centre 0 of the field, 

(ii) at a point A on the circumference .' 
To be precise, if Lo and LA are the respective labours per stone, show that IE(Lo) = �a and 

IE(LA) = 32a / (9rr ) for some constant a . 
(iii) Suppose you take each pebble to the nearer of two points A or B at the ends of a diameter. Show 

in this case that the labour per stone satisfies 

4a { 16 17 1 } 2 IE(LAB) = 
3rr 3" - 6.J2 + 2" log( 1  + .J2) � 1 . 1 3 x 3"a . 

(iv) Finally suppose you take each pebble to the nearest vertex of an equilateral triangle ABC inscribed 
in the circle. Why is it obvious that the labour per stone now satisfies IE(LABc) < IE(Lo ) ?  
Enthusiasts are invited to calculate IE(LABc) . 

52. The lines L, M, and N are parallel, and P lies on L . A line picked at random through P meets M 
at Q. A line picked at random through Q meets N at R. What is the density function of the angle e 
that RP makes with L ?  [Hint: Recall Exercise (4. 8 .2) and Problem (4. 14.4) .] 

53. Let � denote the event that you can form a triangle with three given parts of a rod R. 
(a) R is broken at two points chosen independently and uniformly. Show that IP'(� ) = * .  
(b) R i s  broken in two uniformly at random, the longer part i s  broken in two uniformly at random. 

Show that IP'(�) = log (4/e ) .  
(c) R i s  broken in  two uniformly a t  random, a randomly chosen part is broken into two equal parts. 

Show that IP'(�) = i. 
(d) In case (c) show that, given �, the triangle is obtuse with probability 3 - 2.J2. 
54. You break a rod at random into two pieces . Let R be the ratio of the lengths of the shorter to the 
longer piece. Find the density function JR,  together with the mean and variance of R.  

55. Let R be the distance between two points picked a t  random inside a square of side a . Show that 
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JE(R2) = j-a2 , and that R2 /a2 has density function { r - 4,Jr + n  
f(r) = 

4� - 2 - r + 2 sin- I p - 2 sin- I VI - r - I 

if O � r � l , 

if 1 � r � 2. 
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56. Show that a sheet of paper of area A cm2 can be placed on the square lattice with period 1 cm in 
such a way that at least r A l points are covered. 
57. Show that it is possible to position a convex rock of surface area S in sunlight in such a way that 
its shadow has area at least is. 
58. Dirichlet distribution. Let {Xr : 1 � r � k + I }  be independent r (A ,  f3r ) random variables 
(respectively). 
(a) Show that Yr = Xr / (X l + . . .  + Xr) ,  2 � r � k + \ ,  are independent random variables. 
(b) Show that Zr = X r / (X 1 + . . .  + Xk+ t ) , 1 � r � k, have the joint Dirichlet density 

r (f31 + . . . + f3k+ l ) fll - I fl2- I . . .  flk - l ( 1 _ _ _ . . . _ )flk+ I - 1 
r (f3I ) . . .  r (f3k+d z l  z2 zk Z l Z2 Zk . 

59. Hotelling's theorem. Let Xr = (X l r , X2r , . . .  , Xmr ) ,  1 � r � n ,  be independent multivariate 
normal random vectors having zero means and the same covariance matrix V = (Vij ) .  Show that the 
two random variables 

n 1 n n 
Sij = L XirXjr - - L Xir L Xjr , 

r= l n r= l r= I 
are identically distributed. 

n- l 
Tij = L XirXjr , 

r= l 

60. Choose P, Q, and R independently at random in the square S(a) of side a .  Show that JEI PQRI = 
l la2/ 144. Deduce that four points picked at random in a parallelogram form a convex quadrilateral 
with probability (� )2 . 
61. Choose P, Q, and R uniformly at random within the convex region C illustrated beneath. By 
considering the event that four randomly chosen points form a triangle, or otherwise, show that the 
mean area of the shaded region is three times the mean area of the triangle PQR. 

62. Multivariate normal sampling. Let V be a positive-definite symmetric n x n matrix, and L 
a lower-triangular matrix such that V = L'L; this is called the Cholesky decomposition of V. Let 
X = (X I , X2 , . . . , Xn ) be a vector of independent random variables distributed as N(O, 1 ) .  Show that 
the vector Z = Jl + XL has the multivariate normal distribution with mean vector Jl and covariance 
matrix V. 

63. Verifying matrix multiplications. We need to decide whether or not AB = C where A, B, C are 
given n x n matrices, and we adopt the following random algorithm. Let x be a random {O, l }n -valued 
vector, each of the 2n possibilities being equally likely. If (AB - C)X = 0, we decide that AB = C, 
and otherwise we decide that AB =f. C. Show that 

lP' (the decision is correct) { = � 
� 'Z 

if AB = C, 

if AB =f. C. 

Describe a similar procedure which results in an error probability which may be made as small as 
desired. 
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Generating functions and their applications 

Summary. A key method for studying distributions is via transforms such as the 
probability generating function of a discrete random variable, or the moment 
generating function and characteristic function of a general random variable. 
Such transforms are particularly suited to the study of sums of independent 
random variables, and their areas of application include renewal theory, random 
walks, and branching processes. The inversion theorem tells how to obtain 
the distribution function from knowledge of its characteristic function. The 
continuity theorem allows us to use characteristic functions in studying limits 
of random variables. Two principal applications are to the law of large numbers 
and the central limit theorem. The theory of large deviations concerns the 
estimation of probabilities of 'exponentially unlikely ' events. 

5.1 Generating functions 

A sequence a = {ai : i = 0, 1 , 2 ,  . . .  } of real numbers may contain a lot of information . One 
concise way of storing this information is to wrap up the numbers together in a 'generating 
function' . For example, the (ordinary) generating function of the sequence a is the function 
G a defined by 

00 
(1) G a (s ) = L ai si for s E lR for which the sum converges. 

i=O 
The sequence a may in principle be reconstructed from the function G a by setting ai 
G�i) (0)/ i ! , where f(i ) denotes the i th derivative of the function f . In many circumstances it 
is easier to work with the generating function Ga than with the original sequence a . 
(2) Example. De Moivre's theorem. The sequence an = (cos B + i sin B)n has generating 
function 00 1 Ga (s ) = "' [s (cos B + i sin B)f = . . � 1 - s (cos B + I sm B) n=O 
if I s  I < 1 ;  here i = A. It is easily checked by examining the coefficient of sn that 

00 
[ 1 - s (cos B + i sin B) ] L sn [cos(nB) + i sin (nB) ] = 1 

n=O 
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when l s i < 1 .  Thus 

00 1 
L sn [cos (ne) + i sin (ne) ] = . . 1 - s (cos e + 1 sm e) n=O 
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if Is I < 1 .  Equating the coefficients of sn we obtain the well-known fact that cos(ne) + 
i sin (ne) = (cos e + i sin e)n . • 

There are several different types of generating function, of which G a is perhaps the simplest. 
Another is the exponential generating function Ea given by 

(3) 
00 ai s i Ea (s) = L -.-, for s E lR. for which the sum converges . 

I .  i=O 
Whilst such generating functions have many uses in mathematics, the ordinary generating 
function ( 1 )  is of greater value when the ai are probabilities. This is because 'convolutions' 
are common in probability theory, and (ordinary) generating functions provide an invaluable 
tool for studying them. 

(4) Convolution. The convolution of the real sequences a = {ai : i ::: O} and b = {bi : i ::: O} 
is the sequence c = {Ci : i ::: O} defined by 

(5) 

we write c = a * b. If a and b have generating functions Ga and Gb, then the generating 
function of c is 

(6) Gc (s) = fcnsn = f(i>ibn-i ) sn n=O n=O i=O 
00 00 

= Laisi L bn_iSn-i = Ga (S)Gb (S ) .  i=O n=i 
Thus we learn that, if c = a * b, then Gc (s) = Ga (S)Gb (S) ; convolutions are numerically 
complicated operations, and it is often easier to work with generating functions. 

(7) Example. The combinatorial identity 

may be obtained as follows. The left-hand side is the convolution of the sequence ai = (7) , 
i = 0, 1 , 2 , . . .  , with itself. However, Ga (s) = Li (7)s i = ( 1  + s)n , so that 

2 2n '" (2n) i GaM (s) = Ga (s) = ( 1  + s ) = � 
i

s . 
I 

Equating the coefficients of sn yields the required identity. • 
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(8) Example. Let X and Y be independent random variables having the Poisson distribution 
with parameters A and /L respectively. What is the distribution of Z = X + Y? 
Solution. We have from equation (3 . 8 .2) that the mass function of  Z is the convolution of 
the mass functions of X and Y, fz = fx * fy . The generating function of the sequence 
{fx (i ) : i :?: O} is 

(9) 
00 A i -J.. 

G (s) = '"' _
e
_s i = eJ.. (s- I ) x � . f  ' l .  i=O 

and similarly Gy (s) = ell(s- l ) . Hence the generating function Gz of (fz (i ) : i :?: O} satisfies 
Gz (s) = Gx (s)Gy (s) = exp[ (A + /L) (s - 1 ) ] , which we recognize from (9) as the generating 
function of the Poisson mass function with parameter A + /L. • 

The last example is canonical : generating functions provide a basic technique for dealing 
with sums of independent random variables .  With this example in mind, we make an important 
definition .  Suppose that X is a discrete random variable taking values in the non-negative 
integers {O, 1 , 2 ,  . . .  } ;  its distribution is specified by the sequence of probabilities f(i ) = 
JP'(X = i ) .  
(10) DefInition. The (probability) generating function of the random variable X is defined 
to be the generating function G(s) = JE(sx) of its probability mass function. 

Note that G does indeed generate the sequence (f (i ) : i :?: O} since 

by Lemma (3 . 3 . 3 ) .  We write Gx when we wish to stress the role of X. If X takes values 
in the non-negative integers, its generating function G x converges at least when I s I ::s 1 and 
sometimes in a larger interval. Generating functions can be defined for random variables taking 
negative as well as positive integer values .  Such generating functions generally converge for 
values of s satisfying a < l s i < f3 for some a, f3 such that a ::s 1 ::s f3 .  We shall make 
occasional use of such generating functions, but we do not develop their theory systematically. 

In advance of giving examples and applications of the method of generating functions, we 
recall some basic properties of power series .  Let G(s) = L:g" ais i where a = {ai : i :?: O} is 
a real sequence. 

(11 )  Convergence. There exists a radius of convergence R (2: 0) such that the sum converges 
absolutely if I s I < R and diverges if I s I > R. The sum is uniformly convergent on sets of the 
form {s : l s i ::s R' } for any R' < R. 

(12) Differentiation. G a (s) may be differentiated or  integrated term by term any number of 
times at points s satisfying l s i < R. 

(13) Uniqueness. If Ga (s) = Gb (S) for l s i < R' where 0 < R' ::s R then an = bn for all n .  
Furthermore 

(14) a = � c<n) (o) n f a · n .  
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(15) Abel 's theorem. If ai 2: 0 for all i and Ga (s) i s  finite for l s i < 1 ,  then limst l Ga (s) = 
L�o ai , whether the sum is finite or equals +00. This standard result is useful when the 
radius of convergence R satisfies R = 1 ,  since then one has no a priori right to take the limit 
as s t 1 . 

Returning to the discrete random variable X taIdng values in {O, 1 ,  2, . . .  } we have that 
G(s) = L� silP'(X = i ) ,  so that 

(16) G(O) = lP'(X = 0) , G( I ) = 1 .  

In particular, the radius of convergence of a probability generating function is at least 1 .  Here 
are some examples of probability generating functions . 

(17) Examples. 
(a) Constant variables. 1f lP'(X = c) = 1 then G(s) = E(sx) = sC . 
(b) Bernoulli variables. 1f lP'(X = 1 ) = p and lP'(X = 0) = 1 - p then 

G(s) = E(sx) = ( 1 - p) + ps .  

(c) Geometric distribution. If X is geometrically distributed with parameter p, so that 
lP'(X = k) = p ( 1 - p)k- I for k 2: 1 ,  then 

00 
G(s) = E(sx) = I>k p( 1 _ p)k- l = 

ps . 1 - s ( 1 - p) k= l 

(d) Poisson distribution. If X is Poisson distributed with parameter A then 

• 

Generating functions are useful when working with integer- valued random variables . Prob­
lems arise when random variables take negative or non-integer values .  Later in this chapter 
we shall see how to construct another function, called a 'characteristic function' ,  which is 
very closely related to G x but which exists for all random variables regardless of their types. 

There are two major applications of probability generating functions : in calculating mo­
ments, and in calculating the distributions of sums of independent random variables. We begin 
with moments . 

(18) Theorem. If X has generating function G(s) then 
(a) E(X) = G' ( 1 ), 
(b) more generally, E[X (X - 1 ) . . .  (X - k + 1 ) ] = G(kl ( 1 ) . 

Of course, G(kl ( 1 ) i s  shorthand for limst l  G(kl (s ) whenever the radius of  convergence of  G 
is 1 . The quantity E[X (X - 1 ) · · · (X - k + 1 ) ] is known as the kthfactorial moment of X . 
Proof of (b). Take s < 1 and calculate the kth derivative o f  G to obtain 

dkl (S) = I>i-k i (i - 1 ) · · ·  (i - k + l )f (i )  = E[sX-kX (X - 1 ) · · ·  (X - k + 1 ) ] .  
i 
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Let s t 1 and use Abel's theorem ( 1 5) to obtain 

G (k) (S ) -+ I > (i - 1 ) · · ·  (i - k + l)f (i ) = JE[X (X - 1 ) · · ·  (X - k + 1 )] . • 

In order to calculate the variance of X in terms of G, we proceed as follows: 

(19) var(X) = JE(X2) - JE(X)2 = JE(X (X - 1) + X) - JE(X)2 

= JE(X (X - 1 )) + JE(X) - JE(X)2 = G" ( I ) + G' ( 1 ) - G' ( 1 )2 . 

Exercise. Find the means and variances of the distributions in ( 1 7) by this method. 

(20) Example. Recall the hypergeometric distribution (3 . 1 1 . 10) with mass function 

f (k) = G) (��:) / (�) . 
Then G(s) = Lk sk f (k) , which can be recognized as the coefficient of xn in 

Q(s , x ) = ( 1 + sx)b ( 1 + x)N-b / (�) . 
Hence the mean G' ( 1 ) is the coefficient of xn in 

a
a� ( 1 ,  x) = xb ( 1 + x)N- l / (�) 

and so G' ( 1 ) = bnj N. Now calculate the variance yourself (exercise) . • 

If you are more interested in the moments of X than in its mass function, you may prefer 
to work not with Gx but with the function Mx defined by Mx (t) = Gx (et ) .  This change of 
variable is convenient for the following reason. Expanding Mx (t) as a power series in t , we 
obtain 

(21) 
00 00 00 ( k)n Mx (t) = Letkjp'(X = k) = L L  �jp'(X = k) 
k=O k=O n=O 

the exponential generating function of the moments JE(Xo) ,  JE(X 1 ) , . . .  of X. The function M x 
is called the moment generating function of the random variable X . We have assumed in (2 1 ) 
that the series i n  question converge. Some complications can arise i n  using moment generating 
functions unless the series Ln tnJE(Xn ) j n ! has a strictly positive radius of convergence. 

(22) Example. We have from (9) that the moment generating function of the Poisson distri­
bution with parameter 'A is M(t) = exp ['A (et - 1 ) ] . • 
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We turn next to sums and convolutions. Much of probability theory i s  concerned with sums 
of random variables. To study such a sum we need a useful way of describing its distribution in 
terms of the distributions of its summands, and generating functions prove to be an invaluable 
asset in this respect. The formula in Theorem (3 . 8 . 1 )  for the mass function of the sum of two 
independent discrete variables, JP'(X + Y = z) = Lx JP'(X = x)JP'(Y = Z - x) , involves a 
complicated calculation; the corresponding generating functions provide a more economical 
way of specifying the distribution of this sum. 

(23) Theorem. JjX and Y are independent then Gx+y(s) = Gx (s)Gy(s). 

Proof. The direct way of doing this is to use equation (3 . 8 .2) to find that fz = fx * fy , so 
that the generating function of {fz (i ) : i � O} is the product of the generating functions of 
(fx (i ) : i � O} and (fy (i ) : i � OJ, by (4) . Alternatively, g (X) = sX and h (Y) = sY are 
independent, by Theorem (3 .2 . 3 ) , and so JE(g (X)h (Y)) = JE(g(X))JE(h (Y) ) , as required. • 

(24) Example. Binomial distribution. Let X I , X 2 , . . .  , X n be independent Bernoulli vari­
ables, parameter p, with sum S = Xl + X2 + . . .  + Xn . Each Xi has generating function 
G(s) = qso + ps I = q + ps , where q = 1 - p. Apply (23) repeatedly to find that the 
bin(n , p) variable S has generating function 

Gs (s) = [G (sW = (q + ps)n . 

The sum SI + S2 of two independent variables, bin(n , p) and bin(m , p) respectively, has 
generating function 

and is thus bin(m + n , p) . This was Problem (3 . 1 1 . 8 ) .  • 

Theorem (23) tells us that the sum S = X I + X2 + . . .  + Xn of independent variables 
taking values in the non-negative integers has generating function given by 

If n is itself the outcome of a random experiment then the answer is not quite so simple. 

(25) Theorem. If X I , X 2 , . . .  is a sequence of independent identically distributed random 
variables with common generatingfunction Gx, and N (� 0) is a random variable which is 
independent of the Xi and has generating function GN, then S = Xl + X2 + . . .  + XN has 
generating function given by 

(26) Gs (s ) = GN (GX (S) ) .  

This has many important applications, one o f  which we  shall meet i n  Section 5 .4. It i s  an 
example of a process known as compounding with respect to a parameter. Formula (26) is 
easily remembered; possible confusion about the order in which the functions G N and G x 
are compounded is avoided by remembering that if JP'(N = n) = 1 then GN (S) = sn and 
Gs (s) = Gx (s)n . Incidentally, we adopt the usual convention that, in the case when N = 0, 
the sum XI + X2 + . . .  + XN is the 'empty ' sum, and equals 0 also . 
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Proof. Use conditional expectation and Theorem (3 .7 .4) to find that 

Gs (s) = JE(ss) = JE(JE(sS I N») = LJE(sS I N = n)JP'(N = n) 
n 

n 
= L JE(sX 1 ) . . .  JE(SXn )JP'(N = n) by independence 

n 
= L Gx (s)nJP'(N = n) = GN (Gx (s» .  

n 
• 

(27) Example (3.7.5) revisited. A hen lays N eggs, where N is Poisson distributed with 
parameter A. Each egg hatches with probability p, independently of all other eggs. Let K be 
the number of chicks . Then K = X l + X2 + . . .  + XN where XI , X2 , . . .  are independent 
Bernoulli variables with parameter p. How is K distributed? Clearly 

00 An 
GN (S) = L sn ,e-A = eA(s - 1 l , n .  n=O 

GX (s) = q + ps, 

and so GK (S) = GN (GX (S» = eAp(s - 1 l , which, by comparison with GN, we see to be the 
generating function of a Poisson variable with parameter Ap . • 

Just as information about a mass function can be encapsulated in a generating function, so 
may joint mass functions be similarly described . 

(28) Definition. The joint (probability) generating function of variables XI and X2 taking 
values in the non-negative integers is defined by 

GX1 , X2 (Sl , S2 ) = JE(st l S;2 ) .  
There i s  a similar definition for the joint generating function of an arbitrary family of 

random variables. Joint generating functions have important uses also, one of which is the 
following characterization of independence. 

(29) Theorem. Random variables X I and X 2 are independent if and only if 
GX1 ,X2 (S I , S2 ) = GX1 (SJ )GX2 (S2) for all s l and s2 . 

Proof. If Xl and X2 are independent then so are g (X I ) = stl and h (X2 ) = S;2 ; then proceed 
as in the proof of (23) .  To prove the converse, equate the coefficients of terms such as s\ si to 
deduce after some manipulation that JP'(X I = i , X2 = j )  = JP'(X I = i )JP'(X2 = j ) .  • 

So far we have only considered random variables X which take finite values only, and 
consequently their generating functions Gx satisfy Gx (l ) = 1 .  In the near future we shall 
encounter variables which can take the value +00 (see the first passage time To of Section 
5 . 3  for example) . For such variables X we note that Gx (s) = JE(sx ) converges so long as 
I s I < 1 ,  and furthermore 

(30) lim Gx (s) = LJP'(X = k) = 1 - JP'(X = 00) . 
s t l 

k 

We can no longer find the moments of X in terms of Gx ; of course, they all equal +00. If 
JP'(X = 00) > 0 then we say that X is defective with defective distribution function Fx . 
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Exercises for Section 5 . 1  

1. Find the generating functions of the following mass functions, and state where they converge. 
Hence calculate their means and variances . 
(a) f (m) = (n+:- l )pn ( l - p)m , for m 2: O. 
(b) f (m) = {m (m + 1 ) }- 1 , for m 2: 1 .  
(c) f (m) = ( I  - p)p lm l / ( l + p), for m = . . .  , - 1 , 0, I ,  . . . .  
The constant p satisfies 0 < p < I .  
2. Let X (2: 0) have probability generating function G and write t (n) = JP'(X > n )  for the 'tail ' 
probabilities of X .  Show that the generating function of the sequence {t (n) : n 2: O} is T (s )  = 
( l  - G(s » /( l - s ) .  Show that E(X) = T ( l )  and var(X) = 2T' ( l )  + T( 1 )  - T ( 1 )2 . 
3. Let G x, y (s , t) be the joint probability generating function of X and Y .  Show that G X (s ) = 
Gx, Y (s , I )  and Gy (t) = Gx, y ( l , t ) .  Show that 

E(XY) = --Gx y (s ,  t) . 
a2 I as a t  ' 

s=t=1 

4. Find the joint generating functions of the following joint mass functions, and state for what values 
of the variables the series converge. 
(a) f (j , k) = (1 - a) (fJ - a)aj fJk-j - 1 , for O ::s  k ::s j , where 0 < a < I ,  a < fJ . 
(b) f (j , k) = (e - 1 )e- (2k+ l )kj /j ! , for j, k 2: O. 
(c) f (j , k) = (�) pj+k (l - p)k-j / [k log{ I / ( 1  - p)}] , for O ::S j ::s k, k 2: I , where 0 < p < 1 .  
Deduce the marginal probability generating functions and the covariances .  
5. A coin is tossed n times, and heads turns up with probability p on each toss . Assuming the usual 
independence, show that the joint probability generating function of the numbers H and T of heads 
and tails is G H, T (X , y) = {px + (1 - p)y}n . Generalize this conclusion to find the joint probability 
generating function of the multinomial distribution of Exercise (3.5 . 1 ) . 
6. Let X have the binomial distribution bin(n , U),  where U is uniform on (0, 1 ) . Show that X is 
uniformly distributed on {O, 1 , 2 , . . .  , n } .  
7 .  Show that 

G(X ,  y , z , w) = l (xyz w  + xy + yz + zw + zx + y w + xz + 1 )  

i s  the joint generating function o f  four variables that are pairwise and triplewise independent, but are 

nevertheless not independent. 
8. Let Pr > 0 and ar E � for 1 ::s r ::s n. Which of the following is a moment generating function, 
and for what random variable? 

n n 
(a) M(t) = I + 2: Pr tr , (b) M(t) = 2: Preart . 

r= 1  r= 1 
9. Let G l and G2 be probability generating functions, and suppose that 0 ::s a ::s 1 .  Show that 
G ] G2, and aG ]  + ( l  - a)G2 are probability generating functions. Is G (as) /G (a) necessarily a 
probability generating function? 
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5.2 Some applications 

Generating functions provide a powerful tool, particularly in the presence of difference equa­
tions and convolutions . This section contains a variety of examples of this tool in action. 

(1) Example. Problem of the pointst. A coin is tossed repeatedly and heads turns up with 
probability P on each toss .  Player A wins if m heads appear before n tails, and player B wins 
otherwise. We have seen, in Exercise (3 .9 .4) and Problem (3 . 1 1 .24), two approaches to the 
problem of determining the probability that A wins. It is elementary, by conditioning on the 
outcome of the first toss, that the probability Pmn , that A wins, satisfies 

(2) Pmn = PPm-l , n + qPm,n- l , for m , n ::: 1 ,  

where P + q = 1 .  The boundary conditions are PmO = 0, POn = 1 for m ,  n > O. We may 
solve equation (2) by introducing the generating function 

00 00 
G(x ,  y) = L L Pmnxmyn 

m=O n=O 

subject to the convention that POO = O. Multiplying throughout (2) by xmyn and summing 
over m ,  n ::: 1 ,  we obtain 

00 00 
(3) G(x ,  y) - L PmOxm - L POnyn 

m=l n=l 
00 00 '\' m- l n '\' m n- ) = px � Pm- l , nX Y + qy � Pm,n- I X  Y , 

m,n= l m , n=l 

and hence, using the boundary conditions, 

Therefore, 

(4) 

G(x ,  y) -
1 
� 

y 
= pxG(x ,  y) + qy ( G(x ,  y) -

1 
� 

y
) , I y l  < 1 .  

G (  ) = 
y ( 1  - qy) 

x , y , 
( 1  - y) ( 1  - px - qy) 

from which one may derive the required information by expanding in powers of x and y and 
finding the coefficient of xmyn . A cautionary note : in passing from (2) to (3), one should be 
very careful with the limits of the summations. • 

(5) Example. Matching revisited. The famous (mis)matching problem of Example (3.4.3) 
involves the random placing of n different letters into n differently addressed envelopes. What 
is the probability Pn that no letter is placed in the correct envelope? Let M be the event that 

t First recorded by Pacioli in 1 494, and eventually solved by Pascal in 1 654. Our method is due to Laplace. 
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the first letter is put into its correct envelope, and let N be the event that no match occurs . 
Then 

(6) 

where lP'(MC) = 1 - n- I . It is convenient to think of an = lP'(N I MC) in the following way. 
It is the probability that, given n - 2 pairs of matching white letters and envelopes together 
with a non-matching red letter and blue envelope, there are no colour matches when the letters 
are inserted randomly into the envelopes. Either the red letter is placed into the blue envelope 
or it is not, and a consideration of these two cases gives that 

(7) an = _
1
_Pn_2 + ( 1 - _

1
_) an- I .  n - I  n - l 

Combining (6) and (7) we obtain, for n � 3 ,  

(8) Pn = (1 - �) an = ( 1 - �) [n � 1 Pn-2 + ( 1 -
n � 1 ) an- I ] 

= ( 1 - �) (n � 1 Pn-2 + pn- l) = �Pn-2 + ( I - �) Pn- I , 
a difference relation subject to the boundary conditions PI = 0, P2 = � .  We may solve this 
difference relation by using the generating function 

(9) 
00 

G(s) = L Pnsn . 
n=1 

We multiply throughout (8) by nsn- I and sum over all suitable values of n to obtain 

00 00 00 
" n- l " n-2 "( 1 )  n-2 � ns Pn = s � s Pn-2 + s � n - s Pn- I 
n=3 n=3 n=3 

which we recognize as yielding 

G' (s ) - PI - 2P2S = sG(s) + s [G' (s ) - pt l  

or ( 1  - s)G' (s ) = sG(s) + s , since P I = 0 and P2 = � .  This differential equation i s  easily 
solved subject to the boundary condition G(O) = 0 to obtain G(s) = ( 1  - s) - l e-s - 1 .  
Expanding as a power series in s and comparing with (9), we arrive at the conclusion 

(10) 
(_ l )n (_ l )n- 1 (- 1 )  

Pn = --

, - + ( - 1 ) ' + · · · + -
1 ,- + 1 ,  for n � l ,  

n .  n .  . 

as in the conclusion of Example (3 .4 .3) with r = O. • 
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(1 1) Example. Matching and occupancy. The matching problem above is one of the sim­
plest of a class of problems involving putting objects randomly into containers .  In a general 
approach to such questions, we suppose that we are given a collection A = {Ai : 1 S i S n}  
of events, and we ask for properties of the random number X of these events which occur (in 
the previous example, Ai is the event that the ith letter is in the correct envelope, and X is 
the number of correctly placed letters) . The problem is to express the mass function of X in 
terms of probabilities of the form lP'(Ai1 n Ai2 n . . .  n Aim ) .  We introduce the notation 

the sum of the probabilities of the intersections of exactly m of the events in question. We 
make the convention that So = 1 .  It is easily seen as follows that 

(12) 

the mean value of the (random) binomial coefficient (!) : writing Nm for the number of 
sub-families of A having size m, all of whose component events occur, we have that 

Sm = L lE(lA'l fA'2 • • •  fA.m ) = lE(Nm ) ,  
i1 < · · · < im 

whereas Nm = (�) . It follows from ( 1 2) that 

(13) 

We introduce the generating functions 

n n 

Gs (x) = L Xm sm , Gx (x ) = L xilP'(X = i ) ,  
m=O i=O 

and we then multiply throughout ( 1 3 )  by xm and sum over m ,  obtaining 

Gs (x ) = � lP'(X = i )  L
m 

xm (�) = � ( 1  + x) ilP'(X = i )  = Gx ( 1  + x ) .  
I I 

Hence Gx (x ) = Gs (x - 1 ) ,  and equating coefficients of x i yields 

(14) lP'(X = i ) = 't (_ l )J-iG) SJ for O s i s n .  
J =l 

This formula, sometimes known as 'Waring's theorem' , is a complete generalization of certain 
earlier results, including ( 1 0) .  It may be derived without using generating functions, but at 
considerable personal cost. • 
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(15) Example. Recurrent events. Meteorites fall from the sky, your car runs out of fuel, 
there is a power failure, you fall ill . Each such event recurs at regular or irregular intervals; one 
cannot generally predict just when such an event will happen next, but one may be prepared 
to hazard guesses. A simplistic mathematical model is the following . We call the happening 
in question H, and suppose that, at each time point 1 ,  2, . . .  , either H occurs or H does not 
occur. We write X I for the first time at which H occurs, X I = min {n : H occurs at time n } ,  
and Xm for the time which elapses between the (m - l )th and mth occurrence of H . Thus 
the mth occurrence of H takes place at time 

(16) 

Here are our main assumptions .  We assume that the ' inter-occurrence' times X I , X2 , . . .  are 
independent random variables taking values in { I ,  2, . . .  } ,  and furthermore that X2 , X3 , . . .  
are identically distributed. That is to say, whilst we assume that inter-occurrence times are 
independent and identically distributed, we allow the time to the first occurrence to have a 
special distribution. 

Given the distributions of the Xi , how may we calculate the probability that H occurs at 
some given time? Define Un = W'(H occurs at time n) . We have by conditioning on Xl that 

(17) 
n 

Un = LW'(Hn I Xl = i )W'(XI = i ) ,  
i=l 

where Hn is the event that H occurs at time n .  Now 

using the 'translation invariance' entailed by the assumption that the Xi , i 2: 2, are independent 
and identically distributed. A similar conditioning on X2 yields 

(18) 
m- l 

W'(Hm I HI ) = L W'(Hm I HI , X2 = j )W'(X2 = j ) 
j=l 
m- I 

= L W'(Hm-j I HI )W'(X2 = j ) 
j=1 

for m 2: 2, by translation invariance once again . Multiplying through ( 1 8) by xm- l and 
summing over m ,  we obtain 

(19) 
00 00 
L xm- IW'(Hm I HI ) = E(XX2 ) Lxn- I W'(Hn I HI ) , 
m=2 n=l 

so that GH (X)  = L�=I xm- I W'(Hm I HI ) satisfies GH (X)  - 1 = F(X )GH (X ) ,  where F(x) 
i s  the common probability generating function of the inter-occurrence times, and hence 

(20) 
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Returning to ( 1 7), we obtain similarly that U(x) = L�1 xn Un satisfies 

(21) 
D(x)  

U (x )  = D(X )GH (X )  = ---
1 - F(x)  

where D(x)  i s  the probability generating function of X I . Equation (2 1 )  contains much of the 
information relevant to the process, since it relates the occurrences of H to the generating 
functions of the elements of the sequence X I , X 2 , . . . .  We should like to extract information 
out of (2 1 ) about Un = IP'(Hn ) ,  the coefficient of xn in U(x) ,  particularly for large values of n .  

I n  principle, one may expand D(x)/ [ l - F(x) ]  a s  a polynomial i n  x i n  order to find U n ,  
but this i s  difficult i n  practice .  There i s  one special situation i n  which this may be  done with 
ease, and this is the situation when D(x) is the function D = D* given by 

(22) * 
1 - F(x)  

D (x ) = for I x I < 1 ,  
1t ( 1  - x)  

and It = E(X2) i s  the mean inter-occurrence time. Let u s  first check that D* i s  indeed a 
suitable probability generating function. The coefficient of xn in D* is easily seen to be 
(1 - It - h - . . .  - fn ) /  It , where fi = IP'(X2 = i ) .  This coefficient is non-negative since 
the fi form a mass function; furthermore, by L'H6pital 's rule, 

D* ( 1 )  = lim 
1 - F(x)  

= lim 
_F' (X ) 

= 1 
x t l 1t( 1  - x) x t l -It 

since F' ( I )  = It , the mean inter-occurrence time. Hence D* (x )  is indeed a probability 
generating function, and with this choice for D we obtain that U = U* where 

(23) U* (x ) = 
1 

1t ( 1  - x)  

from (2 1 ) . Writing U*(x)  = Ln u�xn we find that u� = It- I for all n . That i s  to say, for 
the special choice of D* , the corresponding sequence of the u� is constant, so that the density 
of occurrences of H is constant as time passes. This special process is called a stationary 
recurrent-event process. 

How relevant is the choice of D to the behaviour of Un for large n? Intuitively speaking, the 
choice of distribution of XI should not affect greatly the behaviour of the process over long 
time periods, and so one might expect that Un � It- I as n � 00, irrespective of the choice of 
D. This is indeed the case, so long as we rule out the possibility that there is 'periodicity ' in 
the process. We call the process non-arithmetic if gcd{n : IP'(X2 = n) > O} = 1 ;  certainly the 
process is non-arithmetic if, for example, IP'(X2 = 1 )  > O. Note that gcd stands for greatest 
common divisor. 

(24) Renewal theorem. If the mean inter-occurrence time It is finite and the process is non­
arithmetic, then Un = IP'(Hn )  satisfies Un � It- I as n � 00. 

Sketch proof. The classical proof of this theorem is a purely analytical approach to the 
equation (2 1 ) (see Feller 1 968, pp. 335-8) .  There is a much neater probabilistic proof using 
the technique of 'coupling' .  We do not give a complete proof at this stage, but merely a 
sketch. The main idea is to introduce a second recurrent-event process, which is stationary 
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and independent of the first. Let X = {Xi : i :::: I }  be the first and inter- occurrence times 
of the original process, and let X* = {Xi : i :::: 1 }  be another sequence of independent 
random variables, independent of X, such that Xi ,  X; , . . .  have the common distribution of 
X2 , X3 , . . .  , and Xi has probability generating function D* . Let Hn and H; be the events that 
H occurs at time n in the first and second process (respectively), and let T = min {n : Hn n H; 
occurs} be the earliest time at which H occurs simultaneously in both processes. It may be 
shown that T < 00 with probability 1 ,  using the assumptions that /L < 00 and that the 
processes are non-arithmetic ; it is intuitively natural that a coincidence occurs sooner or later, 
but this is not quite so easy to prove, and we omit a rigorous proof at this point, returning to 
complete the job in Example (5 . 1 0.2 1 ) . The point is that, once the time T has passed, the 
non-stationary and stationary recurrent-event processes are indistinguishable from each other, 
since they have had simultaneous occurrences of H .  That is to say, we have that 

Un = JP'(Hn I T S n)JP'(T S n) + JP'(Hn I T > n)JP'(T  > n) 
= JP'(H; I T S n)JP'(T S n) + JP'(Hn I T > n)JP'(T > n) 

since, if T S n ,  then the two processes have already coincided and the (conditional) probability 
of Hn equals that of H; . Similarly 

U� = JP'(H; I T S n)JP'(T S n) + JP'(H; I T > n)JP'(T > n) , 

so that I Un - u� 1 S JP'(T > n) -+ 0 as n -+ 00. However, u� = /L- I for all n, so that 
Un -+ /L- I as n -+ 00. • 

Exercises for Section 5 . 2  

1 .  Let X be the number o f  events i n  the sequence A I , A2 , " " A n  which occur. Let Sm = E (!) , 
the mean value of the random binomial coefficient (!) ,  and show that 

� . . (j - l) JP'(X :::: i ) = L-- (_1)l - I . Sj , 
. . I - I 
J =l 

n ( . 1 ) where Sm = L } - JP'(X :::: j ) ,  
m - 1 j=m 

for 1 S i S n ,  

for 1 S m S n .  

2. Each person i n  a group o f  n people chooses another at random. Find the probability : 
(a) that exactly k people are chosen by nobody, 
(b) that at least k people are chosen by nobody. 
3. Compounding. 
(a) Let X have the Poisson distribution with parameter Y, where Y has the Poisson distribution with 

parameter /-L. Show that G x+y (x) = exp {/-L (xex- 1 - I ) } .  
(b) Let Xl , X2 , . . .  be independent identically distributed random variables with the logarithmic 

mass function 
k _ ( 1 - p)k f ( ) - k log(1 /p) ' k :::: 1 ,  

where 0 < p < 1 .  If N i s  independent o f  the X i  and has the Poisson distribution with parameter 
/-L, show that Y = ��l Xi has a negative binomial distribution. 
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4. Let X have the binomial distribution with parameters n and p, and show that 

E (_
1
_
) = 1 - ( 1 - p)n+l 

I + X (n + l)p 

Find the limit of this expression as  n � 00 and p � 0, the limit being taken in such a way that 
np � A where 0 < A < 00. Comment. 
S. A coin is tossed repeatedly, and heads turns up with probability p on each toss . Let hn be 
the probability of an even number of heads in the first n tosses, with the convention that 0 is an 
even number. Find a difference equation for the hn and deduce that they have generating function 
H (1 + 2ps - s)- l + (1 - s)- l } .  
6. An unfair coin i s  flipped repeatedly, where IP'(H) = P = 1 - q .  Let X be the number of flips 
until HTH first appears, and Y the number of flips until either HTH or THT appears. Show that 
E(sx ) = (p2qs3 ) / ( 1  - s + pqs2 - pq2s3 ) and find E(sY) .  
7 .  Matching again. The pile o f  (by now dog-eared) letters i s  dropped again and enveloped at 
random, yielding Xn matches .  Show that IP'(Xn = j ) = (j + 1 )IP'(Xn+ l = j + 1 ) .  Deduce that the 
derivatives of the Gn (s ) = E(sxn )  satisfy G�+l = Gn , and hence derive the conclusion of Example 
(3 .4.3), namely: 

IP'(Xn = r) = - - - - + . . .  + . 1 ( 1 1 ( _ l )n-r ) 
r !  2 !  3 !  (n - r) !  

8. Let X have a Poisson distribution with parameter A ,  where A is exponential with parameter /-t. 
Show that X has a geometric distribution. 
9. Coupons. Recall from Exercise (3 .3 .2) that each packet of an overpriced commodity contains a 
worthless plastic object. There are four types of object, and each packet is equally likely to contain 
any of the four. Let T be the number of packets you open until you first have the complete set. Find 
E(sT )  and IP'(T = k) . 

5.3 Random walk 

Generating functions are particularly valuable when studying random walks. As before, we 
suppose that Xl , X2 , . . .  are independent random variables, each taking the value 1 with 
probability p, and - 1  otherwise, and we write Sn = I:7=1 Xi ; the sequence S = {Si : i :::: O} 
is a simple random walk starting at the origin. Natural questions of interest concern the 
sequence of random times at which the particle subsequently returns to the origin. To describe 
this sequence we need only find the distribution of the time until the particle returns for the 
first time, since subsequent times between consecutive visits to the origin are independent 
copies of this .  

Let po Cn) = IP'CSn = 0) be the probability of being at the origin after n steps, and let 
fo Cn) = IP'CSI =1= 0, . . . , Sn- l =1= 0, Sn = 0) be the probability that the first return occurs 
after n steps . Denote the generating functions of these sequences by 

00 00 
Po Cs) = L po Cn)sn , Fo Cs ) = L fo Cn)sn . 

n=O n=l 

Fo is the probability generating function of the random time To until the particle makes its 
first return to the origin . That is Fo Cs) = ECsTO ) .  Take care here : To may be defective, and so 
it may be the case that Fo C I ) = IP'CTo < 00) satisfies Fo C I ) < 1 .  



(1) Theorem. We have that : 
(a) Po (s) = 1 + Po (s) Fo (s ), 
(b) Po (s ) = (1 - 4pqs2)- ! ,  
(c) Fo (s ) = 1 - ( 1  - 4pqs2) ! .  
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Proof. (a) Let A be the event that Sn = 0, and let Bk be the event that the first return to the 
origin happens at the kth step . Clearly the Bk are disjoint and so, by Lemma ( 1 .4.4), 

n 
lP'(A) = LlP'(A I Bk)lP'(Bk ) . 

k=l 

However, lP'(Bk) = fo (k) and lP'(A I Bk) = po(n - k) by temporal homogeneity, giving 

(2) 
n 

po (n) = L po(n - k)fo (k) if n � 1 .  
k=l 

Multiply (2) by sn , sum over n remembering that po (O) = 1 ,  and use the convolution property 
of generating functions to obtain Po (s) = 1 + Po (s) Fo (s ) .  

(b) Sn = 0 if and only if the particle takes equal numbers of steps to the left and to the right 
during its first n steps. The number of ways in which it can do this is ( l.nn) and each such way 

2 
occurs with probability (pq)n/2 , giving 

(3) 

We have that po(n) = 0 if n is odd. This sequence (3) has the required generating function 
Po (s) .  

(c) This follows immediately from (a) and (b). • 

(4) Corollary. 
(a) The probability that the particle ever returns to the origin is 

00 
L fo (n) = Fo ( 1 )  = 1 - I p - q l · 
n= ] 

(b) If eventual return is certain, that is Fo ( 1 )  = 1 and p = i, then the expected time to the 
first return is 

00 
Lnfo (n) = F� ( l )  = 00.  
n= !  

We call the process persistent (or recurrent) i f  eventual return to the origin is (almost) 
certain; otherwise it is called transient. It is immediately obvious from (4a) that the process 
is persistent if and only if p = i .  This is consistent with our intuition, which suggests that if 
p > i or p < i ,  then the particle tends to stray a long way to the right or to the left of the 
origin respectively. Even when p = i the time until first return has infinite mean. 
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Proof. (a) Let s t 1 in ( l c), and remember equation (5 . 1 .30). 
(b) Eventual return is certain if and only if p = i . But then the generating function of the 

time To to the first return is Fo (s ) = 1 - ( l - s2) ! and lE(To) = limst l F� (s ) = 00. • 

Now let us consider the times of visits to the point r .  Define 

Ir (n) = lP'(SI =1= r, . . .  , Sn- I =1= r, Sn = r) 

to be the probability that the first such visit occurs at the nth step, with generating function 
Fr (s ) = L�I Ir (n)sn . 

(5) Theorem. We have that: 
(a) Fr (s ) = [FI (s )Y lor r 2: 1 ,  
(b) FI (s ) = [ 1 - ( 1 - 4pqs2) ! ] / (2qs) . 

Proof. (a) The same argument which yields (2) also shows that 

n- l 
Ir (n) = L lr- l (n - k)/l (k) if r > 1 . 

k= 1 

Multiply by sn and sum over n to obtain 

We could have written this out in terms of random variables instead of probabilities, and then 
used Theorem (5 . 1 .23) . To see this, let Tr = min{n : Sn = r } be the number of steps taken 
before the particle reaches r for the first time (Tr may equal +00 if r > 0 and p < i or if 
r < 0 and p > i). In order to visit r , the particle must first visit the point 1 ;  this requires n 
steps. After visiting 1 the particle requires a further number, TI , r say, of steps to reach r ;  TI , r  
is distributed in the manner of Tr- I by ' spatial homogeneity ' .  Thus 

if n = 00, 

if TI < 00, 

and the result follows from (5 . 1 .23) . Some difficulties arise from the possibility that TI = 00, 
but these are resolved fairly easily (exercise) . 

(b) Condition on X I to obtain, for n > 1 ,  

lP'(TI = n) = lP'(TI = n I XI = l ) p + lP'(TI = n  I XI = - 1 )q 
= O ·  P + lP'(first visit to 1 takes n - 1 steps I So = - 1 ) . q 

= lP'(T2 = n - l )q 
= q/2(n - 1 ) .  

by temporal homogeneity 
by spatial homogeneity 

Therefore II (n) = q/2 (n - 1 )  if n > 1 ,  and II ( 1 )  = p. Multiply by sn and sum to obtain 
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by (a) . Solve this quadratic to find its two roots . Only one can be a probability generating 
function ; why? (Hint: Fl (0) = 0.) • 

(6) Corollary. The probability that the walk ever visits the positive part of the real axis is 
l - I p - q l FI ( 1 )  = = min{ l ,  p/q } .  2q 

Knowledge of Theorem (5) enables us to calculate Fo (s ) directly without recourse to ( 1 ) . 
The method of doing this relies upon a symmetry within the collection of paths which may be 
followed by a random walk. Condition on the value of X 1 as usual to obtain 

fo (n) = qfl (n - 1 )  + pf- I (n - 1 )  

and thus 
Fo (s ) = qsFI (s ) + pSF- l (S ) .  

We need to find F - I  (s ) .  Consider any possible path Jr that the particle may have taken to arrive 
at the point - 1 and replace each step in the path by its mirror image, positive steps becoming 
negative and negative becoming positive, to obtain a path Jr * which ends at + 1 .  This operation 
of reflection provides a one-one correspondence between the collection of paths ending at 
- 1  and the collection of paths ending at + 1 .  If JP'(Jr ; p, q) is the probability that the particle 
follows Jr when each step is to the right with probability p, then JP'(Jr ; p, q ) = JP'(Jr * ;  q ,  p) ; 
thus 

1 - ( 1  - 4pqs2) �  F_ I (s ) = , 2ps 
giving that Fo (s ) = 1 - ( 1  - 4pqs2) �  as before. 

We made use in the last paragraph of a version of the reflection principle discussed in 
Section 3 . 1 0. Generally speaking, results obtained using the reflection principle may also be 
obtained using generating functions, sometimes in greater generality than before. Consider 
for example the hitting time theorem (3 . 1 0. 14) :  the mass function of the time n of the first 
visit of S to the point b is given by 

I b l b 'f JP'(n = n) = -JP'(Sn = ) 1 n 2: 1 .  n 
We shall state and prove a version of this for random walks of a more general nature. Consider 
a sequence XI , X 2 , . . .  of independent identically distributed random variables taking values 
in the integers (positive and negative) .  We may think of Sn = XI + X2 + . . .  + Xn as being 
the nth position of a random walk which takes steps Xi ; for the simple random walk, each Xi 
is required to take the values ±1  only. We call a random walk right-continuous (respectively 
left-continuous) if JP'(Xi S 1 ) = 1 (respectively JP'(Xi 2: - 1 ) = 1 ) , which is to say that 
the maximum rightward (respectively leftward) step is no greater than 1 .  In order to avoid 
certain situations of no interest, we shall consider only right-continuous walks (respectively 
left-continuous walks) for which JP'(Xi = 1 )  > 0 (respectively JP'(Xi = - 1 )  > 0). 

(7) Hitting time theorem. Assume that S is a right-continuous random walk, and let n be 
the first hitting time of the point b. Then 

b JP'(n = n) = -JP'(Sn = b) for b , n 2: 1 .  n 



1 66 5 . 3  Generating functions and their applications 

For left-continuous walks, the conclusion becomes 

(8) 
b 

IP'(Lb = n) = -1P'(Sn = -b) for b , n � 1 .  n 

Proof. We introduce the functions 

1 00 
G(z) = E(z-x l ) = L z-nlP' (X l = n) , Fb (Z)  = E(zn ) = L znlP'(n = n) .  

n=-oo n=O 

These are functions of the complex variable z .  The function G(z ) has a simple pole at the 
origin, and the sum defining Fb (Z) converges for I z l < 1 .  

Since the walk is assumed to be right-continuous, in order to reach b (where b > 0) it 
must pass through the points 1 ,  2, . . .  , b - 1 .  The argument leading to (Sa) may therefore be 
applied, and we find that 

(9) 

The argument leading to (5b) may be expressed as 

since, conditional on X l , the further time required to reach 1 has the same distribution as 
TI -Xl • Now 1 - X 1 � 0, and therefore 

yielding 

(10) 
1 

z = G(w) 

where 

(11) w = w(z) = Fl (z) .  

Inverting ( 1 0) to find Fl (z ) ,  and hence Fb (Z) = Fl (z)b , is a standard exercise in complex 
analysis using what is called Lagrange's inversion formula. 

(12) Theorem. Lagrange's inversion formula. Let z = w/f (w) where w/f (w) is an 
analytic function of w on a neighbourhood of the origin. If g is infinitely differentiable, then 

(13) 
00 1 [ dn- 1 ] g(w(z» = g (O) + L ,zn d n- l [g

' (u)f (ut ] . 
n= l n . u u=O 

We apply this as follows .  Define w = Fl (z) and few) = wG(w) , so that ( 1 0) becomes 
z = w/f (w) . Note that f ew) = E(w l-Xl ) which, by the right-continuity of the walk, is a 
power series in w which converges for I w l < 1 . Also f (O) = IP'(X I = 1 )  > 0, and hence 



5 .3 Random walk 1 67 

wi f(w) is analytic on a neighbourhood of the origin. We set g (w) = wb (= Fl (z)b = Fb (Z) , 
by  (9)). The inversion formula now yields 

(14) 

where 

00 1 Fb (Z ) = g(w(z) ) = g (O) + '" _zn Dn � n !  n=l 

dn- 1 I Dn = d n- l [bu
b- 1 unG(u )n ] . 

U u=O 
We pick out the coefficient of zn in ( 14) to obtain 

(15) 
1 

lP'(n = n) = - Dn for n :::: 1 .  n !  

dn- 1 ( n ) I Dn = dun- 1 b 
i
];
oo 
ub+n- l -ilP'(Sn = i ) 

u=O 
= b (n - l ) !lP'(Sn = b) , 

which may b e  combined with ( 1 5) as required. • 

Once we have the hitting time theorem, we are in a position to derive a magical result 
called Spitzer's identity, relating the distributions of the maxima of a random walk to those 
of the walk itself. This identity is valid in considerable generality ; the proof given here uses 
the hitting time theorem, and is therefore valid only for right-continuous walks (and mutatis 
mutandis for left-continuous walks and their minima) . 

(16) Theorem. Spitzer's identity. Assume that S is a right-continuous random walk, and let 
Mn = max{Si : 0 S i S n } be the maximum of the walk up to time n. Then, for ls i , I t I < 1 , 

(17) 

where s;t = max{O, Sn } as usual. 
This curious and remarkable identity relates the generating function of the probability 

generating functions of the maxima Mn to the corresponding object for s;t .  It contains full 
information about the distributions of the maxima. 

Proof. Writing Ii (n) = lP'(1j = n) as in Section 3 . 1 0, we have that 

(18) 
n 

lP'(Mn = k) = L fk (j)lP'(TI > n - j )  for k :::: 0, 
j=O 

since M n = k if the passage to k occurs at some time j (S n), and in addition the walk does 
not rise above k during the next n - j steps ;  remember that Tl = 00 if no visit to 1 takes 
place. Multiply throughout ( 1 8) by sk tn (where l s i ,  I t I S 1 ) and sum over k ,  n :::: O to obtain 
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by the convolution formula for generating functions. We have used the result of Exercise 
(5 . 1 .2) here; as usual, Fk (t) = lE(tn ) .  Now Fk (t) = F] (t)k , by (9), and therefore 

(19) 

where 

(20) 

00 I:>nlE(sMn )  = D(s ,  t) 
n=O 

1 - F] (t) 
D (s , t) = -------'-'----­

( 1  - t) ( 1  - sF] (t» 

We shall find D(s ,  t) by finding an expression for aD/at and integrating with respect to t . 
By the hitting time theorem, for n 2: 0, 

(21) 
n 

nlP'(TJ = n ) = lP'(Sn = 1 )  = L lP'(T] = j )lP'(Sn-j = 0) , 
j=O 

as usual ;  mUltiply throughout by tn and sum over n to obtain that t F{ (t) = F] (t) Po (t) .  Hence 

(22) 
a -sF{ (t) s � k k - log [ 1 - s F] (t ) ] = = - - F] (t )Po (t) � s F] (t) 
at l - s F] (t) t 00 k 

= - L St Fk (t )PO (t) 
k= l 

k=O 

by (9). Now Fk (t)PO (t) is the generating function of the sequence 

n 
L lP'(Tk = j )lP'(Sn-j = 0) = lP'(Sn = k) 
j=O 

as in (2 1 ) , which implies that 

Hence 

a 00 00 
a t 

10g [ l - sF] (t)] = - L tn- ] L sklP'(Sn = k) . 
n= ] k= ] 

a a a a 
- log D(s ,  t) = - - log( l  - t) + - log[ 1 - Fl (t) ] - - log[ 1 - s Fl (t)] at at a t  a t  00 ( 00  00 

) = L tn- 1 1 - L lP'(Sn = k) + L sklP'(Sn = k) 
n= l k= ] k= l  

Integrate over t ,  noting that both sides of ( 1 9) equal 1 when t = 0, to obtain ( 17) . • 



5 .3 Random walk 1 69 

For our final example of the use of generating functions, we return to simple random walk, 
for which each jump equals 1 or - 1 with probabilities p and q = 1 - p. Suppose that we are 
told that S2n = 0, so that the walk is 'tied down ' , and we ask for the number of steps of the 
walk which were not within the negative half-line. In the language of gambling, L2n is the 
amount of time that the gambler was ahead of the bank. In the arc sine law for sojourn times, 
Theorem (3 . 1 0.2 1 ) , we explored the distribution of L2n without imposing the condition that 
S2n = O. Given that S2n = 0, we might think that L2n would be about n, but, as can often 
happen, the contrary turns out to be the case. 

(23) Theorem. Leads for tied-down random walk. For the simple random walk S, 

1 IP'(L2n = 2k I S2n = 0) = --, k = 0, 1 , 2 , . . .  , n . n + l 

Thus each possible value of L2n is equally likely. Unlike the related results of Section 3 . 1 0, 
we prove this using generating functions. Note that the distribution of L2n does not depend 
on the value of p. This is not surprising since, conditional on {S2n = O} ,  the joint distribution 
of So , Sl , . . .  , S2n does not depend on p (exercise) . 
Proof. Assume l s i ,  I t I < 1 ,  and define G2n (S ) = JE(sL2n I S2n = 0) , Fo (s ) = JE(sTO ) , and 
the bivariate generating function 

00 
R(s , t) = L t2nlP'(S2n = 0)G2n (S ) .  

n=O 

By conditioning on the time of the first return to the origin, 

n 
(24) G2n (S ) = LJE(sL2n I S2n = 0, To = 2r)lP'(To = 2r I S2n = 0) . 

r=l 

We may assume without loss of generality that p = q = i, so that 

since, under these conditions, L2r has (conditional) probability i of being equal to either 0 or 
2r . Also 

IP'(To = 2r)IP'(S2n-2r = 0) 
IP'(To = 2r I S2n = 0) = , IP'(S2n = 0) 

so that (24) becomes 

Multiply throughout by t2nlP'(S2n = 0) and sum over n :::: 1 ,  to find that 

R(s , t) - 1 = iR es , t ) [Fo (t) + Fo (st) ] . 
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after a little work using ( lb) . We deduce that G2n CS ) = L�=o Cn + 1 ) - 1 s2k , and the proof is 
finished. • 

Exercises for Section 5 . 3  

1. For a simple random walk S with So = 0 and p = 1 - q < 1 ,  show that the maximum 
M = max {Sn : n 2: O} satisfies IP'(M 2: r) = (p/q/ for r 2: O. 
2. Use generating functions to show that, for a symmetric random walk, 
(a) 2kfo (2k) = IP'(S2k-2 = 0) for k 2: 1, and 
(b) IP'(SI S2 . . . S2n =I 0) = IP'(S2n = 0) for n 2: 1 .  
3. A particle performs a random walk on the comers of the square ABeD. At each step, the probability 
of moving from comer c to comer d equals Pcd , where 

PAB = PBA = PCD = PDC = a, PAD = PDA = PBC = PCB = fJ, 

and a, fJ > 0, a + fJ = 1 .  Let G A (s ) be the generating function of the sequence (p AA (n) : n 2: 0) , 
where p AA (n) is the probability that the particle is at A after n steps, having started at A. Show that 

Hence find the probability generating function of the time of the first return to A. 
4. A particle performs a symmetric random walk in two dimensions starting at the origin: each 
step is of unit length and has equal probability ! of being northwards, southwards, eastwards, or 
westwards. The particle first reaches the line x + y = m at the point (X, Y) and at the time T . Find 
the probability generating functions of T and X - Y, and state where they converge. 
5. Derive the arc sine law for sojourn times, Theorem (3 . 10 .2 1 ) , using generating functions. That 
is to say, let L2n be the length of time spent (up to time 2n) by a simple symmetric random walk to 
the right of its starting point. Show that 

IP'(L2n = 2k) = IP'(S2k = 0)IP'(S2n-2k = 0) for O � k � n . 

6. Let {Sn : n 2: O} be a simple symmetric random walk with So = 0, and let T = min{n > 0 : 
Sn = O} .  Show that 

E (min {T, 2m } ) = 2E I S2m l = 4mlP'(S2m = 0) for m 2: O. 

7. Let Sn = L:�=o Xr be a left-continuous random walk on the integers with a retaining barrier 
at zero. More specifically, we assume that the Xr are identically distributed integer-valued random 
variables with X I 2: - 1 , IP'(X I = 0) =I 0, and 

{ Sn + Xn+l  i f  Sn > 0 ,  
Sn+ 1 = . 

Sn + Xn+1 + 1 If Sn = O. 
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Show that the distribution of So may be chosen i n  such a way that E(zSn ) = E(zSO) for all n, if and 
only if E(X 1 )  < 0, and in this case 

S (1 - z)E(X j )E(zX 1 ) E(z n ) = 
1 _ E(ZXl )  

8. Consider a simple random walk starting at 0 in which each step is to the right with probability 
p (= 1 - q) .  Let n be the number of steps until the walk first reaches b where b > O. Show that 
E(n I n < 00) = bl i p - q l · 

5.4 Branching processes 

Besides gambling, many probabilists have been interested in reproduction . Accurate models 
for the evolution of a population are notoriously difficult to handle, but there are simpler 
non-trivial models which are both tractable and mathematically interesting. The branching 
process is such a model. Suppose that a population evolves in generations, and let Zn be the 
number of members of the nth generation . Each member of the nth generation gives birth to 
a family, possibly empty, of members of the (n + l )th generation ; the size of this family is a 
random variable. We shall make the following assumptions about these family sizes: 

(a) the family sizes of the individuals of the branching process form a collection of inde­
pendent random variables; 

(b) all family sizes have the same probability mass function f and generating function G. 
These assumptions, together with information about the distribution of the number Zo of 

founding members, specify the random evolution of the process . We assume here that Zo = 1 . 
There is nothing notably human about this model, which may be just as suitable a description 
for the growth of a population of cells, or for the increase of neutrons in a reactor, or for the 
spread of an epidemic in some popUlation . See Figure 5 . 1 for a picture of a branching process . 

r 
Zo = 1 

Zj = 2  

Z2 = 4 

I I I I 
Z3 = 6 

Figure 5 . 1 .  The family tree of a branching process .  

We are interested in the random sequence Zo , Zj , . . .  of generation sizes. Let Gn (s ) = 
E(sZn ) be the generating function of Zn . 
(1) Theorem. It is the case that Gm+n (s ) = Gm (Gn (s » = Gn (Gm (s», and thus Gn (s ) = 
G(G( . . .  (G(s» . . .  » is the n-fold iterate ofG. 
Proof. Each member of the (m + n)th generation has a unique ancestor in the mth generation . 
Thus 
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where Xi is the number of members of the (m + n)th generation which stem from the i th mem­
ber of the mth generation. This is the sum of a random number Zm of variables. These variables 
are independent by assumption (a) ; furthermore, by assumption (b) they are identically dis­
tributed with the same distribution as the number Zn of the nth-generation offspring of the 
first individual in the process . Now use Theorem (5 . 1 .25) to obtain Gm+n (s ) = Gm (GXl (s » 
where GXl (s ) = Gn (s ) . Iterate this relation to obtain 

and notice that G l  (s ) is what we called G (s ) . • 

In principle, Theorem ( 1 ) tells us all about Zn and its distribution, but in practice Gn (s ) 
may be hard to evaluate. The moments of Zn , at least, may be routinely computed in terms 
of the moments of a typical family size Z I .  For example : 

(2) Lemma. Let /L = lE(Z I )  and a2 = var(ZI ) . Then { na2 if/L = 1 , 
lE(Zn ) = /Ln , var(Zn ) = a2 (/Ln - 1 )/Ln- l if /L =J. 1 . /L - l 

Proof. Differentiate Gn (s ) = G(Gn- 1 (s» once at s = 1 to obtain lE(Zn ) = /LlE(Zn- l ) ; by 
iteration, lE(Zn) = /Ln . Differentiate twice to obtain 

G� ( l ) = Gil ( I )G�_ 1 ( 1 )2 + G' ( I )G�_ 1 ( 1 )  

and use equation (5 . 1 . 1 9) to obtain the second result. • 

(3) Example. Geometric branching. Suppose that each family size has the mass function 
f(k) = qpk , for k � 0, where q = 1 - p. Then G (s ) = q ( 1  - ps)- l , and each family size 
is one member less than a geometric variable. We can show by induction that { n - (n - l )s 

n + I - ns Gn (s ) = [ 1 1 ] q pn _ qn _ ps (pn- _ qn- ) 
pn+1 _ qn+ l _ ps (pn _ qn ) 

'f 1 1 p = q = '2 ' 

if p =J. q . 

This result can be useful in providing inequalities for more general distributions. What can 
we say about the behaviour of this process after many generations? In particular, does it 
eventually become extinct, or, conversely, do all generations have non-zero size? For this 
example, we can answer this question from a position of strength since we know Gn (s ) in 
closed form. In fact 

n 
if p = q ,  n + l 

q (pn _ qn) 
pn+ l _ qn+l if p =J. q . 

Let n -+ 00 to obtain { I  if p S q , 
IP'(Zn = 0) -+ lP'(ultimate extinction) = 

q/p if p > q . 
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We have used Lemma ( 1 .3 .5) here surreptitiously, since 

(4) {ultimate extinction} = U {Zn = O} 
n 

and An = {Zn = O} satisfies An S; An+ I ' • 

We saw in this example that extinction occurs almost surely if and only if f.J, = lEe Z 1 ) = p / q 
satisfies lE(ZI ) ::s 1 .  This is a very natural condition; it seems reasonable that if lE(Zn ) = 
lEe Z I )n ::s 1 then Zn = 0 sooner or later. Actually this result holds in general . 

(5) Theorem. As n -+ 00, JP>(Zn = 0) -+ JP>(ultimate extinction) = 1'/, say, where 11 is the 
smallest non-negative root oj the equation s = G(s). Also, 11 = 1 if f.J, < I, and 11 < 1 
if f.J, > 1. If jJ, = 1 then 11 = 1 so long as the jamily-size distribution has strictly positive 
variance. 

Prooft. Let 'f}n = IP'(Zn = 0) . Then, by ( 1 ) , 

'f}n = Gn (O) = G(Gn- 1 (0» = G('f}n- t } .  

In the light of the remarks about equation (4) we know that 'f}n t 'f} , and the continuity of G 
guarantees that 'f} = G('f}) . We show next that if 1/1 is any non-negative root of the equation 
s = G(s ) then 'f} ::s 1/1 .  Note that G is non-decreasing on [0, 1 ]  and so 

'f} I = G(O) ::s G(1/I) = 1/1. 

Similarly 
'f}2 = G('f} ] )  ::s G(1/I) = 1/1 

and hence, by induction, 'f}n :'S 1/1 for all n, giving 'f} :'S 1/1 .  Thus 'f} is the smallest non-negative 
root of the equation s = G(s ) . 

To verify the second assertion of the theorem, we need the fact that G is convex on [0, 1 ] .  
This holds because 

So G is convex and non-decreasing on [0, 1] with G( l ) = 1 .  We can verify that the two 
curves y = G(s) and y = s generally have two intersections in [0, 1 ] ,  and these occur at 
s = 'f} and s = 1 .  A glance at Figure 5 .2  (and a more analytical verification) tells us that 
these intersections are coincident if f.J, = G'( 1 )  < 1 .  On the other hand, if f.J, > 1 then these 
two intersections are not coincident . In the special case when f.J, = 1 we need to distinguish 
between the non-random case in which 0'2 = 0, G(s ) = s, and 'f} = 0, and the random case 
in which 0'2 > 0, G(s ) > s for O ::S s < 1 ,  and 'f} = 1 .  • 

tThis method of solution was first attempted by H. W. Watson in 1 873 in response to a challenge posed by 
F. Galton in the April I edition of the Educational Times. For this reason, a branching process is sometimes 
termed a 'Galton-Watson process ' .  The correct solution in modem format was supplied by J. F. Steffensen in 
1 930; I. J. B ienayme and J. B. S .  Haldane had earlier realized what the extinction probability should be, but 
failed to provide the required reasoning. 



1 74 

y 

1 

TJ 

5 .4 Generating functions and their applications 

/ 
/ 

/ TJ s 

Figure 5 .2. A sketch of G (s)  showing the roots of the equation G (s)  = s .  

We have seen that, for large n ,  the nth generation is empty with probability approaching 
TJ .  However, what if the process does not die out? If JE( Z 1 ) > 1 then TJ < 1 and extinction is 
not certain. Indeed JE(Zn )  grows geometrically as n -+ 00, and it can be shown that 

JP>(Zn -+ 00 I non-extinction) = 1 

when this conditional probability is suitably interpreted . To see just how fast Zn grows, we 
define Wn = Zn /JE(Zn )  where JE(Zn)  = J-Ln , and we suppose that J-L > 1 .  Easy calculations 
show that 

and it seems that Wn may have some non-trivial limitt , called W say. In order to study W, 
define gn (s ) = JE(sWn ) .  Then 

and ( 1 )  shows that gn satisfies the functional recurrence relation 

Now, as n -+ 00, we have that Wn -+ W and gn (s ) -+ g (s )  = JE(s w) ,  and we obtain 

(6) 

tWe are asserting that the sequence { Wn }  of variables converges to a limit variable W. The convergence of 
random variables is a complicated topic described in Chapter 7. We overlook the details for the moment. 
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by abandoning some of our current notions of mathematical rigour. This functional equation 
can be established rigorously (see Example (7 . 8 .5)) and has various uses . For example, 
although we cannot solve it for g,  we can reach such conclusions as 'if lE(Zf ) < 00 then W 
is continuous, apart from a point mass of size rJ at zero' . 

We have made considerable progress with the theory of branching processes . They are 
reasonably tractable because they satisfy the Markov condition (see Example (3 .9 .5)) .  Can 
you formulate and prove this property? 

Exercises for Section 5 .4 

1. Let Zn be the size ofthe nth generation in an ordinary branching process with Zo = 1 ,  E(Z] ) = J-t , 
and var(Z] ) > O. Show that E(Zn Zm ) = J-tn-mE(Z� ) for m :s n . Hence find the correlation 
coefficient p (Zm , Zn ) in terms of J-t . 
2. Consider a branching process with generation sizes Zn satisfying Zo = 1 and IP'(ZI = 0) = O. 
Pick two individuals at random (with replacement) from the nth generation and let L be the index of 
the generation which contains their most recent common ancestor. Show that IP'(L = r ) = E(Z;:- I ) -
E(Z;� ] ) for O :s  r < n. What can be said if lP'(Z] = 0) > O? 

3. Consider a branching process whose family sizes have the geometric mass function J (k) = qpk , k :::: 0, where p + q = 1 ,  and let Zn be the size of the nth generation. Let T = min{n : Zn = O} be 
the extinction time, and suppose that Zo = 1 .  Find IP'(T = n) .  For what values of p is it the case that 
E(T) < oo? 

4. Let Zn be the size of the nth generation of a branching process, and assume Zo = 1 .  Find an 
expression for the generating function Gn of Zn , in the cases when Z ]  has generating function given 
by: 
(a) G (s ) = l - a ( l - s )f3 , 0 < a, {3 < 1 .  
(b) G (s ) = J- I { P (f (s ) ) } ,  where P is a probability generating function, and J is a suitable function 

satisfying J ( I )  = 1 .  
(c) Suppose i n  the latter case that J (x) = xm and p es )  = s ly - (y - l )s }- I where y > 1 .  Calculate 

the answer explicitly. 
5. Branching with immigration. Each generation of a branching process (with a single progenitor) 
is augmented by a random number of immigrants who are indistinguishable from the other members 
of the popUlation. Suppose that the numbers of immigrants in different generations are independent 
of each other and of the past history of the branching process, each such number having probability 
generating function H (s ) .  Show that the probability generating function Gn of the size of the nth 
generation satisfies Gn+ 1 (s ) = Gn (G (s»H (s ) ,  where G is the probability generating function of a 
typical family of offspring. 
6. Let Zn be the size of the nth generation in a branching process with E(sZJ )  = (2 - s)- ] 
and Zo = 1 .  Let Vr be the total number of generations of size r .  Show that E(Vl )  = in2 , and 
E(2V2 - V3 ) = in2 - Jon4 . 

5.5 Age-dependent branching processes 

Here is a more general model for the growth of a population. It incorporates the observation 
that generations are not contemporaneous in most popUlations; in fact, individuals in the same 
generation give birth to families at different times. To model this we attach another random 
variable, called 'age' , to each individual; we shall suppose that the collection of all ages is 
a set of variables which are independent of each other and of all family sizes, and which 
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4 Z (4) = 5 

5 
Z (5 ! ) = 6 

Time 

Figure 5 . 3 .  The family tree of an age-dependent branching process ; • indicates the birth of an 
individual, and 0 indicates the death of an individual which has no descendants. 

are continuous, positive, and have the common density function fr .  Each individual lives 
for a period of time, equal to its 'age' , before it gives birth to its family of next-generation 
descendants as before. See Figure 5 . 3  for a picture of an age-dependent branching process. 

Let Z (t) denote the size of the population at time t; we shall assume that Z(O) = 1 .  The 
population-size generating function Gt (s ) = lE(sz(t» is now a function of t as well. As usual, 
we hope to find an expression involving Gt by conditioning on some suitable event. In this 
case we condition on the age of the initial individual in the population . 

(1) Theorem. Gt (s ) = fo t 
G ( Gt-u (s ) )fr (u) du + [00 sfr (u ) duo 

Proof. Let T be the age of the initial individual . By the use of conditional expectation, 

If T = u, then at time u the initial individual dies and is replaced by a random number N of 
offspring, where N has generating function G. Each of these offspring behaves in the future 
as their ancestor did in the past, and the effect of their ancestor's death is to replace the process 
by the sum of N independent copies of the process displaced in time by an amount u. Now if 
u > t then Z (t) = 1 and lE(s z(t) I T = u) = s , whilst if u < t then Z (t) = YI + Y2 + - . .  + YN 
is the sum of N independent copies of Z(t - u) and so lE(s z(t) I T = u) = G(Gt-u (s» by 
Theorem (5 . 1 .25) . Substitute into (2) to obtain the result. • 

Unfortunately we cannot solve equation ( 1 )  except in certain special cases. Possibly the 
most significant case with which we can make some progress arises when the ages are ex­
ponentially distributed. In this case, fr (t) = Ae-At for t :::: 0, and the reader may show 
(exercise) that 

(3) 
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It is no mere coincidence that this case is more tractable. In this very special instance, and in 
no other, Z(t) satisfies a Markov condition; it is called a Markov process, and we shall return 
to the general theory of such processes in Chapter 6. 

Some information about the moments of Z(t) is fairly readily available from ( 1 ) . For 
example, 

satisfies the integral equation 

m et) = JE(Z (t» = lim � Gt (s ) 
s t l as 

(4) met) = f.L fo t 
met - u)fr (u) du + [00 

fr(u) du where f.L = Gt ( I ) .  

We can find the general solution to this equation only by numerical or series methods. It is 
reasonably amenable to Laplace transform methods and produces a closed expression for the 
Laplace transform of m .  Later we shall use renewal theory arguments (see Example ( 1 0.4 .22» 
to show that there exist 0 > 0 and fJ > 0 such that met) � oefJt as t -+ 00 whenever f.L > 1 .  

Finally observe that, in some sense, the age-dependent process Z(t) contains the old pro­
cess Zn . We say that Zn is imbedded in Z(t) in that we can recapture Zn by aggregating 
the generation sizes of Z(t) . This imbedding enables us to use properties of Zn to derive 
corresponding properties of the less tractable Z(t) . For instance, Z (t) dies out if and only if 
Zn dies out, and so Theorem (5 .4 .5 ) provides us immediately with the extinction probability of 
the age-dependent process . This technique has uses elsewhere as well . With any non-Markov 
process we can try to find an imbedded Markov process which provides information about the 
original process . We consider examples of this later. 

Exercises for Section 5 . 5  

1 .  Let Zn be the size o f  the nth generation i n  an age-dependent branching process Z(t ) ,  the lifetime 
distribution of which is exponential with parameter A .  If Z (0) = 1 ,  show that the probability generating 
function Gt (s ) of Z(t) satisfies 

a 
-Gt (s ) = A { G (Gt (s ) ) - Gt (s ) } . 
a t  

Show in the case of  'exponential binary fission ' ,  when G (s )  = s2 , that 

s e-At 
G t (s ) = -1---s-(-I ---e---;-;""-t ) 

and hence derive the probability mass function of the population size Z (t) at time t .  
2. Solve the differential equation o f  Exercise ( 1 )  when A = 1 and G (s )  = � ( 1  + s2) ,  to obtain 

2s + t ( 1 - s )  
Gt (s ) = -2-+-t-(-1 ---s-) . 

Hence find lP'(Z (t) :::: k) , and deduce that 

lP' (Z(t)jt :::: x I Z(t) > 0) -+ e-2x as t -+ 00. 
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5.6 Expectation revisited 

This section is divided into parts A and B .  All readers must read part A before they proceed 
to the next section; part B is for people with a keener appreciation of detailed technique. We 
are about to extend the definition of probability generating functions to more general types 
of variables than those concentrated on the non-negative integers, and it is a suitable moment 
to insert some discussion of the expectation of an arbitrary random variable regardless of its 
type (discrete, continuous, and so on) . Up to now we have made only guarded remarks about 
such variables. 

(A) Notation 
Remember that the expectations of discrete and continuous variables are given respectively 
by 

(1 )  

(2) 

lEX = L xf(x ) if X has mass function f, 

lEX = f x f (x ) dx if X has density function f · 

We require a single piece of notation which incorporates both these cases . Suppose X has 
distribution function F. Subject to a trivial and unimportant condition, ( 1 )  and (2) can be 
rewritten as 

(3) 

(4) 

lEX = L X dF(x)  

lEX = f x dF(x)  

where dF(x )  = F(x )  - lim F(y) = f (x ) ,  
ytx 

dF 
where dF(x)  = -dx = f (x ) dx .  

dx 

This suggests that we denote lEX by 

(5) lEX = f X dF or f X dF(X )  

whatever the type of  X, where (5) i s  interpreted a s  ( 3 )  for discrete variables and a s  (4) for 
continuous variables . We adopt this notation forthwith . Those readers who fail to conquer 
an aversion to this notation should read d F as f (x ) dx .  Previous properties of expectation 
received two statements and proofs which can now be unified. For instance, (3 .3 .3 )  and (4.3 . 3) 
become 

(6) if g :  lR � lR then lE(g(X» = f g (x )  dF. 

(B) Abstract integration 
The expectation of a random variable X is specified by its distribution function F. But F 
itself is describable in terms of X and the underlying probability space, and it follows that 
lEX can be thus described also. This part contains a brief sketch of how to integrate on a 
probability space ( Q ,  F ,  IP') . It contains no details, and the reader is left to check up on his 
or her intuition elsewhere (see Clarke 1 975 or Williams 1 99 1  for example) . Let (Q , F, IP') be 
some probability space . 
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(7) The random variable X : Q -+ lR is called simple if it takes only finitely many distinct 
values .  Simple variables can be written in the form 

n 
X = LXi /AI 

i=l 

for some partition A I , A2 , . . .  , An of Q and some real numbers Xl , x2 , . . . , Xn ; we define the 
integral of X, written lEX or lE(X), to be 

n 
lE(X) = LXilP'(Ai ) .  

i=l 

(8) Any non-negative random variable X : Q -+ [0, 00) is the limit of some increasing 
sequence {Xn } of simple variables. That is, Xn (w) t X (w) for all w E Q . We define the 
integral of X, written lE(X), to be 

lE(X) = lim lE (Xn ) . n-+oo 

This i s  well defined i n  the sense that two increasing sequences o f  simple functions, both 
converging to X, have the same limit for their sequences of integrals .  The limit lE(X) can be 
+00. 
(9) Any random variable X : Q -+ lR can be written as the difference X = X+ - X- of 
non-negative random variables 

X+ (w) = max{X (w) , O} ,  X- (w) = - min {X (w) , OJ . 

If at least one of lE (X+) and lE(X-) is finite, then we define the integral of X, written lE(X), 
to be 

(10) Thus, lE(X) is well defined, at least for any variable X such that 

(11) In the language of measure theory lE(X) is denoted by 

lE(X) = L X (w) dIP' or lE(X) = L X (w)lP'(dw) . 
The expectation operator lE defined in this way has all the properties which were described in 
detail for discrete and continuous variables. 

(12) Continuity of lE. Important further properties are the following. If {Xn } is a sequence 
of variables with Xn (w) -+ X (w) for all W E  Q then 

(a) (monotone convergence) if Xn (w) :::: 0 and Xn (w) S Xn+I (W) for all n and w, then 
lE(Xn ) -+ lE(X), 
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(b) (dominated convergence) if IXn (w) 1 � Y ew) for all n and w, and lE l Y I  < 00, then 
lE(Xn ) -+ lE(X), 

(c) (bounded convergence, a special case of dominated convergence) if IXn (w) 1 � c for 
some constant c and all n and w then lE(Xn ) -+ lE(X) . 

Rather more is true. Events having zero probability (that is, null events) make no contributions 
to expectations, and may therefore be ignored. Consequently, it suffices to assume above that 
Xn (w) -+ X (w) for all w except possibly on some null event, with a similar weakening 
of the hypotheses of (a), (b), and (c). For example, the bounded convergence theorem is 
normally stated as follows: if {Xn } is a sequence of random variables satisfying Xn -+ X 
a. s . and I Xn I � c a.s . for some constant c, then lE(Xn ) -+ lE(X) . The expression 'a .s .' is an 
abbreviation for 'almost surely ' , and means 'except possibly on an event of zero probability' . 

Here is a useful consequence of monotone convergence. Let Zl , Z2 , . . .  be non-negative 
random variables with finite expectations, and let X = L�l Zi . We have by monotone 
convergence applied to the partial sums of the Zi that 

00 
(13) lE(X) = L lE(Zi ) ,  

i=1 
whether or not the summation is finite . 

One further property of expectation is called Fatou 's lemma: if {Xn } is a sequence of 
random variables such that Xn 2: Y a. s .  for all n and some Y with lE l Y I  < 00, then 

(14) lE (lim inf Xn ) � lim inf lE(Xn ) .  n---+oo n---+oo 
This inequality is often applied in practice with Y = o.  

(15) Lebesgue-Stieltjes integral. Let X have distribution function F. The function F gives 
rise to a probability measure J-L F on the Borel sets of JR as follows: 

(a) define J-LF ( a , bl ) = F(b) - F(a) , 
(b) as  in the discussion after (4. 1 .5) ,  the domain of J-L F can be extended to include the Borel 

a -field $ , being the smallest a-field containing all half-open intervals (a , b] . 
So (JR, $ , J-L F )  is a probability space; its completion (see Section 1 .6) is denoted by the 
triple (JR, £F , J-LF) ,  where £F is the smallest a-field containing $ and all subsets of J-LF­
null sets. I f  g : JR -+ JR (is £F-measurable) then the abstract integral J g dJ-LF i s  called the 
Lebesgue-Stieltjes integral of g with respect to J-L F ,  and we normally denote it by J g (x ) d F 
or J g (x ) d F(x ) . Think of it as a special case of the abstract integral ( 1 1 ) .  The purpose of 
this discussion is the assertion that if g : JR -+ JR (and g is suitably measurable) then g (X) is 
random variable and 

lE(g (X» = ! g (x ) dF, 
and we adopt this forthwith as the official notation for expectation. Here is a final word of 
caution . If g (x ) = IB (X )h (x ) where IB is the indicator function of some B S; JR then 

! g (x ) dF = Is h (x ) dF. 
We do not in general obtain the same result when we integrate over Bl = [a , b] and B2 = (a , b) 
unless F is continuous at a and b, and so we do not use the notation J: h (x ) d F unless there 
is no danger of ambiguity. 
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Exercises for Section 5 . 6  

1 .  Jensen's inequality. A function u : lR ---+ lR i s  called convex i f  for all real a there exists A ,  
depending on a, such that u (x) � u (a) +A (x -a) for all x .  (Draw a diagram to illustrate this definition . )  
Show that, if u is convex and X is a random variable with finite mean, then JE.(u (X» � u (JE.(X» . 
2. Let Xl , X2 , . . .  be random variables satisfying JE. (I:�l I Xi I ) < 00. Show that 

3. Let {Xn } be a sequence of random variables satisfying Xn :::: Y a.s . for some Y with JE. I Y I  < 00. 
Show that 

JE. (lim sup Xn) � lim sup JE.(Xn ) .  n---+oo n---+oo 

4. Suppose that JE. IXr I < 00 where r > O. Deduce that xrlP'( I X I  � x) ---+ 0 as x ---+ 00. Conversely, 
suppose that xrlP'( I X I  � x) ---+ 0 as x ---+ 00 where r 2': 0, and show that JE. IXs I < 00 for 0 :::: s < r .  

5 .  Show that JE. IX I  < 00 i f  and only i f  the following holds : for all E > 0 ,  there exists 8 > 0 ,  such 
that JE.( I X I IA )  < E for all A such that IP'(A) < 8 .  

5.7 Characteristic functions 

Probability generating functions proved to be very useful in handling non-negative integral 
random variables. For more general variables X it is natural to make the substitution s = et 
in the quantity Gx (s) = lE(sx) .  

(1) Definition. The moment generating fUnction of a variable X is the function M : R -+ 
[0, 00) given by M(t) = lE(etx) . 

Moment generating functions are related to Laplace transformst since 

M(t) = f etx dF(x ) = f etx f (x ) dx 

if X is continuous with density function f. They have properties similar to those of probability 
generating functions. For example, if M(t) < 00 on some open interval containing the origin 
then: 

(a) lEX = M' (0) , lE(Xk ) = M(k) (0) ; 
(b) the function M may be expanded via Taylor' s theorem within its circle of convergence, 

which is to say that M is the 'exponential generating function' of the sequence of 
moments of X; 

tNote the change o f  sign from the usual Laplace transfonn o f  f ,  namely jet) = J e-tx f (x)  dx. 
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(c) if X and Y are independent thent Mx+Y (t) = Mx (t)My (t) . 
Moment generating functions provide a very useful technique but suffer the disadvantage 

that the integrals which define them may not always be finite. Rather than explore their 
properties in detail we move on immediately to another class of functions that are equally 
useful and whose finiteness is guaranteed. 

(2) Definition. The characteristic function of X is the function rP : III -+ C defined by 

rP (t) = E(eitx) where i = P. 
We often write ¢x for the characteristic function of the random variable X. Characteristic 

functions are related to Fourier transforms, since ¢ (t) = J eitx dF(x ) . In the notation of 
Section 5 .6 , ¢ is the abstract integral of a complex-valued random variable. It is well defined 
in the terms of Section 5 .6  by ¢ (t) = lE (cos tX) + ilE (sin tX) .  Furthermore, ¢ is better 
behaved than the moment generating function M. 

(3) Theorem. The characteristic function ¢ satisfies : 
(a) ¢ (O) = 1, 1 ¢ (t) 1 .s 1 for all t, 
(b) ¢ is uniformly continuous on lR, 
(c) ¢ is non-negative definite, which is to say that Lj,k ¢ (tj - tk )Z/Zk 2: 0 for all real 

tl , t2 , . . .  , tn and complex Z I , Z2 , . . .  , Zn · 
Proof. (a) Clearly ¢ (O) = lE( l )  = 1 .  Furthermore 

1 ¢ (t) 1 .s f l ei tx l dF = f dF = 1 .  

(b) We have that 

where Y (h) = l eihX - l l . However, I Y (h) l .s 2 and Y (h) -+ O as h  -+ O, and so lE(Y(h» -+ 0 
by bounded convergence (5 .6 . 1 2) .  

(c) We have that 

L ¢ (tj - tk )Z/Zk = L f [Zj exp(i tjx) ] [Zk exp(- i tkX) ] dF 
hk hk 

= lE( I�>j exp(i tjX) 1
2
) 2: O. 

] 

• 

Theorem (3) characterizes characteristic functions in the sense that ¢ is a characteristic 
function if and only if it satisfies (3a), (3b), and (3c). This result is called Bochner's theorem, 
for which we offer no proof. Many of the properties of characteristic functions rely for their 
proofs pn a knowledge of complex analysis. This is a textbook on probability theory, and will 

tThis is essentially the assertion that the Laplace transfonn of a convolution (see equation (4.8 .2» is the 
product of the Laplace transfonns. 
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not include such proofs unless they indicate some essential technique. We have asserted that 
the method of characteristic functions is very useful; however, we warn the reader that we 
shall not make use of them until Section 5 . 1 0. In the meantime we shall establish some of 
their properties . 

First and foremost, from a knowledge of ¢x we can recapture the distribution of X.  The 
full power of this statement is deferred until the next section; here we concern ourselves only 
with the moments of X. Several of the interesting characteristic functions are not very well 
behaved, and we must move carefully. 

(4) Theorem. { lE lXk l < 00 
(a) Ij¢(k) (O) exists then k 1 lE lX - 1 < 00  
(b) IjlE lXk l < 00 thent 

ifk is even, 
ifk is odd. 

Proof. This is essentially Taylor's theorem for a function of a complex variable. For the 
proof, see Moran ( 1 968) or Kingman and Taylor ( 1 966). • 

One of the useful properties of characteristic functions is that they enable us to handle sums 
of independent variables with the minimum of fuss. 

(5) Theorem. If X and Y are independent then ¢x+y(t) = tPx(t)t/>y (t). 
Proof. We have that 

¢X+Y (t) = lE(eit (x+y» = lE(eitXeit Y ) . 

Expand each exponential term into cosines and sines, multiply out, use independence, and put 
back together to obtain the result. • 

(6) Theorem. If a ,  b E  IR and Y = aX + b then ¢y (t) = eitb¢x (at). 
Proof. We have that 

¢y (t) = lE(eit (aX+b» = lE(eitb ei (a t )X ) 

= eitblE(ei (at )X) = eitb¢x (a t) .  • 

We shall make repeated use of these last two theorems. We sometimes need to study 
collections of variables which may be dependent. 

(7) Definition. The joint characteristic function of X and Y is the function ¢X, Y : ]R2 � ]R 
given by ¢X, y (s ,  t) = lE(eisXeit Y ) .  

Notice that ¢x, Y (s , t )  = ¢sx+t y ( 1 ) .  As  usual we shall b e  interested mostly in independent 
variables. 

tSee Subsection ( 1 0) of Appendix I for a reminder about Landau's % notation. 
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(8) Theorem. Random variables X and Y are independent if and only if 
¢X, y (s , t) = ¢x (s)¢y (t) for all s and t. 

Proof. If X and Y are independent then the conclusion follows by the argument of (5). The 
converse is proved by extending the inversion theorem of the next section to deal with joint 
distributions and showing that the joint distribution function factorizes. • 

Note particularly that for X and Y to be independent it is not sufficient that 

(9) ¢X, y (t , t) = ¢x (t)¢y (t) for all t . 
Exercise. Can you find an example of dependent variables which satisfy (9)? 

We have seen in Theorem (4) that it is an easy calculation to find the moments of X by 
differentiating its characteristic function ¢x (t) at t = O. A similar calculation gives the 'joint 
moments ' JE(xj yk ) of two variables from a knowledge of their joint characteristic function 
¢X, y (s , t) (see Problem (5 . 1 2 .30) for details) . 

The properties of moment generating functions are closely related to those of characteristic 
functions. In the rest of the text we shall use the latter whenever possible, but it will be 
appropriate to use the former for any topic whose analysis employs Laplace transforms; for 
example, this is the case for the queueing theory of Chapter 1 1 . 
(10) Remark. Moment problem. If ! am given a distribution function F, then I can calculate 
the corresponding moments mk (F) = f�oo xk dF(x) , k = 1 , 2 , . . .  , whenever these integrals 
exist. Is the converse true: does the collection of moments (mk (F) : k = 1 , 2, . . . ) specify F 
uniquely? The answer is no: there exist distribution functions F and G, all of whose moments 
exist, such that F =1= G but mk (F) = mk (G) for all k. The usual example is obtained by using 
the log-normal distribution (see Problem (5 . 1 2.43». 

Under what conditions on F is it the case that no such G exists? Various sets of conditions 
are known which guarantee that F is specified by its moments, but no necessary and sufficient 
condition is known which is easy to apply to a general distribution. Perhaps the simplest 
sufficient condition is that the moment generating function of F, M(t) = f�oo etx dF(x) , be 
finite in some neighbourhood of the point t = O. Those familiar with the theory of Laplace 
transforms will understand why this is sufficient. 

(11) Remark. Moment generating function. The characteristic function of a distribution is 
closely related to its moment generating function, in a manner made rigorous in the following 
theorem, the proof of which is omitted. [See Lukacs 1 970, pp. 1 97-198 . ] 
(12) Theorem. Let M(t) = JE(etx), t E JR, and ¢ (t) = JE(eitX), t E C, be the moment 
generating function and characteristic function, respectively, of a random variable X. For 
any a > 0, the following three statements are equivalent: 

(a) IM (t) 1 < oofor I t I < a, 
(b) ¢ is analytic on the strip I lm(z) 1 < a, 
(c) themoments mk = JE(Xk ) existfork = 1 , 2 , . . .  andsatisfY lim suPk--->OO { lmk l / k ! } I l k :s 

a- I . 
If any of these conditions hold for a > 0, the power series expansion for M(t) may be 

extended analytically to the strip I lm(t) I < a , resulting in a function M with the property that 
¢ (t) = M(i t) .  [See Moran 1 968, p. 260. ] 
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Exercises for Section 5 . 7  

1. Find two dependent random variables X and Y such that ct>x+y (t) = ct>x (t)ct>y (t) for all t .  
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2. If ct> is a characteristic function, show that Re{ l  - ct> (t ) }  2: !Re{ l  - ct> (2t) } ,  and deduce that 
1 - 1ct> (2t) 1 ::::: 8 { 1  - 1ct> (t) I } .  
3 .  The cornulant generating function Kx (8) of  the random variable X i s  defined by Kx (8) = 
10g JB:(e&x) ,  the logarithm of the moment generating function of X. If the latter is finite in a neigh­
bourhood of the origin, then K X has a convergent Taylor expansion: 

00 1 Kx (8) = """' -kn (X)en 
� n !  n=l 

and kn (X) is called the nth cumulant (or semi-invariant) of X. 
(a) Express k )  (X) ,  k2 (X) ,  and k3 (X) in terms of the moments of X. 
(b) If X and Y are independent random variables, show that kn (X + Y) = kn (X) + kn (Y) .  
4. Let X be N(O, 1 ) ,  and show that the cumulants of X are k2 (X) = 1 ,  km (X) = 0 for m =f. 2. 
5. The random variable X is said to have a lattice distribution if there exist a and b such that X takes 
values in the set L(a ,  b) = {a + bm : m = 0, ± l ,  . . .  } .  The span of such a variable X is the maximal 
value of b for which there exists a such that X takes values in L (a ,  b) .  
(a) Suppose that X has a lattice distribution with span b. Show that l ct>x (2nlb) 1 = 1 ,  and that 

l ct>x (t) 1 < 1 for 0 < t < 2n lb. 
(b) Suppose that l ct>x (8 ) I = 1 for some 8 =f. O. Show that X has a lattice distribution with span 

2nk18 for some integer k. 
6. Let X be a random variable with density function f. Show that l ct>x (t) 1 ----+ 0 as t ----+ ±oo. 
7. LetX ) , X2 , . . .  , Xn be independent variables, Xi being N(/1-i , l ) ,  and let Y = Xf+X�+ . +X; . 
Show that the characteristic function of Y is 

1 ( i ts ) ct>y (t) = 
(1 _ 2i t )n/2 

exp 
1 - 2i t 

where 8 = /1-f + /1-� + . . . + /1-; . The random variables Y is said to have the non-central chi-squared 
distribution with n degrees of freedom and non-centrality parameter 8, written x2 (n ; 8 ) .  
8 .  Let X be  N(/1-, 1 )  and let Y be  x2 (n), and suppose that X and Y are independent. The random 
variable T = XIJYln  i s  said to have the non-central t-distribution with n degrees of  freedom and 
non-centrality parameter /1-. If U and V are independent, U being x 2 (m ; 8) and V being x2 (n) ,  then 
F = (U Im)/(V In) is said to have the non-central F -distribution with m and n degrees of freedom 
and non-centrality parameter 8, written F(m ,  n; 8 ) .  
(a) Show that T2 i s  F(1 , n ;  /1-2) .  
(b) Show that 

JB:(F) = n (m + 8) if n > 2 .  
m en - 2) 

9. Let X be a random variable with density function f and characteristic function ct>. Show, subject 
to an appropriate condition on f, that 

f (x)2 dx = - 1 ct> (t ) 1 2 dt . 1
00 1 

1
00 

-00 2n -00 
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10. If X and Y are continuous random variables, show that 

L: ¢x (y) !y (y)e -ity dy = L: ¢y (x - t) !x (x) dx . 

11. Tilted distributions. (a) Let X have distribution function F and let r be such that M(r) = 
JE.(e'x)  < 00. Show that F. (x) = M(r)- l J�oo e'Y dF (y) is a distribution function, called a 'tilted 
distribution' of X, and find its moment generating function. 
(b) Suppose X and Y are independent and JE.(e'x ) , JE.(e' Y )  < 00. Find the moment generating function 
of the tilted distribution of X + Y in terms of those of X and Y. 

5.S Examples of characteristic functions 

Those who feel daunted by i = R should find it a useful exercise to work through this 
section using M(t) = JE(etx) in place of ¢ (t) = JE(eitX ) .  Many calculations here are left as 
exercises . 

(1) Example. Bernoulli distribution. If X is Bernoulli with parameter p then 

• 

(2) Example. Binomial distribution. If X is bin(n , p) then X has the same distribution as 
the sum of n independent Bernoulli variables Yl , Y2 , . . .  , Yn . Thus 

(3) Example. Exponential distribution. If f(x)  = Ae-Ax for x 2: 0 then 

• 

This is a complex integral and its solution relies on a knowledge of how to integrate around 
contours in ]R2 (the appropriate contour is a sector) . Alternatively, the integral may be evaluated 
by writing eitx = cos(tx) + i sin(tx ) ,  and integrating the real and imaginary part separately. 
Do not fall into the trap of treating i as if its were a real number, even though this malpractice 
yields the correct answer in this case : 

A 
¢ (t) = --. . 

A - I t  

(4) Example. Cauchy distribution. If f (x) = 1 / {JT ( 1  + x2 ) } then 

1 100 eitx 
¢ (t) = - --2 dx . 

JT -00 1 + x 

• 
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Treating i as a real number will not help you to avoid the contour integral this time. Those 
who are interested should try integrating around a semicircle with diameter [- R, R] on the 
real axis, thereby obtaining the required characteristic function ¢ (t) = e- 1 t l • Alternatively, 
you might work backwards from the answer thus :  you can calculate the Fourier transform of 
the function e- 1 t l , and then use the Fourier inversion theorem. • 

(5) Example. Normal distribution. If X is N(O, 1 )  then 

. 100 1 ¢ (t) = JE(e1 tX ) = J;L exp(i tx - !x2) dx . -00 v 2n 

Again, do not treat i as a real number. Consider instead the moment generating function of X 

100 1 
M(s) = JE(eSx) = J;L exp (sx - !x2) dx . -00 v 2n 

Complete the square in the integrand and use the hint at the end of Example (4 .5 .9) to obtain 
M(s) = e �s2 . We may not substitute s = i t  without justification. In this particular instance 
the theory of analytic continuation offunctions of a complex variable provides this justification, 
see Remark (5 .7 . 1 1 ) , and we deduce that 

By Theorem (5 .7 .6), the characteristic function of the N(J-L, a2 ) variable Y = a X + J-L is 

¢y (t) = eitfL¢x (at) = exp(iJ-Lt - !a2t2) .  • 

(6) Example. Multivariate normal distribution. If Xl , X2 , . . .  , Xn has the multivariate 
normal distribution N (0 , V) then its joint density function is 

The joint characteristic function of XI , X2 , . . .  , Xn is the function ¢ (t) = JE(eitX' ) where 
t = (tl , t2 , . . .  , tn ) and X = (X I ,  X2 , . . . , Xn ) . One way to proceed is to use the fact that 
tX' is univariate normal. Alternatively, 

(7) 

As in the discussion of Section 4.9, there is a linear transformation y = xB such that 

V- I , ,\"" 2 X X = �AjYj 
j 

just as in equation (4 .9 .3 ) .  Make this transformation in (7) to see that the integrand factorizes 
into the product of functions of the single variables Yl , Y2 , . . .  , Yn . Then use (5) to obtain 

¢ (t) = exp(- ! tVt') .  



1 8 8  5 . 8  Generating functions and their applications 

It is now an easy exercise to prove Theorem (4.9 .5) ,  that V is the covariance matrix of X, by 
using the result of Problem (5 . 1 2.30) . • 

(8) Example. Gamma distribution. If X is r (A. , s )  then 

¢J (t) = __ A.s xs- 1 exp(i tx - A.x )  dx . 
100 1 
o r es )  

As in the case of the exponential distribution (3 ) ,  routine methods of complex analysis give 

( A. ) S 
¢J (t) = --. 

A. - I t  

Why is this similar to the result of (3 )? This example includes the chi-squared distribution 
because a X 2 (d) variable is r ei ,  !d) and thus has characteristic function 

¢J (t) = ( 1  - 2i t) -dj2 . 

You may try to prove this from the result of Problem (4. 14 . 1 2) .  • 

Exercises for Section 5 . 8  

1 .  If ¢ i s  a characteristic function, show that ifj, ¢2 , 1 ¢ 1 2 , Re(¢) are characteristic functions. Show 
that I ¢ I is not necessarily a characteristic function. 
2. Show that 

JP'(X � x) :'0 inf {e-tx Mx (t) } , 
t 2:0 

where Mx is the moment generating function of X. 
3. Let X have the r (A. ,  m) distribution and let Y be independent of X with the beta distribution 
with parameters n and m - n, where m and n are non-negative integers satisfying n :'0 m .  Show that 
Z = XY  has the r (A. ,  n) distribution. 
4. Find the characteristic function of X2 when X has the N(Il- ,  (j2) distribution. 
S. Let X l , X2 , . . .  be independent N(O, 1 )  variables .  Use characteristic functions to find the distri­
bution of: (a) xi, (b) L:i=1 Xl , (c) X I I X2 , (d) Xl X2 , (e) XI X2 + X3X4 . 
6. Let X I , X 2 , . . .  , X n be such that, for all aI , a2 , . . .  , an E JR., the linear combination al X I + 
a2X2 + . . . + anXn has a normal distribution. Show that the joint characteristic function of the Xm is 
exp (i tp/ - � tVt' ) ,  for an appropriate vector It and matrix V. Deduce that the vector (X I ,  X2 , . . .  , Xn ) 
has a multivariate normal density function so long as V is invertible. 
7. Let X and Y be independent N(O, 1) variables, and let U and V be independent of X and Y. Show 
that Z = (UX + V y)I Ju2 + V2 has the N(O, 1 )  distribution. Formulate an extension of this result 
to cover the case when X and Y have a bivariate normal distribution with zero means, unit variances, 
and correlation p .  
8 .  Let X be  exponentially distributed with parameter A .  Show by  elementary integration that 
JE(eitx ) = A/ (A - i t) .  
9 .  Find the characteristic functions of  the following density functions: 
(a) f (x )  = � e- Ix l for x E JR., 
(b) f (x )  = � Ix i e- ix i for x E JR.. 
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10. Is it possible for X, Y, and Z to have the same distribution and satisfy X = U(Y + Z), where 
U is uniform on [0, 1 ] , and Y, Z are independent of U and of one another? (This question arises in 
modelling energy redistribution among physical particles . ) 
11. Find the joint characteristic function of two random variables having a bivariate normal distribution 
with zero means. (No integration is needed.) 

5.9 Inversion and continuity theorems 

This section contains accounts of two major ways in which characteristic functions are useful. 
The first of these states that the distribution of a random variable is specified by its characteristic 
function. That is to say, if X and Y have the same characteristic function then they have 
the same distribution. Furthermore, there is a formula which tells us how to recapture the 
distribution function F corresponding to the characteristic function ¢ .  Here is a special case 
first. 

(1) Theorem. If X is continuous with density function f and characteristic function ¢ then 

f (x) = - e-z tx¢ (t) dt 
1 100 . 

2rc -00 
at every point x at which f is differentiable. 

Proof. This is the Fourier inversion theorem and can be found in any introduction to Fourier 
transforms. If the integral fails to converge absolutely then we interpret it as its principal value 
(see Apostol 1 974, p. 277) .  • 

A sufficient, but not necessary condition that a characteristic function ¢ be the characteristic 
function of a continuous variable is that 

i: 1 ¢ (t) 1 dt < 00.  

The general case i s  more complicated, and i s  contained in  the next theorem. 

(2) Inversion theorem. Let X have distribution function F and characteristic function ¢. 
Define F : lR -? [0, 1 ]  by 

Then 

F(x)  = � {F(X )  + lim F(Y) } . 
2 ytx 

F(b) - F (a)  = lim 
e -

.
e 

¢ (t) dt .  I
N -iat -ibt 

N-+oo -N 2rc l t  

Proof. See Kingman and Taylor ( 1 966). • 

(3) Corollary. Random variables X and Y have the same characteristic function if and only 
if they have the same dtstrlbutionfunction. 
Proof. If ¢x = ¢y then, by (2), 

Fx (b) - Fx (a ) = Fy (b) - F r Ca ) .  
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Let a -+ -00 to obtain Fx (b) = Fy (b) ; now, for any fixed x E JR, let b ,J, x and use 
right-continuity and Lemma (2. 1 .6c) to obtain Fx (x) = Fy (x ) .  • 

Exactly similar results hold for jointly distributed random variables. For example, if X 
and Y have joint density function f and joint characteristic function ¢ then whenever f is 
differentiable at (x , y )  

1 rr . . f (x , y )  = 
4n2 JJIR2 e-ISx e-z ty¢ (s , t) ds dt 

and Theorem (5 .7 .8 )  follows straightaway for this special case. 
The second result of this section deals with a sequence X I ,  X 2 , . . .  of random variables. 

Roughly speaking it asserts that if the distribution functions FI , F2 , . . .  of the sequence ap­
proach some limit F then the characteristic functions ¢l , ¢2 , . . .  of the sequence approach 
the characteristic function of the distribution function F. 

(4) Definition. We say that the sequence FI , F2 , . . .  of  distribution functions converges to 
the distribution function F, written Fn -+ F, if F(x )  = limn--+oo Fn (x ) at each point x where 
F is continuous. 

The reason for the condition of continuity of F at x is indicated by the following example. 
Define the distribution functions Fn and Gn by 

Fn (x ) = { � 
We have as n -+ 00 that 

if x < n- l , 
if X 2: n- l , 

Fn (x ) -+ F(x )  
Gn (x )  -+ F(x )  

Gn (x ) = { � if x < -n- 1 ,  
if x 2: _n- 1 .  

if x =I- 0, Fn (0) -+ 0, 
for all x, 

where F is the distribution function of a random variable which is constantly zero. Indeed 
limn--+oo Fn (x ) is not even a distribution function since it is not right-continuous at zero. It is 
intuitively reasonable to demand that the sequences {Fn l  and {Gn } have the same limit, and 
so we drop the requirement that Fn (x ) -+ F (x) at the point of discontinuity of F. 

(5) Continnity theorem. Suppose that Fl . Fz, . . .  is a sequence of distribution junctions 
with corresponding characteristic junctions ¢1 , ¢Z ,  . . . . 

(a) If Fn -+ F for some distributionjunction F with characttristicjunction cP, then ¢n (t) -+ 
¢(t) for all t. 

(b) Conversely, if t/J(t) = lOOn-+oo ¢n (t) exists and is continuous at t = 0, then ¢ is the 

characteristic junction of some distribution function F, and Fn -+ F. 
Proof. As for (2). See also Problem (5 . 1 2 .35) .  • 

(6) Example. Stirling's formula. This well-known formulat states that n !  '" nne-
n..j2nn 

as n -+ 00, which is to say that 

tDue to de Moivre. 



5 .9 Inversion and continuity theorems 

A more general form of this relation states that 

(7) 
ret) ----== -+ 1 as t -+ 00 

tt- I e-t ,.j2rc t 

19 1  

where r i s  the gamma function, ret) = 1000 x t- 1 e-X dx . Remember that ret) = (t - I ) !  if t 
is a positive integer; see Example (4.4.6) and Exercise (4.4. 1 ) .  To prove (7) is an 'elementary ' 
exercise in analysis, (see Exercise (5 .9 .6» , but it is perhaps amusing to see how simply (7) 
follows from the Fourier inversion theorem ( 1 ) .  

Let Y be  a random variable with the r ( l ,  t) distribution. Then X = (Y  - t ) /,Jt has density 
function 

(8) ft (x ) = _1-../t(x../t + t) t- l exp[ - (x../t + t) ] , -../t S x < 00, ret) 

and characteristic function 

Now ft (X ) is differentiable with respect to x on (-,Jt, 00). We apply Theorem ( 1 )  at x = 0 
to obtain 

(9) 
1 100 

ft (O) = - ¢t (u ) du . 2rc - 00 

However, fl (O) = tt- � e-f / r et) from (8) ;  also 

¢t (u ) = exp [ -iu../t - t log ( 1 - �) ] 
= exp [-iU../t - t (-� + ;; + O (U 3 t- � ») ] 
= exp [- !u2 + O(u3 t- � )] -+ e- � u2 as t -+ 00. 

Taking the limit in  (9) a s  t -+ 00, we find that 

lim __ tt- "2 e-t = lim - ¢t (u) du ( 1 1 ) 1 100 
t---+oo ret) t---+oo 2rc -00 

= _
1 100 ( lim ¢t (U ») du 2rc -00 t---+oo 

as required for (7) .  A spot of rigour is needed to justify the interchange of the limit and the 
integral sign above, and this may be provided by the dominated convergence theorem. • 



1 92 5 .9 Generating functions and their applications 

Exercises for Section 5 .9 

1. Let Xn be a discrete random variable taking values in { l ,  2, . . .  , n } ,  each possible value having 
probability n- l . Show that, as n ---+ 00, lP'(n- 1 Xn ::s y) ---+ y , for 0 ::s y ::s I .  
2. Let Xn have distribution function 

sin(2mrx) 
Fn (x) = X  - , 

2nn o ::s x ::s 1 .  

(a) Show that Fn i s  indeed a distribution function, and that Xn has a density function. 
(b) Show that, as n ---+ 00, Fn converges to the uniform distribution function, but that the density 

function of Fn does not converge to the uniform density function. 
3. A coin is tossed repeatedly, with heads turning up with probability p on each toss. Let N be the 
minimum number of tosses required to obtain k heads. Show that, as p t 0, the distribution function 
of 2N p converges to that of a gamma distribution. 
4. If X is an integer-valued random variable with characteristic function cp, show that 

lP'(X = k) = � lrr e-itkcp (t) dt . 2n -rr 
What is the corresponding result for a random variable whose distribution is arithmetic with span A 
(that is, there is probability one that X is a multiple of A, and A is the largest positive number with this 
property)? 
5. Use the inversion theorem to show that 

100 sin(at ) sin(bt ) . 
2 dt = n mm {a , b } .  -00 t 

6. Stirling's formula. Let fn (x) be a differentiable function on lR. with a a global maximum at 
a > 0, and such that fcf exp{fn (x) }  dx < 00. Laplace's method of steepest descent (related to 
Watson's lemma and saddlepoint methods) asserts under mild conditions that 

1000 exp{fn (x) }  dx � 1000 exp {Jn (a) + 1 (x - a)2 f�' (a) } dx as n ---+ 00. 

By setting fn (x) = n log x - x ,  prove Stirling's formula: n ! � nn e-n J2nn . 
7. Let X = (Xl , X2 , . . .  , Xn ) have the multivariate normal distribution with zero means, and 
covariance matrix V = (Vij ) satisfying IV I > 0 and vij > 0 for all i, j . Show that 

if i =1= j , 

if i = j, 

and deduce that lP'(maxk:;:n Xk ::s u) :::: ITk=I lP'(Xk ::s u) .  
8 .  Let X I ,  X 2 have a bivariate normal distribution with zero means, unit variances, and correlation 
p .  Use the inversion theorem to show that 

a 1 
-lP'(XI > 0, X2 > 0) =  � .  ap 2n v l - p2 

Hence find lP'(XI > 0, X2 > 0) . 
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5.10 Two limit theorems 

We are now in a position to prove two very celebrated theorems in probability theory, the ' law 
of large numbers ' and the 'central limit theorem' .  The first of these explains the remarks of 
Sections 1 . 1  and 1 . 3 ,  where we discussed a heuristic foundation of probability theory. Part of 
our intuition about chance is that if we perform many repetitions of an experiment which has 
numerical outcomes then the average of all the outcomes settles down to some fixed number. 
This observation deals in the convergence of sequences of random variables, the general theory 
of which is dealt with later. Here it suffices to introduce only one new definition. 

(1) Definition. If X, Xl , X2 , . . .  is a sequence of random variables with respective distri-
bution functions F, Fl , F2 , . . .  , we say that Xn converges in distributiont to X, written 
Xn � X, if Fn -+ F as n -+ 00. 

This i s  just Definition (5 .9 .4) rewritten in terms of random variables . 

(2) Theorem. Law of large numbers. Let Xl . X2 • . . .  be a sequence of independent 
identically distributed random variables with finite means p,. Their partial sums Sn = 

Xl + X2 + . . . + Xn satisfy 
1 D -Sn -+ p, as n -+ 00. n 

Proof. The theorem asserts that, as n -+ 00, 

{ 0 if x < /1, 
lP'(n- I Sn S x ) -+ 

1 if x > /1. 

The method of proof is clear. By the continuity theorem (5 .9 .5) we need to show that the 
characteristic function of n- I Sn approaches the characteristic function of the constant ran­
dom variable /1. Let ¢ be the common characteristic function of the Xi , and let ¢n be the 
characteristic function of n- 1 Sn .  By Theorems (5 .7 .5) and (5 .7 .6) , 

(3) 

The behaviour of ¢x (t/n) for large n is given by Theorem (5 .7 .4) as ¢x (t) = 1 + i t/1 + o(t) . 
Substitute into (3) to obtain 

However, this limit is the characteristic function of the constant /1, and the result follows . • 

So, for large n ,  the sum Sn is approximately as big as n/1 . What can we say about the 
difference Sn - n/1? There is an extraordinary answer to this question, valid whenever the Xi 
have finite variance: 

(a) Sn - n/1 is about as big as ..;n, 

tAlso termed weak convergence or convergence in law. See Section 7 .2. 
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(b) the distribution of (Sn - nf.J,)/..;n approaches the normal distribution as n � 00 irre­
spective of the distribution of the Xi . 

(4) Central limit theorem. Let Xl , X2, . . .  be a sequence of independent identically dis­
tributed random variables withftnite mean f.J, and finite nonwzero variance (12, and let Sn = 
Xl + X2 + . . .  + Xn• Then 

s:;;;- � NCO, 1) as n -+ 00. 
n(l 

Note that the assertion of the theorem is an abuse of notation, since N (0, 1 ) is a distribution 
and not a random variable; the above is admissible because convergence in distribution involves 
only the corresponding distribution functions. The method of proof is the same as for the law 
of large numbers . 

Proof. First, write Yi = (Xi - f.J,)/a , and let cpy be the characteristic function of the Yi . We 
have by Theorem (5.7 .4) that cpy (t) = 1 - 1t2 + 0(t2) .  Also, the characteristic function 1/In 
of n 

Un = 
Sn - nf.J, = _1_ L Yi 
Vna2 ..;n i= l 

satisfies, by Theorems (5 .7 .5) and (5 .7 .6) , 

as n � 00. 

The last function i s the characteristic function of the N (0, 1 ) distribution, and an application 
of the continuity theorem (5.9 .5) completes the proof. • 

Numerous generalizations of the law of large numbers and the central limit theorem are 
available. For example, in Chapter 7 we shall meet two stronger versions of (2), involving 
weaker assumptions on the Xi and more powerful conclusions. The central limit theorem 
can be generalized in several directions, two of which deal with dependent variables and 
differently distributed variables respectively. Some of these are within the reader's grasp. 
Here is an example. 

(5) Theorem. Let Xl , X2 , . . .  be independent variables satisfying 

and such that 
1 n 

--3 LlElXJ I � 0 as n � 00, a (n) . 

J =l 

where a (n)2 = var(L:J=1 X} ) = L:J=1 af . Then 

I 
n D - L X} � N(O, 1 ) .  a (n) }= ! 
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Proof. See Loeve ( 1 977, p. 287), and also Problem (5 . 1 2 .40) . • 

The roots of central limit theory are at least 250 years old. The first proof of (4) was found 
by de Moivre around 1733 for the special case of Bernoulli variables with p = � .  General 
values of p were treated later by Laplace. Their methods involved the direct estimation of 
sums of the form 

L 
k : 

k �np+ x y'njiii 
where p + q = 1 .  

The first rigorous proof of (4) was discovered by Lyapunov around 1 90 1 ,  thereby confirming 
a less rigorous proof of Laplace. A glance at these old proofs confirms that the method of 
characteristic functions is outstanding in its elegance and brevity. 

The central limit theorem (4) asserts that the distribution function of Sn, suitably normalized 
to have mean 0 and variance 1 ,  converges to the distribution function of the N(O, 1 ) distribu­
tion. Is the corresponding result valid at the level of density functions and mass functions? 
Broadly speaking the answer is yes, but some condition of smoothness is necessary ; after all, 
if Fn (x) -+ F (x ) as n -+ 00 for all x ,  it is not necessarily the case that the derivatives satisfy 
F� (x) -+ F' (X ) .  [See Exercise (5 .9 .2) . ] The result which follows is called a ' local central 
limit theorem' since it deals in the local rather than in the cumulative behaviour of the random 
variables in question. In order to simplify the statement of the theorem, we shall assume that 
the Xi have zero mean and unit variance. 

(6) Local central limit theorem. Let X I , X2 , . . .  be independent identically distributed ran­
dom variables with zero mean and unit variance, and suppose further that their common 
characteristic function ¢ satisfies 

(7) i: 1 ¢ (tW dt < 00 

for some integer r :::: 1 .  The density function gn of Un = (XI + X2 + . . .  + Xn )/ In exists 
for n  :::: r, andfurthermore 

1 1 2 
(8) gn (x ) -+ �e-"2x as n -+ 00, uniformly in x E K 

v 2n 

A similar result is valid for sums of lattice-valued random variables, suitably adjusted to 
have zero mean and unit variance. We state this here, leaving its proof as an exercise. In place 
of (7) we assume that the Xi are restricted to take the values a , a ± h , a ± 2h , . . .  , where 
h is the largest positive number for which such a restriction holds. Then Un is restricted to 
values of the form x = (na + kh)/ In for k = 0, ± 1 ,  . . . .  For such a number x ,  we write 
gn (x ) = JP>(Un = x) and leave gn (Y) undefined for other values of y . It is the case that 

(9) 
In 1 l X 2 -gn (x) -+ --e- "2 as n -+ 00, uniformly in appropriate x .  h .[iii 

Proof of (6). A certain amount of analysis is inevitable here. First, the assumption that 1 ¢ l r 
is integrable for some r :::: 1 implies that I ¢ I n is integrable for n :::: r , since I ¢ (t) l S I ; hence 
gn exists and is given by the Fourier inversion formula 

(10) gn (x ) = - e-z tx 1/In (t) dt , 
1 100 . 

2n - 00 
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where 1/In (t) = ¢ (t/ ,/nf is the characteristic function of Un . The Fourier inversion theorem 
is valid for the normal distribution, and therefore 

(11) 

where 
In = _

1 /00 I¢ (t,/fi)n _ e- ! t2 1 dt . 2n -00 
It suffices to show that In � 0 as n � 00. We have from Theorem (S .7 .4) that ¢ (t) = 
1 - i t2 + 0(t2 ) as t � 0, and therefore there exists 8 (> 0) such that 

(12) 

Now, for any a > O, ¢ (t/...(ii)n � e- ! t2 as n � oo uniformly in t E [-a , a ] (to see this, 
investigate the proof of (4) slightly more carefully), so that 

(13) 

for any a. Also, by ( 12) , 

(14) 

which tends to zero as a � 00. 
I t  remains to deal with the contribution to In arising from I t I > 8...(ii. From the fact that 

gn exists for n � r ,  we have from Exercises (S .7 .S) and (S .7 .6) that 1 ¢ (tY I < 1 for t =f:. 0, 
and 1 ¢ (tY I � 0 as t � ±oo. Hence 1 ¢ (t) 1 < 1 for t =f:. 0, and 1 ¢ (t) 1 � 0 as t � ±oo, and 
therefore 1/ = sup{ l ¢ (t) I : I t I � 8 } satisfies 1/ < 1 .  Now, for n � r ,  

(15) [ 1 ¢ (t/...(ii)n _ e- ! t2 I dt S 1/n-r /00 1¢ (t/...(iiW dt + 2 [00 e- ! t2 dt 
J1 t l >8.jTi -00 

J8.jTi 

Combining ( 1 3)-( 1 S) ,  we deduce that 

so that In � 0 as n � 00 as required. 

= 1/n-r ...(ii/oo 
1 ¢ (uW du + 2 [00 e- ! t2 dt 

-00 J8.jTi 
� 0 as n � 00.  

as a � 00, 

• 

(16) Example. Random walks. Here is an application of the law of large numbers to the 
persistence of random walks . A simple random walk performs steps of size 1 ,  to the right 
or left with probability p and 1 - p. We saw in Section S .3 that a simple random walk is 
persistent (that is, returns to its starting point with probability 1 )  if and only if it is symmetric 
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(which is to say that p = 1 - p = 1). Think of this as saying that the walk is persistent if and 
only if the mean value of a typical step X satisfies lE (X) = 0, that is, each step is 'unbiased' . 
This conclusion is valid in much greater generality. 

Let Xl , X2 , . . .  be independent identically distributed integer-valued random variables , 
and let Sn = X l + X2 + . . . + Xn . We think of Xi as being the i th jump of a random walk, so 
that Sn is the position of the random walker after n jumps, having started at So = O. We call 
the walk persistent (or recurrent) if lP'(Sn = 0 for some n :::: 1 ) = 1 and transient otherwise. 

(17) Theorem. The random walk is persistent if the mean size ofjumps is O. 

The converse is valid also: the walk is transient if the mean size of jumps is non-zero 
(Problem (5 . 1 2.44» . 
Proof. Suppose that lE(X i ) = 0 and let Vi denote the mean number of visits of the walk to 
the point i ,  

Vi = lE l {n :::: 0 :  Sn = i } 1 = lE(t f{Sn=i J) = t lP'(Sn = i ) ,  
n=O n=O 

where fA is the indicator function of the event A. We shall prove first that Vo = 00, and from 
this we shall deduce the persistence of the walk. Let T be the time of the first visit of the walk 
to i ,  with the convention that T = 00 if i is never visited. Then 

00 00 00 
Vi = L lP'(Sn = i ) = L L lP'(Sn = i I T = t)lP'(T = t) 

n=O n=O t=O 
00 00 

= L L lP'(Sn = i I T = t)lP'(T = t) 
t=O n=t 

since Sn -=j:. i for n < T. Now we use the spatial homogeneity of the walk to deduce that 

00 
(18) Vi = L VolP'(T = t ) = VolP'(T < 00) .:::; Vo .  

t=O 
The mean number of time points n for which I Sn I .:::; K satisfies 

by ( 1 8) , and hence 

(19) 

00 K 
L lP'( I Sn l .:::; K) = L Vi .:::; (2K + I ) Vo 
n=O i=-K 

1 00 
Vo > '"' lP'( I Sn l < K) . - 2K + l � -

Now we use the law of large numbers . For E > 0, it is the case that lP'( 1  Sn I .:::; nE) -+ 1 as 
n -+ 00, so that there exists m such that lP'( I Sn I .:::; nE) > 1 for n :::: m . If nE .:::; K then 
lP'( I Sn l .:::; nE) .:::; lP'( I Sn l .:::; K) , so that 

(20) lP'( I Sn l .:::; K) > 1 for m .:::; n .:::; K/E . 
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Substituting (20) into ( 1 9) ,  we obtain 

1 1 (K ) 
Vi > IP' S < K > - - m - l o - 2K + 1 L ( I n 1 - ) 

2(2K + 1 )  E 
. 

m ::on::oKjE 

This is valid for all large K,  and we may therefore let K � 00 and E ,J, 0 in that order, finding 
that Vo = 00 as claimed. 

It is now fairly straightforward to deduce that the walk is persistent. Let T( 1 ) be the time 
of the first return to 0, with the convention that T ( 1 )  = 00 if this never occurs. If T ( 1 )  < 00, 
we write T (2) for the subsequent time which elapses until the next visit to O. It is clear from 
the homogeneity of the process that, conditional on {T ( 1 ) < oo},  the random variable T (2) 
has the same distribution as T( I ) .  Continuing likewise, we see that the times of returns to 
o are distributed in the same way as the sequence n ,  TI + T2 , . . .  , where TI , T2 , . . .  are 
independent identically distributed random variables having the same distribution as T( I ) . 
We wish to exclude the possibility that IP'(T ( J )  = 00) > O .  There are several ways of doing 
this, one of which is to make use of the recurrent-event analysis of Example (5 .2 . 1 5) .  We shall 
take a slightly more direct route here. Suppose that f3 = IP'(T ( I ) = 00) satisfies f3 > 0, and let 
I = min {i : Ii = oo} be the earliest i for which Ii is infinite. The event {I = i } corresponds 
to exactly i - 1  returns to the origin. Thus, the mean number of returns is L:�I (i - 1 )1P'(l = i ) .  
However, I = i i f  and only i f  Tj < 00 for 1 .:s j < i and Ii = 00, an  event with probability 
( 1 - f3) i- 1 f3 . Hence the mean number of returns to 0 is L:�I (i - 1 ) ( 1 - f3) i- 1 f3 = ( 1 - f3)/ f3, 
which is finite. This contradicts the infiniteness of Vo, and hence f3 = o.  • 

We have proved that a walk whose jumps have zero mean must (with probability 1 )  return 
to its starting point. It follows that it must return infinitely often, since otherwise there exists 
some Ii which equals infinity, an event having zero probability. • 

(21) Example. Recurrent events. The renewal theorem of Example (5 .2 . 1 5) is one of the 
basic results of applied probability, and it will recur in various forms through this book. Our 
'elementary ' proof in Example (5 .2 . 1 5) was incomplete, but we may now complete it with the 
aid of the last theorem ( 1 7) concerning the persistence of random walks. 

Suppose that we are provided with two sequences X I , X 2 , . . .  and X; , Xi , . . .  of indepen­
dent identically distributed random variables taking values in the positive integers { I ,  2, . . .  } .  
Let Yn = Xn - X� and Sn = L:7=1 Yi = L:7= 1 X i - L:7=1 X; . Then S = {Sn : n 2: O} 
may be thought of as a random walk on the integers with steps YI , Y2 , . . .  ; the mean step size 
satisfies lE(YI ) = lE(X I ) - lE(X;) = 0, and therefore this walk is persistent, by Theorem ( 1 7) . 
Furthermore, the walk must revisit its starting point infinitely often (with probability 1 ) , which 
is to say that L:7=1 Xi = L:7=1 X; for infinitely many values of n . 

What have we proved about recurrent-event processes? Consider two independent recurrent­
event processes for which the first occurrence times, X I and X; , have the same distribution as 
the inter-occurrence times . Not only does there exist some finite time T at which the event H 
occurs simultaneously in both processes, but also: (i) there exist infinitely many such times 
T, and (ii) there exist infinitely many such times T even if one insists that, by time T, the 
event H has occurred the same number of times in the two processes .  

We need to relax the assumption that X I and X; have the same distribution as the inter­
occurrence times, and it is here that we require that the process be non-arithmetic. Suppose 
that XI = u and Xi = v . Now Sn = SI + L:7=2 Yi is a random walk with mean jump size 
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o and starting point Sl = u - v .  By the foregoing argument, there exist (with probability 1 )  
infinitely many values o f  n such that Sn = u - v , which is to say that 

(22) 
n n 
LX; = L Xj ; 
; =2 ; =2 

we denote these (random) times by the increasing sequence Nl , N2 , . . . .  
The process is non-arithmetic, and it follows that, for any integer x , there exist integers r 

and s such that 

To check this is an elementary exercise (5 . 1 0.4) in number theory. The reader may be satisfied 
with the following proof for the special case when f3 = JP>(X2 = 1) satisfies f3 > O. Then 

if x ::::: 0, and 

if x < 0, so that (23) is valid with r = x + 1 ,  s = 1 and r = 1 ,  s = Ix l + 1 in these two 
respective cases . Without more ado we shall accept that such r, s exist under the assumption 
that the process is non-arithmetic. We set x = - (u - v) , choose r and s accordingly, and 
write y = y (r, s ;  x ) . 

Suppose now that (22) occurs for some value o f  n .  Then 

which equals (u - v) - (u - v) = 0 with strictly positive probability (since the contents of the 
final parentheses have, by (23) ,  strictly positive probability of equalling - (u - v» . Therefore, 
for each n satisfying (22) , there is a strictly positive probability y that the (n + r - l ) th 
recurrence of the first process coincides with the (n + s - l ) th recurrence of the second. There 
are infinitely many such values N; for n ,  and one of infinitely many shots at a target must 
succeed ! More rigorously, define Ml = Nl , and M;+l = min{Nj : Nj > M; + max{r, s } } ;  
the sequence of the M; is an infinite subsequence of the Nj satisfying MHI - M; > max{r, s } .  
Call M; afailure i f  the (M; + r - 1 )th recurrence o f  the first process does not coincide with 
the (M; + s - 1 )th of the second. Then the events F/ = {M; is a failure for 1 S i S  l } satisfy 

JP>(FJ+ I > = JP>(MJ+ l is a failure I F/ )JP>(F/ ) = ( 1  - y)JP>(F/ ) ,  

so that JP>(F/ )  = ( 1  - y) / -+ 0 as I -+ 00 .  However, { F/ : I 2: I }  i s  a decreasing sequence 
of events with limit {M; is a failure for all i } ,  which event therefore has zero probability. Thus 
one of the Mi is not a failure, with probability 1 ,  implying that some recurrence of the first 
process coincides with some recurrence of the second, as required. 
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The above argument is valid for all 'initial values' u and v for X I and Xi , and therefore 
for all choices of the distribution of X 1 and Xi :  

lP'(coincident recurrences) = L lP'(coincident recurrences I X I  = u ,  Xi = v) 
u , v  xlP'(XI = u)lP'(Xj = v )  

= L 1 · lP'(XI = u)lP'(Xi = v) = 1 .  
u , v 

In particular, the conclusion is valid when Xi has probability generating function D* given 
by equation (5 .2 .22) ; the proof of the renewal theorem is thereby completed. • 

Exercises for Section 5 . 1 0  

1. Prove that, for x ?: 0, as n � 00, 

(a) 

(b) 

2. It is well known that infants born to mothers who smoke tend to be small and prone to a range of 
ailments. It is conjectured that also they look abnormal. Nurses were shown selections of photographs 
of babies, one half of whom had smokers as mothers ; the nurses were asked to judge from a baby's 
appearance whether or not the mother smoked. In 1 500 trials the correct answer was given 910 times. 
Is the conjecture plausible? If so, why? 
3. Let X have the r ( l , s) distribution; given that X = x, let Y have the Poisson distribution with 
parameter x .  Find the characteristic function of Y, and show that 

_Y
-=
-=E=(Y=-

) S N(O, 1 )  
.Jvar(Y) 

Explain the connection with the central limit theorem. 

as s � 00 . 

4. Let Xl , X 2 , . . .  be independent random variables taking values in the positive integers, whose 
common distribution is non-arithmetic, in that gcd{n : IP'(X I = n) > O} = 1 .  Prove that, for all 
integers x, there exist non-negative integers r = r ex) ,  s = s ex) ,  such that 

IP' (X I + . . .  + Xr - Xr+l - . . .  - Xr+s = x ) > O. 

5. Prove the local central limit theorem for sums of random variables taking integer values. You 
may assume for simplicity that the summands have span 1 ,  in that gcd { I x  I : IP'(X = x) > O} = 1 .  
6. Let Xl , X 2 , . . .  be independent random variables having common density function i (x) = 
1 / {2 I x l (log Ix l )2 } for Ix l < e- l . Show that the Xi have zero mean and finite variance, and that the 
density function in of Xl  + X2 + . . .  + Xn satisfies in (x) � 00 as x � O. Deduce that the Xi do 
not satisfy the local limit theorem. 
7. First-passage density. Let X have the density function i (x) = .J2nx-3 exp(- {2x}- I ) ,  x >  O. 
Show that 4> (i s )  = E(e-SX) = e--/2S, s > 0, and deduce that X has characteristic function 

{ exp{- ( l - i ).J(} 4> (t ) = 
exp{- ( l  + i ).JTiT} 

if t ?: 0, 
if t � O. 
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[Hint: Use the result of Problem (5. 12 . 1 8) . ]  

8. Let {Xr : r 2: I }  be independent with the distribution of the preceding Exercise (7). Let 
Un = n- I L:�= I Xr ,  and Tn = n- 1 Un . Show that: 
(a) JP'(Un < c) -7 0 for any c < 00, 
(b) Tn has the same distribution as X I .  
9. A sequence of biased coins is flipped; the chance that the rth coin shows a head is 8r ,  where 8r 
is a random variable taking values in (0, 1 ) .  Let Xn be the number of heads after n flips . Does Xn 
obey the central limit theorem when: 
(a) the 8r are independent and identically distributed? 
(b) 8r = 8 for all r , where 8 is a random variable taking values in (0, I ) ?  

5 .11  Large deviations 

The law oflarge numbers asserts that, in a certain sense, the sum Sn of n independent identically 
distributed variables is approximately nf-t, where f-t is a typical mean. The central limit theorem 
implies that the deviations of Sn from nf-t are typically of the order In, that is, small compared 
with the mean. Now, Sn may deviate from nf-t by quantities of greater order than In, say nCi 
where CL > 1 ,  but such 'large deviations' have probabilities which tend to zero as n � 00. 
I t  i s  often necessary in practice to estimate such probabilities . The theory of large deviations 
studies the asymptotic behaviour of IP'( I Sn - n f-t I > nCi ) as n � 00, for values of CL satisfying 
CL > 1 ;  of particular interest is the case when CL = 1 ,  corresponding to deviations of Sn from 
its mean nf-t having the same order as the mean. The behaviour of such quantities is somewhat 
delicate, depending on rather more than the mean and variance of a typical summand. 

Let Xl , X 2 , . . .  be a sequence of independent identically distributed random variables with 
mean f-t and partial sums Sn = Xl + X2 + . . .  + Xn . It is our target to estimate IP'(Sn > na) 
where a > f-t. The quantity central to the required estimate is the moment generating function 
M(t) = JE(etx) of a typical Xi , or more exactly its logarithm A(t) = log M(t) . The function 
A is also known as the cumulant generating function of the Xi (recall Exercise (5 .7 .3 » . 

(1) 

Before proceeding, we note some properties of A. First, 

A(O) = log M(O) = 0, 
M' (O) 

A' (0) = -- = if M' (0) exists . 
M(O) 

f-t 

Secondly, A(t) is convex wherever it is finite, since 

(2) A"(t) = 
M(t)M"(t) - M'(t)2 

M(t)2 
JE(etX)JE(X2etX) _ JE(XetX )2 

M(t)2 

which is non-negative, by the Cauchy-Schwarz inequality (4 .5 . 1 2) applied to the random 
variables Xe !tX and e !tx . We define the Fenchel-Legendre transform of A (t) to be the 
function A* (a) given by 

(3) A * (a ) = sup{at - A (t) } ,  
t EIR 

a E K  

The relationship between A and A * is illustrated in Figure 5 .4 . 
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y 

(a) The case /L > O. (b) The case /L = O. 
Figure 5 .4 .  A sketch of the function A(t) = log M(t) in the two cases when A' (O) = /L > 0 
and when A' (O) = /L = O. The value of A * (a ) is found by maximizing the function ga (t) = 

a t - A (t) ,  as indicated by the arrows. In the regular case, the supremum is achieved within 
the domain of convergence of M. 

(4) Theorem. Large deviationst. Let Xl , X2 , . . .  be independent identically distributed 
random variables with mean /L, and suppose that their moment generating function M(t) = 
JE( et x) is finite in some neighbourhood of the origin t = O. Let a be such that a > /L and 
lP'(X > a) > O. Then A * (a) > 0 and 

(5) 
1 
- log lP'(Sn > na) � -A * (a) as n � 00.  
n 

Thus, under the conditions of the theorem, lP'(Sn > na) decays exponentially in the manner 
of e-nA* (a ) . We note that lP'(Sn > na) = O if lP'(X > a ) = O. The theorem may appear to 
deal only with deviations of Sn in excess of its mean; the corresponding result for deviations 
of Sn below the mean is obtained by replacing Xi by -Xi . 

Proof. We may assume without loss of generality that /L = 0; if /L =f. 0, we replace Xi 
by Xi - /L, noting in the obvious notation that Ax (t) = AX-/1- (t ) + /Lt and A� (a) = 
A � -/1- (a - /L) . Assume henceforth that /L = O. 

We prove first that 11.* (a) > 0 under the assumptions of the theorem. By the remarks after 
Definition (5 .7 . 1 ) , 

( ea t ) ( 1  + a t + o(t) ) a t - A (t) = log -- = log M(t) 1 + �a2t2 + 0(t2) 

for small positive t, where a2 = var(X) ; we have used here the assumption that M(t) < 00 
near the origin . For sufficiently small positive t, 1 + at + o(t) > 1 + �a2t2 + 0(t2) , whence 
A * (a) > 0 by (3) .  

" I  A version of  this theorem was first published by  Cramer in  1 938 using different methods. Such theorems 
and their ramifications have had a very substantial impact on modem probability theory and its applications. 
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We make two notes for future use. First, since A is convex with A' (0) = JE(X) = 0, and 
since a > 0, the supremum of at - A (t ) over t E lR is unchanged by the restriction t > 0, 
which is to say that 

(6) A* (a) = sup{a t - A (t ) } , a >  O. 
t >O 

(See Figure 5 .4 . ) Secondly, 

(7) A is strictly convex wherever the second derivative A" exists . 

To see this, note that var(X) > 0 under the hypotheses of the theorem, implying by (2) and 
Theorem (4.5 . 1 2) that A" (t) > O. 

The upper bound for IP'(Sn > na) is derived in much the same way as was Bernstein's 
inequality (2.2.4). For t > 0, we have that etSn > enat I{Sn >na } ,  so that 

This is valid for all t > 0, whence, by (6), 

(8) 
I 
- log lP'(Sn > na) :::: - sup{at - A (t ) } = -A * (a) .  n t >O 

More work is needed for the lower bound, and there are two cases which we term the 
regular and non-regular cases. The regular case covers most cases of practical interest, and 
concerns the situation when the supremum defining A * (a) in (6) is achieved strictly within 
the domain of convergence of the moment generating function M. Under this condition, the 
required argument is interesting but fairly straightforward. Let T = sup{t : M(t) < oo}, 
noting that 0 < T :::: 00. Assume that we are in the regular case, which is to say that there 
exists r E (0, T)  such that the supremum in (6) is achieved at r ;  that is, 

(9) A * (a) = ar - A(r ) , 

as  sketched in  Figure 5 .4. Since at - A(t) has a maximum at r , and since A i s  infinitely 
differentiable on (0, T) ,  the derivative of at - A(t) equals 0 at t = r, and therefore 

(10) A/(r) = a . 

Let F be the common distribution function of the Xi . We introduce an ancillary distribution 
function F, sometimes called an 'exponential change of distribution' or a 'tilted distribution' 
(recall Exercise (5 . 8 . 1 1», by 

(11) 
� eTU dF(u) = -- dF(u) M(r) 

which some may prefer to interpret as 

F(y) = -- eTU dF(u ) . 
� 1 jY 

M(r) - 00 
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Let X I , X 2 , . . .  be independent random variables having distribution function F, and write 
Sn = Xl +X2 + · ·  . +Xn . We note the following properties of the Xi . The moment generating 
function of the Xi is 

(12) 
� 100 

� 100 e (t+r)u M(t + r ) M(t) = etu dF(u) = -- dF(u) = . 

- 00 - 00 M(r ) M(r) 

The first two moments of the Xi satisfy 

(13) 

� � , M'(r) , E(Xi ) = M (0) = M(r ) = A (r ) = a by ( 1 0), 

var(Xi ) = E(Xh - E(Xj )2 = M" (0) - M' (0)2 = A"(r) E (0, 00) by (2) and (7) .  

Since Sn is the sum of n independent variables, i t  has moment generating function 

= = -- e (t+r)u dF. (u) (M(t + r » ) n E(e (t+r)Sn ) 1 100 

M(r) M(r)n M(r)n - 00 
n 

where Fn is the distribution function of Sn . Therefore, the distribution function Fn of Sn 
satisfies 

(14) 

Let b > a . We have that 

IP'(Sn > na) = roo dFn (u) lna 

= roo M(r)n e-ru dFn (u) lna 
by ( 14) 

Since the Xi have mean a and non-zero variance, we have by the central limit theorem 
applied to the Xi that IP'(Sn > na) -+ i as n -+ 00, and by the law of large numbers that 
IP'(Sn < nb) -+ 1 .  Therefore, 

1 1 � 
- log lP'(Sn > na) ::::: - (rb - A (r» + - log lP'(na < Sn < nb) 
n n 

-+ - (rb - A(r» 
-+ - era - A (r» = -A * (a) 

This completes the proof in the regular case. 

as n -+ oo  
as b -I- a ,  by (9). 
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Finally, we consider the non-regular case. Let c be a real number satisfing c > a , and write 
ZC = mintZ ,  c } , the truncation of the random variable Z at level c . Since lP'(XC S c) = 1 ,  
we have that MC (t) = JE(etXc ) S etc for t > 0, and therefore M(t) < 00 for all t > O. Note 
that JE(XC) S JE (X ) = 0, and JE (XC ) � 0 as c � 00, by the monotone convergence theorem. 

Since lP'(X > a) > 0, there exists b E (a ,  c) such that lP'(X > b) > O. It follows that 
A C (t) = log MC (t) satisfies 

at - AC (t) S at - log{ethlP'(X > b) } � -00 as t � 00. 

We deduce that the supremum of  at - AC (t) over values t > 0 i s  attained at some point 
r = rC E (0, 00) .  The random sequence Xf , Xl ' . . .  is therefore a regular case of the large 
deviation problem, and a > JE (XC ) , whence 

(15) � 10g lP'(t Xi > na) � -AC* (a) as n � 00, 
1=1 

by the previous part of this proof, where 

(16) AC* (a) = sup{at - AC (t) } = ar - AC (r ) .  
t >O 

Now AC (t) = JE(et Xc)  i s  non-decreasing in c when t > 0, implying that A c* is non-increasing. 
Therefore there exists a real number A 00* such that 

(17) 

Since AC* (a) < 00 and AC* (a) � -AC (O) = 0, we have that 0 S A 00* < 00.  
Evidently Sn � .E7=1 Xi, whence 

1 1 ( n ) ;; log lP'(Sn > na) � ;; log lP' � xi > na , 
1= 1 

and it therefore suffices by ( 1 5)-( 17) to prove that 

(18) A 00* S A * (a) .  

Since Aoo* S AC* (a) , the set Ic = { t  � 0 : at - AC (t) � Aoo* } i s  non-empty. Using 
the smoothness of A c , and aided by a glance at Figure 5 .4, we see that Ic is a non-empty 
closed interval. Since A C (t) is non-decreasing in c, the sets Ic are non-increasing . Since the 
intersection of nested compact sets is non-empty, the intersection nc>a Ic contains at least 
one real number � .  By the monotone convergence theorem, AC (O � A (O as c � 00, 
whence 

so that 

as required in ( 1 8) .  

A * (a) = sup{at - A Ct ) } � A 00* 
t >O 

• 



206 5 . 1 2 Generating functions and their applications 

Exercises for Section 5 . 1 1  

1. A fair coin is tossed n times, showing heads Hn times and tails Tn times. Let Sn = Hn - Tn . 
Show that 

IP'(Sn > an ) l /n ---+ if 0 < a < 1 .  
J( 1 + a) 1+a ( 1 - a) l -a 

What happens if a 2: I ?  

2. Show that 

r, l /n 4 
n ---+ -----r===.=:;====;== )(1 + a) 1+a ( 1 - a) l -a 

as n ---+ 00, where 0 < a < 1 and 

Tn = � (�) . 
I k- in l > �an 

Find the asymptotic behaviour of Tnl /
n 

where 

Tn = L 
k: k>n ( l+a ) 

where a >  O. 

3. Show that the moment generating function of X is finite in a neighbourhood of the origin if and 
only if X has exponentially decaying tails, in the sense that there exist positive constants A and /-L such 
that 1P'( I X I  2: a) ::s /-Le-J...a for a >  O. [Seen in the light of this observation, the condition of the large 
deviation theorem (5 . 1 1 .4) is very natural] .  

4. Let X l , X2 , ' "  be independent random variables having the Cauchy distribution, and let Sn = 
X l + X2 + . . .  + Xn . Find lP'(Sn > an) . 

5.12 Problems 

1. A die is thrown ten times.  What is the probability that the sum of the scores is 27? 

2. A coin is tossed repeatedly, heads appearing with probability p on each toss .  
(a) Let X be the number of tosses until the first occasion by which three heads have appeared 

successively. Write down a difference equation for f(k) = IP'(X = k) and solve it. Now write 
down an equation for IE(X) using conditional expectation. (Try the same thing for the first 
occurrence of HTH). 

(b) Let N be the number of heads in n tosses of the coin. Write down G N (S ) .  Hence find the 
probability that: (i) N is divisible by 2, (ii) N is divisible by 3 . 

3. A coin is tossed repeatedly, heads occurring on each toss with probability p. Find the probability 
generating function of the number T of tosses before a run of n heads has appeared for the first time. 

4. Find the generating function of the negative binomial mass function 

f (k) = (k - 1) pr ( 1  _ p)k-r , r - 1 
k = r, r + 1 ,  . . .  , 
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where 0 < p < I and r is a positive integer. Deduce the mean and variance . 

5. For the simple random walk, show that the probability po (2n ) that the particle returns to the origin 
at the (2n)th step satisfies po (2n ) � (4pq )n /...;nn, and use this to prove that the walk is persistent if 

I 
and only if p = !- .  You will need Stirling's formula: n !  � nn+ 'J. e-n ../iii. 
6. A symmetric random walk in two dimensions is defined to be a sequence of points { (Xn ,  Yn ) : 
n 2: O} which evolves in the following way : if (Xn , Yn ) = (x ,  y) then (Xn+l , Yn+d is one of the 
four points (x ± I ,  y) , (x , y ± 1 ) , each being picked with equal probability ! . If (Xo, Yo) = (0, 0) : 
(a) show that E(X� + Y;) = n, 
(b) find the probability po (2n) that the particle is at the origin after the (2n)th step, and deduce that 

the probability of ever returning to the origin is I .  

7. Consider the one-dimensional random walk {Sn } given by 

{ Sn + 2 with probability p ,  
S l -n+ - Sn - I with probability q = I - p ,  

where 0 < p < 1 .  What i s  the probability o f  ever reaching the origin starting from So = a where 
a > O? 
8. Let X and Y be independent variables taking values in the positive integers such that 

for some p and all 0 � k � n . Show that X and Y have Poisson distributions . 

9. In a branching process whose family sizes have mean /l, and variance 0- 2 , find the variance of Zn , 
the size of the nth generation, given that Zo = 1 .  

10. Waldegrave's problem. A group {A l , A2 , . . .  , Ar } of r ( >  2) people play the following game. 
A 1 and A 2 wager on the toss of a fair coin. The loser puts £ I in the pool, the winner goes on to play 
A3 . In the next wager, the loser puts £ 1  in the pool, the winner goes on to play A4 , and so on. The 
winner of the (r - I) th wager goes on to play A l ,  and the cycle recommences . The first person to 
beat all the others in sequence takes the pool. 
(a) Find the probability generating function of the duration of the game. 
(b) Find an expression for the probability that Ak wins . 
(c) Find an expression for the expected size of the pool at the end of the game, given that Ak wins. 
(d) Find an expression for the probability that the pool is intact after the nth spin of the coin. 
This problem was discussed by Montmort, Bernoulli, de Moivre, Laplace, and others . 

11. Show that the generating function Hn of the total number of individuals in the first n generations 
of a branching process satisfies Hn (s ) = sG (Hn- l (s ) ) . 
12. Show that the number Zn of individuals in the nth generation of a branching process satisfies 
IP'(Zn > N I Zm = 0) � Gm (O)N for n < m. 
13. (a) A hen lays N eggs where N is Poisson with parameter A . The weight of the nth egg is 
Wn , where Wj , W2 , . . .  are independent identically distributed variables with common probability 
generating function G(s ) .  Show that the generating function Gw  of the total weight W = �;:'l Wi 
is given by Gw (s ) = exp {-A + AG (S ) } . W is said to have a compound Poisson distribution. Show 
further that, for any positive integral value of n, Gw (s ) l jn is the probability generating function of 
some random variable; W (or its distribution) is said to be infinitely divisible in this regard. 
(b) Show that if H (s ) is the probability generating function of some infinitely divisible distribution 
on the non-negative integers then H (s ) = exp{ -A + AG(S ) }  for some A (> 0) and some probability 
generating function G(s ) .  
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14. The distribution of a random variable X is called infinitely divisible if, for all positive integers n, 
there exists a sequence Y?) , yin) , . . .  , y�n) of independent identically distributed random variables 

such that X and yl(
n) + yt) + . . .  + y�n) have the same distribution. 

(a) Show that the normal, Poisson, and gamma distributions are infinitely divisible. 
(b) Show that the characteristic function </> of an infinitely divisible distribution has no real zeros, in 

that </> (t ) I=- 0 for all real t .  
15. Let X I ,  X2 , . . . be  independent variables each taking the values 0 or  1 with probabilities 1 - p and 
p, where 0 < p < 1 .  Let N be a random variable taking values in the positive integers, independent 
of the Xi , and write S = XI + X2 + . . .  + XN . Write down the conditional generating function of N 
given that S = N, in terms of the probability generating function G of N. Show that N has a Poisson 
distribution if and only if IE(xN)P = IE(xN I S = N) for all p and x .  
16. I f  X and Y have joint probability generating function 

where PI + P2 ::::: 1 ,  

find the marginal mass functions of X and Y, and the mass function of X + Y .  Find also the conditional 
probability generating function G X I Y (s I y) = IE(sX I Y = y) of X given that Y = y .  The pair X, Y 
is said to have the bivariate negative binomial distribution. 
17. If X and Y have joint probability generating function 

G X, Y (s , t) = exp { ex (s - 1) + {J (t - 1) + y (s t - I ) }  

find the marginal distributions of X ,  Y ,  and the distribution of X + Y ,  showing that X and Y have the 
Poisson distribution, but that X + Y does not unless y = O. 

18. Define 

for a, b > O. Show that 
(a) I (a , b) = a- I 1 ( 1 ,  ab), (b) a l /ab = -2/ ( 1 ,  ab), 
(c) I (a , b) = .fife-2ab / (2a) .  
(d) I f  X has density function (d/'/x)e-c/x-gx for x >  0 ,  then 

IE(e-tX) = dV 71: 
exp (-2vc (g + t) ) , t >  -g .  

g + t 

1 
(e) If X has density function (271:x3 ) - 2: e- I / (2x ) for x > 0, then X has moment generating function 

given by IE(e-tX) = exp { -J2t}, t 2: O. [Note that IE (Xn ) = 00 for n 2: 1 . ] 
19. Let X, Y, Z be independent N (O, 1 )  variables. Use characteristic functions and moment gener­
ating functions (Laplace transforms) to find the distributions of 
(a) U = X/ Y, 
(b) V = X-2 , 
(c) W = XYZ/VX2y2 + Y2Z2 + Z2X2 . 

20. Let X have density function f and characteristic function </>, and suppose that J::'oo I </> (t) I dt < 00. 
Deduce that 

f (x) = - e- z tx</> (t) dt . 1 100 . 
271: -00 

21. Conditioned branching process. Consider a branching process whose family sizes have the 
geometric mass function f(k) = qpk , k 2: 0, where /l, = p/q > 1 .  Let Zn be the size of the nth 
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generation, and assume Zo = 1 .  Show that the conditional distribution of Zn I f.L n , given that Zn > 0, 
converges as n ---+ 00 to the exponential distribution with parameter 1 - f.L - 1 . 
22. A random variable X is called symmetric if X and - X are identically distributed. Show that X 
is symmetric if and only if the imaginary part of its characteristic function is identically zero. 

23. Let X and Y be independent identically distributed variables with means 0 and variances 1 .  Let 
cjJ (t) be their common characteristic function, and suppose that X + Y and X - Y are independent. 
Show that cjJ (2t) = cjJ (t)3cjJ (-t) ,  and deduce that X and Y are N(O, 1 )  variables .  

More generally, suppose that X and Y are independent and identically distributed with means 0 
and variances 1 ,  and furthermore that lE.(X - Y I X + Y) = 0 and var(X - Y I X + Y) = 2. Deduce 
that cjJ (s )2 = cjJ' (s )2 - cjJ (s )cjJ" (s ) ,  and hence that X and Y are independent N(O, 1 )  variables. 

24. Show that the average Z = n- 1 2:7=1 Xi of n independent Cauchy variables has the Cauchy 
distribution too. Why does this not violate the law of large numbers? 

25. Let X and Y be independent random variables each having the Cauchy density function f (x) = 
{n (l  + x2) }- I , and let Z = 1 (X + Y) .  
(a) Show by  using characteristic functions that Z has the Cauchy distribution also. 
(b) Show by the convolution formula that Z has the Cauchy density function. You may find it helpful 

to check first that 

. f (x) + f (y - x)  
j (x) f (y - x) = 2 + g (y) {xf (x) + (y - x )f (y - x) } 

n (4 + y ) 

where g(y) = 2/{ny (4 + y2) } .  

26. Let XI , X2 , . . .  , Xn be independent variables with characteristic functions cjJl , cjJ2 , . . .  , cjJn . De­
scribe random variables which have the following characteristic functions : 

(a) cjJ l (t)cjJ2 (t) . . .  cjJn (t) , (b) IcjJ l (t) 1 2 , 
(c) 2:'i PjcjJj (t) where Pj :::: 0 and 2:'i Pj = 1 ,  (d) (2 - cjJ l  (t»- I , 
(e) fcf cjJ l (ut )e-U du o  

27. Find the characteristic functions corresponding to  the following density functions on  (-00, (0) : 
(a) I I  cosh (nx) ,  (b) ( 1  - cos x ) / (nx2) ,  
(c) exp( -x - e-X) ,  (d) 1e- 1x 1 . 

Show that the mean of the 'extreme-value distribution' in part (c) is Euler's constant y .  
28. Which of the following are characteristic functions: 

(a) cjJ (t) = 1 - I t I if I t I � 1 , cjJ (t) = 0 otherwise, 
(b) cjJ (t) = ( l + t4) - I , (c) cjJ (t) = exp( _t4) ,  
(d) cjJ (t) = cos t , (e) cjJ (t) = 2(1 - cos t ) l t2 . 

29. Show that the characteristic function cjJ of a random variable X satisfies 1 1  - cjJ (t) I � lE. 1  t X I .  

30. Suppose X and Y have joint characteristic function cjJ (s , t) . Show that, subject to the appropriate 
conditions of differentiability, 

for any positive integers m and n . 

31. If X has distribution function F and characteristic function cjJ, show that for t > 0 

(a) 

(b) 
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32. Let X I , X2 , . . .  be independent variables which are uniformly distributed on [0, 1 ] . Let Mn = 
max {X I , X2 , . . .  , Xn } and show that n ( 1 - Mn ) � X where X is exponentially distributed with 
parameter 1 .  You need not use characteristic functions. 
33. If X is either (a) Poisson with parameter A, or (b) 1' ( 1 ,  A), show that the distribution of fA = 
(X - EX) / "jvar X approaches the N (0, 1 )  distribution as A ---+ 00. 
(c) Show that 

e -n 1 + n + - + . . .  + - ---+ -
( n2 nn ) 1 

2 !  n !  2 
as n ---+ 00. 

34. Coupon collecting. Recall that you regularly buy quantities of  some ineffably dull commodity. 
To attract your attention, the manufacturers add to each packet a small object which is also dull, and in 
addition useless, but there are n different types .  Assume that each packet is equally likely to contain 
any one of the different types, as usual. Let Tn be the number of packets bought before you acquire 
a complete set of n objects . Show that n - I (Tn - n log n) � T, where T is a random variable with 
distribution function IP'(T .:'0 x) = exp(-e-X ) ,  -00 < x < 00. 

35. Find a sequence (¢n ) of characteristic functions with the property that the limit given by ¢ (t) = 
limn---+ 00 ¢n (t) exists for all t, but such that ¢ is not itself a characteristic function. 
36. Use generating functions to show that it is not possible to load two dice in such a way that the 
sum of the values which they show is equally likely to take any value between 2 and 1 2. Compare 
with your method for Problem (2.7 . 1 2) .  

37. A biased coin is tossed N times, where N is a random variable which is Poisson distributed 
with parameter A. Prove that the total number of heads shown is independent of the total number of 
tails. Show conversely that if the numbers of heads and tails are independent, then N has the Poisson 
distribution. 
38. A binary tree is a tree (as in the section on branching processes) in which each node has exactly 
two descendants . Suppose that each node of the tree is coloured black with probability p, and white 
otherwise, independently of all other nodes. For any path n containing n nodes beginning at the root 
of the tree, let B (n )  be the number of black nodes in n ,  and let Xn (k) be the number of such paths n 
for which B (n )  � k. Show that there exists f3e such that 

E{Xn (f3n) }  ---+ { O �f f3 > f3e , 
00 If f3 < f3e , 

and show how to determine the value f3e . 
Prove that 

( ) { 0 if f3 > f3e , II" Xn (f3n) � 1 ---+ 
1 if f3 < f3e . 

39. Use the continuity theorem (5 .9 .5) to show that, as n ---+ 00, 
(a) if Xn is bin(n , A/n) then the distribution of Xn converges to a Poisson distribution, 
(b) if Yn is geometric with parameter p = A/n then the distribution of Yn /n  converges to an expo­

nential distribution. 
40. Let XI , X2 , . . . be independent random variables with zero means and such that E IXJ I  < 00 for 

all j .  Show that Sn = X I + X2 + . . .  + Xn satisfies Sn/ "jvar(Sn ) � N (O, 1 )  as n ---+ 00 if 

The following steps may be useful. Let u/ = var(Xj ) ,  u (n)2 = var(Sn ) ,  Pj = E lxJ I ,  and ¢j 
and 1/In be the characteristic functions of Xj and Sn /u (n) respectively. 
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(i) Use Taylor's theorem to show that ItPj (t) - 1 1  .::: 2t2u/ and ItPj (t) - 1 + !u/ t2 1 .::: I t l 3 pj for 
j � l . 

(ii) Show that I log( l  + z) - z l  .::: I z l 2 if I z l  .::: ! ,  where the logarithm has its principal value. 
(iii) Show that u} .::: Pj , and deduce from the hypothesis that maxI ::::oj ::::on Uj /u (n) ---+ 0 as n ---+ 00, 

implying that max l ::::oj ::::on ItPj (t / U (n» - 1 1 ---+ O. 
(iv) Deduce an upper bound for I log tPj Ct /u (n» - i t2u/ /u (n)2 1 , and sum to obtain that log o/n Ct) ---+ 

_ lt2 2 
41. Let X I , X2 , . . .  be independent variables each taking values + 1  or - 1  with probabilities ! and 
i .  Show that 

as n ---+ 00. 

42. Normal sample. Let XI , X2 , . . .  , Xn be independent N(I-i,  (2) random variables. Define X = 
n- I �'i Xi and Zi = Xi - X. Find the joint characteristic function of X, ZI , Z2 , . . .  , Zn , and hence 
prove that X and S2 = (n - 1 ) - 1 �'i (Xi - X)2 are independent. 

43. Log-normal distribution. Let X be N(O, 1 ) , and let Y = eX ; Y is said to have the log-normal 
distribution. Show that the density function of Y is 

1 
f (x) = � exp{ - ! (log x)2 } , 

xv 27i 
x >  O. 

For I a I .::: 1 ,  define fa (x) = { I + a sin(27i log x) } f (x ) .  Show that fa is a density function with finite 
moments of all (positive) orders, none of which depends on the value of a. The family {fa : la l .::: I }  
contains density functions which are not specified by their moments. 
44. Consider a random walk whose steps are independent and identically distributed integer-valued 
random variables with non-zero mean. Prove that the walk is transient. 
45. Recurrent events. Let {Xr : r � I }  be the integer-valued identically distributed intervals 
between the times of a recurrent event process. Let L be the earliest time by which there has been an 
interval of length a containing no occurrence time. Show that, for integral a ,  

46. A biased coin shows heads with probability p (= 1 - q) . I t  is flipped repeatedly until the first 
time Wn by which it has shown n consecutive heads. Let JB:(s Wn ) = Gn (s ) .  Show that Gn = 
psGn- I / ( l  - qsGn_ I ) ,  and deduce that 

47. In n flips of a biased coin which shows heads with probability p (= 1 - q), let Ln be the length 
of the longest run of heads. Show that, for r � 1 ,  

48. The random process {Xn : n � I }  decays geometrically fast in that, in the absence of external 
input, Xn+ I = ! Xn . However, at any time n the process is also increased by Yn with probability 
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i ,  where {Yn : n :::: I }  is a sequence of independent exponential random variables with parameter A.  
Find the limiting distribution of Xn as  n � 00. 

49. Let G(s )  = JE.(sX) where X :::: O. Show that JE.{(X + 1 )- I } = JJ G(s) ds, and evaluate this 
when X is (a) Poisson with parameter A, (b) geometric with parameter p, (c) binomial bin(n , p), (d) 
logarithmic with parameter p (see Exercise (5 .2 .3» . Is there a non-trivial choice for the distribution 
of X such that JE.{(X + 1 ) - I } = {JE.(X + l ) }- I ? 
50. Find the density function of 2:�=1 Xr , where {Xr : r :::: l }  are independent and exponentially 
distributed with parameter A, and N is geometric with parameter p and independent of the Xr . 
51. Let X have finite non-zero variance and characteristic function ¢> (t ) .  Show that 

is a characteristic function, and find the corresponding distribution. 

52. Let X and Y have joint density function 

I x l  < 1 , I y l  < 1 . 

Show that ¢>x (t)¢>y (t) = ¢>x+y (t) , and that X and Y are dependent. 
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Markov chains 

Summary. A Markov chain is a random process with the property that, condi­
tional on its present value, the future is independent of the past. The Chapman­
Kolmogorov equations are derived, and used to explore the persistence and 
transience of states. Stationary distributions are studied at length, and the er­
godic theorem for irreducible chains is proved using coupling . The reversibility 
of Markov chains is discussed. After a section devoted to branching processes, 
the theory of Poisson processes and birth-death processes is considered in 
depth, and the theory of continuous-time chains is sketched. The technique 
of imbedding a discrete-time chain inside a continuous-time chain is exploited 
in different settings. The basic properties of spatial Poisson processes are de­
scribed, and the chapter ends with an account of the technique of Markov chain 
Monte Carlo. 

6.1 Markov processes 

The simple random walk (5 .3) and the branching process (5.4) are two examples of sequences 
of random variables that evolve in some random but prescribed manner. Such collections are 
calledt 'random processes' . A typical random process X is a family {Xt : t E T }  of random 
variables indexed by some set T .  In the above examples T = {O, 1 , 2, . . .  } and we call the 
process a 'discrete-time' process; in other important examples T = lR or T = [0 , 00) and we 
call it a 'continuous-time' process. In either case we think of a random process as a family of 
variables that evolve as time passes . These variables may even be independent of each other, 
but then the evolution is not very surprising and this very special case is of little interest to us 
in this chapter. Rather, we are concerned with more general, and we hope realistic, models 
for random evolution . Simple random walks and branching processes shared the following 
property: conditional on their values at the nth step, their future values did not depend on 
their previous values .  This property proved to be very useful in their analysis, and it is to the 
general theory of processes with this property that we tum our attention now. 

Until further notice we shall be interested in discrete-time processes. Let {Xo, Xl , . . . } be 
a sequence of random variables which take values in some countable set S, called the state 

tSuch collections are often called 'stochastic' processes. The Greek verb 'ar:oxal;o/Lal ' means 'to shoot 
at, aim at, guess at' , and the adjective 'ar:oxaaT:lKO� ' was used, for example by Plato, to mean 'proceeding 
by guesswork' . 
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spacet . Each Xn is a discrete random variable that takes one of N possible values, where 
N = l S I ; it may be the case that N = 00. 

(1) Definition. The process X i s  a Markov chain:!: if  i t  satisfies the Markov condition: 
. 

P(Xn = S I Xo = XO, Xl = X l ,  • • •  , XlI-l == Xn-I) == P(Xn == S I Xn- l  == Xn-I)  
for all n 2: 1 and all s,  x} , . . . • Xn- l  E S. 

A proof that the random walk is a Markov chain was given in Lemma (3 .9 .5) . The reader 
can check that the Markov property is equivalent to each of the stipulations (2) and (3) below: 
for each s E S and for every sequence {Xi : i 2: O} in S, 

(2) lP'(Xn+l = s I Xn1 = xn1 ' Xn2 = Xn2 '  Xnk = xnk ) = lP'(Xn+I = s I Xnk = xnk ) 
for all n 1 < n2 < . . . < nk S n, 

(3) lP'(Xm+n = s I Xo = Xo , X I = Xl , . . . , Xm = xm) = lP'(Xm+n = s I Xm = xm) 
for any m, n 2: O. 

We have assumed that X takes values in some countable set S. The reason for this is 
essentially the same as the reason for treating discrete and continuous variables separately. 
Since S is assumed countable, it can be put in one-one correspondence with some subset Sf 
of the integers, and without loss of generality we can assume that S is this set Sf of integers. 
If Xn = i ,  then we say that the chain is in the ' i th state at the nth step' ; we can also talk of 
the chain as 'having the value i ' , 'visiting i ' , or 'being in state i ' , depending upon the context 
of the remark. 

The evolution ofa chain is described by its 'transition probabilities ' lP'(Xn+ I = j I Xn = i ) ; 
it can be quite complicated in general since these probabilities depend upon the three quantities 
n, i ,  and j .  We shall restrict our attention to the case when they do not depend on n but only 
upon i and j .  

(4) Definition. The chain X is called homogeneous if 

lP'(Xn+ I = j I Xn = i ) = lP'(XI = j I Xo = i ) 

for all n , i , j .  The transition matrix P = (Pij ) i s  the l S I x l S I matrix o f  transition proba­
bilities 

Pij = lP'(Xn+I = j I Xn = i ) .  

Some authors write pji i n  place o f  Pij here, s o  beware; sometimes we write Pi, j for Pij . 
Henceforth, all Markov chains are assumed homogeneous unless otherwise specified; we 
assume that the process X is a Markov chain, and we denote the transition matrix of such a 
chain by P.  

tThere is, of course, a n  underlying probability space (Q , :F, lP') , and each Xn i s  an F-measurable function 
which maps Q into S. 

tThe expression ' stochastically determined process '  was in use until around 1 930, when Khinchin suggested 
this more functional label. 
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(5) Theorem. The transition matrix P is a stochastic matrix, which is to say that : 
(a) P has non-negative entries, or Pij :::: 0 for all i , j, 
(b) P has row sums equal to one, or Lj Pij = 1 for all i . 

Proof. An easy exercise. 

We can easily see that (5) characterizes transition matrices. 

• 

Broadly speaking, we are interested in the evolution of X over two different time scales , 
the '&hort term' and the 'long term' . In the short term the random evolution of X is described 
by P, whilst long-term changes are described in the following way. 

(6) Definition. The n-step transition matrix P(m , m + n) = (Pij (m , m + n» is the matrix 
of n-step transition probabilities Pij (m , m + n) = JP'(Xm+n = j I Xm = i ) .  , 

By the assumption of homogeneity, P(m , m + 1 ) = P. That P(m , m + n) does not depend 
on m is a consequence of the following important fact. 

(7) Theorem. Chapman-Kolmogorov equations. 

Pij (m , m + n + r) = LPik (m , m + n)pk} (m + n , m  + n + r) .  
k 

Therefore, P(m , m + n + r) = P(m , m + n)'P(m + n, m  + n  + r), and P(m, m + n) = pn, 
the nth power ofP. 

Proof. We have as required that 

Pij (m , m + n + r) = JP'(Xm+n+r = j I Xm = i )  
= L JP'(Xm+n+r = j , Xm+n = k I Xm = i )  

k 

= L JP'(Xm+n+r = j I Xm+n = k , Xm = i )JP'(Xm+n = k I Xm = i )  
k 

= LJP'(Xm+n+r = j I Xm+n = k)JP'(Xm+n = k I Xm = i ) ,  
k 

where we have used the fact that JP'(A n B I C) = JP'(A I B n C)JP'(B I C) , proved in Exercise 
( 1 .4.2), together with the Markov property (2) . The established equation may be written in 
matrix form as P(m , m + n + r) = P(m , m + n)P(m + n, m + n + r ) , and it follows by 
iteration that P(m , m + n) = pn . • 

It is a consequence of Theorem (7) thatP(m , m +n) = P(O, n) , and we write henceforth Pn 
for P(m , m + n) , and Pij (n) for Pij (m , m + n) . This theorem relates long-term development 
to short-term development, and tells us how Xn depends on the initial variable Xo . Let 
J-L}n) = JP'(Xn = i )  be the mass function of Xn , and write IL (n) for the row vector with entries 
(J-L}n) : i E S) . 

(8) Lemma. lL(m+n) = lL(m)Pn, and hence lL(n) = IL(O)pn . 



2 1 6  6 . 1 Markov chains 

Proof. We have that 

I-Lt
+n) = IP'(Xm+n = j )  = L IP'(Xm+n = j I Xm = i )lP'(Xm = i )  

i 

and the result follows from Theorem (7). • 

Thus we reach the important conclusion that the random evolution of the chain is determined 
by the transition matrix P and the initial mass function JL (0) .  Many questions about the chain 
can be expressed in terms of these quantities, and the study of the chain is thus largely reducible 
to the study of algebraic properties of matrices . 

(9) Example. Simple random walk. The simple random walk on the integers has state space 
S = {a, ± 1 ,  ±2, . . .  } and transition probabilities 

if j = i + l ,  
if j = i - I , 
otherwise . 

The argument leading to equation (3 . 1 0 .2) shows that { (
1 

n
. . ) p� (n+j-i) q � (n-j+i) 

Pij (n) = z (n + ] - z )  
° 

if n + j - i is even, 

otherwise . 
• 

(10) Example. Branching process. As in Section 5 .4, S = {a, 1 , 2 , . . .  } and Pii is the 
coefficient of si in G(s ) i . Also, Pij (n) is the coefficient of si in Gn (s )i . • 

(11 )  Example. Gene frequencies. One of the most interesting and extensive applications of 
probability theory is to genetics, and particularly to the study of gene frequencies. The problem 
may be inadequately and superficially described as follows . For definiteness suppose the 
population is human. Genetic information is (mostly) contained in chromosomes, which are 
strands of chemicals grouped in cell nuclei. In humans ordinary cells carry 46 chromosomes, 
44 of which are homologous pairs . For our purposes a chromosome can be regarded as an 
ordered set of n sites, the states of which can be thought of as a sequence of random variables 
C1 , C2 , . . .  , Cn . The possible values of each Ci are certain combinations of chemicals, and 
these values influence (or determine) some characteristic of the owner such as hair colour or 
leg length. 

Now, suppose that A is a possible value of C 1 , say, and let X n be the number of individuals 
in the nth generation for which C1 has the value A . What is the behaviour of the sequence 
Xl , X 2 , . . . , X n , . . .  ? The first important (and obvious) point is that the sequence is random, 
because of the following factors . 

(a) The value A for C 1 may affect the owner's chances of contributing to the next generation. 
If A gives you short legs, you stand a better chance of being caught by a sabre-toothed 
tiger. The breeding population is randomly selected from those born, but there may be 
bias for or against the gene A . 
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(b) The breeding population is randomly combined into pairs to produce offspring . Each 
parent contributes 23 chromosomes to its offspring, but here again, if A gives you short 
legs you may have a smaller (or larger) chance of catching a mate. 

(c) Sex cells having half the normal complement of chromosomes are produced by a special 
and complicated process called 'meiosis ' . We shall not go into details , but essentially the 
homologous pairs of the parent are shuffled to produce new and different chromosomes 
for offspring . The sex cells from each parent (with 23 chromosomes) are then combined 
to give a new cell (with 46 chromosomes). 

(d) Since meiosis involves a large number of complex chemical operations it is hardly 
surprising that things go wrong occasionally, producing a new value for CI , 11 say. This 
is a 'mutation' .  

The reader can now see that if generations are segregated (in a laboratory, say), then we 
can suppose that Xl , X2 , . . .  is a Markov chain with a finite state space. If generations are 
not segregated and X (t ) is the frequency of A in the population at time t ,  then X (t ) may be a 
continuous-time Markov chain. 

For a simple example, suppose that the population size is N, a constant. If Xn = i , it may 
seem reasonable that any member of the (n + l )th generation carries A with probability i / N, 
independently of the others . Then 

(
N
) ( 

. 
) 
j 
( 

. 

) 
N 

-
j 

Pij = lP'(Xn+l = j I Xn = i )  = j � 1 - � 
Even more simply, suppose that at each stage exactly one individual dies and is replaced 

by a new individual ; each individual is picked for death with probability 1 /  N. If Xn = i ,  we 
assume that the probability that the replacement carries A is i / N. Then { i (N - i ) 

Pij = 1 _
�
2
i (N - i ) 
N2 o 

if j = i ± l , 

if j = i ,  • 

otherwise. 

(12) Example. Recurrent events. Suppose that X is a Markov chain on S, with Xo = i . Let 
T ( 1 )  be the time of the first return of the chain to i :  that is, T ( 1 )  = min {n 2: 1 : X n = i } ,  with 
the convention that T ( l ) = 00 if Xn =f. i for all n 2: 1 .  Suppose that you tell me that T ( l ) = 3 , 
say, which is to say that Xn =f. i for n = 1 , 2 , and X3 = i .  The future evolution of the chain 
{X3 , X4 , . . .  } depends, by the Markov property, only on the fact that the new starting point 
X3 equals i ,  and does not depend further on the values of Xo ,  X I , X2 . Thus the future process 
{X3 , X4 , . . .  } has the same distribution as had the original process {Xo ,  Xl , . . .  } starting from 
state i .  The same argument is valid for any given value of T ( 1 ) ,  and we are therefore led to 
the following observation. Having returned to its starting point for the first time, the future 
of the chain has the same distribution as had the original chain . Let T (2) be the time which 
elapses between the first and second return of the chain to its starting point. Then T ( 1 )  and 
T(2) must be independent and identically distributed random variables. Arguing similarly 
for future returns, we deduce that the time of the nth return of the chain to its starting point 
may be represented as T ( 1 )  + T(2) + . . .  + T(n) , where T ( l ) , T (2) , . . .  are independent 
identically distributed random variables . That is to say, the return times of the chain form a 
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'recurrent-event process ' ; see Example (5 .2 . 15 ) .  Some care is needed in order to make this 
argument fully rigorous, and this is the challenge of Exercise (5) .  

A problem arises with the above argument if  T(1 ) takes the value 00 with strictly positive 
probability, which is to say that the chain is not (almost) certain to return to its starting point. 
For the moment we overlook this difficulty, and suppose not only that lP'(T ( I )  < (0) = 1 ,  but 
also that 11 = lE(T ( 1 ) ) satisfies 11 < 00. It is now an immediate consequence of the renewal 
theorem (5 .2 .24) that 

1 Pii (n) = lP'(Xn = i I Xo = i ) -+ - as n -+ 00 
11 

so long as the distribution of T ( 1 ) is non-arithmetic ; the latter condition is certainly satisfied 
if, say, Pii > O. • 

(13) Example. Bernoulli process. Let S = {O, 1 , 2 , . . .  } and define the Markov chain Y by 
Yo = 0 and 

lP'(Yn+ l = s + 1 I Yn = s) = p, lP'(Yn+ l = s I Yn = s ) = 1 - p, 

for all n � 0, where 0 < P < 1 . You may think of Yn as the number of heads thrown in n 
tosses of a coin. It is easy to see that 

lP'(Ym+n = j I Ym = i )  = ( . 
n 
. ) pj-i ( 1 - p)n-j+i , ] - I O s  j - i S n . 

Viewed as a Markov chain, Y is not a very interesting process . Suppose, however, that the 
value of Yn is counted using a conventional digital decimal meter, and let Xn be the final digit 
of the reading, Xn = Yn modulo 10 .  It may be checked that X = {Xn : n � O} is a Markov 
chain on the state space Sf = {O, 1 ,  2 ,  . . .  , 9 } with transition matrix 

P 0 
1 - P P 

o 0 

There are various ways of studying the behaviour of X. If we are prepared to use the 
renewal theorem (5 .2 .24) , then we might argue as follows. The process X passes through the 
values 0, 1 , 2 ,  . . .  , 9 , 0 , 1 ,  . . .  sequentially. Consider the times at which X takes the value i ,  
say. These times form a recurrent-event process for which a typical inter-occurrence time T 
satisfies 

T =  
{ I  with probability 1 - p, 
1 + Z with probability p, 

where Z has the negative binomial distribution with parameters 9 and p. Therefore lE(T) = 
1 + plE(Z) = 1 + p(9/ p) = 10 .  It is now an immediate consequence of the renewal theorem 
that lP'(Xn = i ) -+ /0 for i = 0 , 1 , . . .  , 9 ,  as n -+ 00. • 

(14) Example. Markov's other chain (1910). Let Yl , Y3 , Yj , . . .  be a sequence of indepen­
dent identically distributed random variables such that 

(15) lP'(Y2k+l = - 1 ) = lP'(Y2k+ l = 1) = ! , k = 0 , 1 , 2 , . . .  , 
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and define Y2k = Y2k- l Y2k+l , for k = 1 , 2 , . . . .  You may check that Y2 , Y4 , . . .  i s  a se­
quence of independent identically distributed variables with the same distribution ( 1 5) .  Now 
lE(Y2k Y2k+d = lE(Y2k- l Yik+l ) = lE(Y2k- l ) = 0, and so (by the result of Problem (3 . 1 1 . 1 2» 
the sequence Yl , Y2 , . . .  is pairwise independent. Hence Pij (n) = lP'(Ym+n = j I Ym = i ) sat­
isfies Pij (n) = � for all n and i , j = ± 1 , and it follows easily that the Chapman-Kolmogorov 
equations are satisfied. 

Is Y a Markov chain? No, because lP'(Y2k+ l = 1 1  Y2k = - 1 ) = � , whereas 

lP'(Y2k+ l = 1 I Y2k = - 1 ,  Y2k- l = 1 )  = O. 

Thus, whilst the Chapman-Kolmogorov equations are necessary for the Markov property, 
they are not sufficient; this is for much the same reason that pairwise independence is weaker 
than independence. 

Although Y is not a Markov chain, we can find a Markov chain by enlarging the state space . 
Let Zn = (Yn , Yn+ d ,  taking values in S = {- I , + 1 }2 . It is an exercise to check that Z is a 
(non-homogeneous) Markov chain with, for example, 

lP'(Zn+ l = ( 1 , 1) I Zn = ( 1 ,  1 )) = { t if n even, 
if n odd. 

This technique of 'imbedding' Y in a Markov chain on a larger state space turns out to be 
useful in many contexts of interest. • 

Exercises for Section 6. 1 

1. Show that any sequence of independent random variables taking values in the countable set S is 
a Markov chain. Under what condition is this chain homogeneous? 

2. A die is rolled repeatedly. Which of the following are Markov chains ? For those that are, supply 
the transition matrix. 
(a) The largest number Xn shown up to the nth roll. 
(b) The number Nn of sixes in n rolls . 
(c) At time r , the time Cr since the most recent six. 
(d) At time r, the time Br until the next six. 

3. Let {Sn : n � O}  be a simple random walk with So = 0, and show that Xn = I Sn l defines a 
Markov chain; find the transition probabilities of this chain. Let Mn = max {Sk : 0 � k � n } , and 
show that Yn = Mn - Sn defines a Markov chain. What happens if So =I O? 

4. Let X be a Markov chain and let {nr : r � O}  be an unbounded increasing sequence of positive 
integers. Show that Yr = Xnr constitutes a (possibly inhomogeneous) Markov chain. Find the 
transition matrix of Y when nr = 2r and X is : (a) simple random walk, and (b) a branching process .  

5. Let X be a Markov chain on S, and let I : Sn -+ {O, 1 } .  Show that the distribution of 
Xn , Xn+ l , . . .  , conditional on { l (Xl , . . .  , Xn ) = I }  n {Xn = i I , is identical to the distribution 
of Xn , Xn+ l , . . .  conditional on {Xn = n.  
6 .  Strong Markov property. Let X be  a Markov chain on  S, and let T be  a random variable taking 
values in {O, 1 , 2 ,  . . .  } with the property that the indicator function I{T=n} ,  of the event that T = n , is 
a function of the variables X l , X2 , . . .  , Xn . Such a random variable T is called a stopping time, and 
the above definition requires that it is decidable whether or not T = n with a knowledge only of the 
past and present, Xo, X l , . . .  , Xn , and with no further information about the future. 

Show that 

lP' (XT+m = j I Xk = Xk for O � k < T, XT = i )  = lP'(XT+m = j I XT = i )  
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for m ::: 0, i, j E S, and all sequences (Xk )  of states. 

7. Let X be a Markov chain with state space S, and suppose that h : S -+ T is one-one. Show that 
Yn = h (Xn )  defines a Markov chain on T . Must this be so if h is not one-one? 

8. Let X and Y be Markov chains on the set Z of integers. Is the sequence Zn = Xn + Yn necessarily 
a Markov chain? 

9. Let X be a Markov chain. Which of the following are Markov chains? 
(a) Xm+r for r ::: O. 
(b) X2m for m ::: O. 
(c) The sequence of pairs (Xn ,  Xn+ l )  for n ::: O. 

10. Let X be a Markov chain. Show that, for 1 < r < n, 

IP'(Xr = k I Xi = xi for i = 1 , 2,  . . .  , r - 1 ,  r + 1 . . . , n) 
= 1P'(Xr = k  I Xr- [ = xr- [ , Xr+ J  = xr+ [ ) · 

11. Let {Xn : n ::: I }  be independent identically distributed integer-valued random variables . Let 
Sn = 2:�=1 Xr , with So = 0, Yn = Xn + Xn- l with Xo = 0, and Zn = 2:�=O Sr . Which of the 
following constitute Markov chains : (a) Sn , (b) Yn , (c) Zn , (d) the sequence of pairs (Sn , Zn ) ?  

12. A stochastic matrix P i s  called doubly stochastic if 2:i Pij = 1 for all j .  It is called sub-stochastic 
if 2:i Pij :::: 1 for all j .  Show that, if P is stochastic (respectively, doubly stochastic, sub-stochastic), 
then pn is stochastic (respectively, doubly stochastic, sub-stochastic) for all n .  

6.2 Classification of states 

We can think of the development of the chain as the motion of a notional particle which jumps 
between the states of the state space S at each epoch of time. As in Section 5 . 3 ,  we may be 
interested in the (possibly infinite) time which elapses before the particle returns to its starting 
point. We saw there that it sufficed to find the distribution of the length of time until the 
particle returns for the first time, since other interarrival times are merely independent copies 
of this. However, need the particle ever return to its starting point? With this question in mind 
we make the following definition . 

(1) Definition. State i is called persistent (ar recurrent) if 

JP'(Xn = i far same n 2: 1 1  Xo = i )  =:; 1 ,  

which i s  to say that the probability af eventual return to i ,  having started from i .  i s  1 .  If this 
probability is strictly less than 1 ,  the state i is called transient. 

As in Section 5 . 3 ,  we are interested in the first passage times of the chain. Let 

be the probability that the first visit to state j ,  starting from i ,  takes place at the nth step. 
Define 

00 
(2) !ij = L Jij (n) 

n= [ 
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to be the probability that the chain ever visits j , starting from i .  Of course, j is persistent 
if and only if Ijj = 1 .  We seek a criterion for persistence in terms of the n-step transition 
probabilities . Following our random walk experience, we define the generating functions 

00 00 
Pij (S ) = L:>npij (n) , Fij (S ) = L:>n fij (n) , 

n=O n=O 

with the conventions that Pij (0) = Oij , the Kronecker delta, and fi) (0) = 0 for all i and j .  
Clearly fi) = Fij ( 1 ) .  We usually assume that l s i < 1 ,  since Pi) (s ) is then guaranteed to 
converge. On occasions when we require properties of Pij (s ) as s t 1 ,  we shall appeal to 
Abel's theorem (5. 1 . 1 5) .  

(3) Theorem. 
(a) Pii (S) = 1 + Fii (S ) Pi i (s ) . 
(b) Pij (s) = Fij (s ) Pjj (s ) ifi =f. j . 

Proof. The proof is exactly a s  that of  Theorem (5 .3 . 1 ) . Fix i , j E S and let Am = {Xm = j } 
and Bm be the event that the first visit to j (after time 0) takes place at time m ; that is, 
Bm = {Xr =f. j for 1 :'S r < m, Xm = j } .  The Bm are disjoint, so that 

m 
JP>(Am I Xo = i ) = L JP>(Am n Br I Xo = i ) . 

r= l 

Now, using the Markov condition (as found in Exercises (6. 1 .5 ) or (6. 1 .6» , 

Hence 

JP>(Am n Br I Xo = i ) = JP>(Am I Br , Xo = i )JP>(Br I Xo = i ) 
= JP>(Am I Xr = j )JP>(Br I Xo = i ) . 

m 
Pij (m) = L fij (r)pjj (m - r) , m = 1 , 2 , . . . . 

r= l 

Multiply throughout by sm , where I s I < 1 ,  and sum over m (� 1 )  to find that Pi) (s) - Oij = 
Fij (s) Pj j (s) as required. • 

(4) Corollary. 
(a) State j is persistent ifLn pjj (n) = 00, and if this holds then Ln Pi) (n) = 00 for all i 

such that fi) > O. 
(b) State j is transient ifLn pjj (n) < 00, and if this holds then Ln Pij (n) < 00 for all i . 

Proof. First we show that j i s  persistent if and only i f  Ln pjJ <n) = 00. From (3a) ,  

1 Pjj (s ) = 
1 _ Fjj (s ) 

if l s i < 1 .  

Hence, as s t 1 ,  Pjj (s ) � 00 if and only if fjj = Fjj ( 1 ) = 1 . Now use Abel 's theorem 
(5 . 1 . 1 5) to obtain limst l Pjj (s ) = Ln pjJ <n) and our c1aim is shown. Use (3b) to complete 
the proof. • 
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(5) CoroUary. If) is transient then pij (n) � O as n  � oofor all i . 

Proof. This i s  immediate from (4) . • 

An important application of Theorem (4) is to the persistence of symmetric random walk; 
see Problem (5 . 1 2 .5 ) .  

Thus each state is  either persistent or transient. I t  is intuitively clear that the number N (i ) 
of times which the chain visits its starting point i satisfies 

(6) 
( .  ) { I  if i is persistent, 

lP' N(l )  = 00 = 
o if i is transient, 

since after each such visit, subsequent return is assured if and only if fii = 1 (see Problem 
(6. 1 5 .5 )  for a more detailed argument) . 

Here is another important classification of states .  Let 

'Ij = min{n ::: 1 : Xn = j }  

be the time of the first visit to } ,  with the convention that 'Ij = 00 if this visit never occurs ; 
lP'(T; = 00 I Xo = i ) > 0 if and only if i is transient, and in this case lE(T; I Xo = i ) = 00. 

(7) Definition. The mean recurrence time IL; of a state i is defined as 

ILi = lE(1I I Xo = i ) = 
{ �n nfii (n) if i is persistent, 

if i is transient. 

Note that ILi may be infinite even if i is persistent. 

(8) Definition. For a persistent state i ,  

i is called { nuB  if ILl = 00 ,  
non-null (or positive) if J1.1 < 00 .  

There i s  a simple criterion for nullity in  terms of  the transition probabilities .  

(9) Theorem. A persistent state is nul! if and only if Pi; (n) � 0 as n � 00; if this holds 
then pj ; (n) � Ofor al! } . 

Proof. We defer this until note (a) after Theorem (6.4. 17 ) .  • 

Finally, for technical reasons we shall sometimes be interested in the epochs of time at 
which return to the starting point is possible . 

(10) Definition. The period d(i ) of a state i is defined by d(i ) = gcd{n : Pii (n) > A} ,  
the greatest common divisor of the epochs at which return is possible . We call i periodic if 
d(i) > 1 and aperiodic if d(i ) = 1 .  

This to say, Pii (n) = 0 unless n is a multiple of d(i ) , and d(i ) is maximal with this property. 

(11) Definition. A state is called ergodic if it is persistent, non-null, and aperiodic .  
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(12) Example. Random walk. Corollary (5 .3 .4) and Problem (5 . 1 2 .5) show that the states 
of the simple random walk are all periodic with period 2, and 

(a) transient, if p =I- � ,  
(b) null persistent, if p = � .  • 

(13) Example. Branching process. Consider the branching process of Section 5 .4 and 
suppose that lP'(Zl = 0) > O. Then 0 is called an absorbing state, because the chain never 
leaves it once it has visited it; all other states are transient. • 

Exercises for Section 6.2 

1 .  Last exits. Let [ij (n) = lP'(Xn = j ,  Xk I=- i for 1 ::::: k < n I Xo = i ) ,  the probability that the 
chain passes from i to j in n steps without revisiting i .  Writing 

00 
L " (s ) - '"' sn [ " (n) IJ - L...J IJ ' 

n= l 

show that Pij (s ) = Pi; (s ) L ij (s ) if i I=- j .  Deduce that the first passage times and last exit times 
have the same distribution for any Markov chain for which Pi; (s ) = Pjj (s ) for all i and j .  Give an 
example of such a chain. 

2. Let X be a Markov chain containing an absorbing state s with which all other states i communicate, 
in the sense that Pis (n) > 0 for some n = nO ) .  Show that all states other than s are transient. 

3. Show that a state i is persistent if and only if the mean number of visits of the chain to i ,  having 
started at i ,  is infinite. 

4. Visits. Let Vj = I {n :::: 1 : Xn = j } 1 be the number of visits of the Markov chain X to j ,  and 
define l1ij = lP'(Vj = 00 I Xo = i ) .  Show that: 

(a) 
. .  _ { I  if i is persistent, 

111 1  -
0 if i is transient, { lP'(1j < 00 I Xo = i )  if j is persistent, 

(b) T/ij = . . , . where T- = min {n :::: 1 : Xn = j } . 
o If } IS transIent, J 

5. Symmetry. The distinct pair i , j of states of a Markov chain is called symmetric if 

lP'(1j < Ti I Xo = i) = lP'(Ti < Tj I Xo = j ) ,  

where Ti = min {n :::: 1 : Xn = i } . Show that, i f  Xo = i and i ,  j i s  symmetric, the expected number 
of visits to j before the chain revisits i is 1 .  

6.3 Classification of chains 

We consider next the ways in which the states of a Markov chain are related to one other. This 
investigation will help us to achieve a full classification of the states in the language of the 
previous section. 

(1) Definition. We say i communicates with j, written i -+ j, if the chain may ever visit 
state j with positive probability, having started from i. That is, i -+ j if Pij (m) > 0 for some 
m � O. We say i and j intercommunicate if i -+ j and j -+ i, in which case we write 
i # j .  
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If i =1= j , then i � j if and only if fij > O. Clearly i � i since Pii (0) = 1 ,  and it follows 
that � is an equivalence relation (exercise: if i � j and j � k, show that i � k) . The state 
space S can be partitioned into the equivalence classes of � .  Within each equivalence class 
all states are of the same type. 

(2) Theorem. If i � j then: 
(a) i and j have the same period, 
(b) i is transient if and only if j is transient, 
(c) i is null persistent if and only if j is null persistent. 

Proof. (b) If i � j then there exist m , n :::: 0 such that a = Pij (m )pj i (n) > O. By the 
Chapman-Kolmogorov equations (6. 1 .7) , 

for any non-negative integer r. Now sum over r to obtain 

L Pjj (r) < oo if L Pii (r ) < 00. 
r r 

Thus, by Corollary (6.2.4), j is transient if i is transient. The converse holds similarly and (b) 
is shown. 
(a) This proof is similar and proceeds by way of Definition (6.2 . 1 0) .  
(c) We defer this until the next section. A possible route i s  by  way o f  Theorem (6.2.9), but we 
prefer to proceed differently in order to avoid the danger of using a circular argument. • 

(3) Definition. A set C of states is called: 
(a) closed if Pij = 0 for all i E C, j ¢. C, 
(b) irreducible if i � j for all i , j E C. 

Once the chain takes a value in a closed set C of states then i t  never leaves C subsequently. A 
closed set containing exactly one state is called absorbing; for example, the state 0 is absorbing 
for the branching process . It is clear that the equivalence classes of � are irreducible. We 
call an irreducible set C aperiodic (or persistent, null, and so on) if all the states in C have this 
property ; Theorem (2) ensures that this is meaningful. If the whole state space S is irreducible, 
then we speak of the chain itself as having the property in question. 

(4) Decomposition theorem. The state space S can be partitioned uniquely as 

S = T U Cl U C2 U . . .  

where T is the set of transient states, and the Ci are irreducible closed sets of persistent states. 

Proof. Let Cl , C2 , . . .  be the persistent equivalence classes of �.  We need only show that 
each Cr is closed. Suppose on the contrary that there exist i E Cr , j ¢. Cr , such that Pij > O. 
Now j fr i, and therefore 

lP'(Xn =1= i for all n :::: 1 1 Xo = i ) :::: lP' (X l = j I Xo = i ) > 0, 

in contradiction of the assumption that i is persistent. • 
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The decomposition theorem clears the air a little. For, on the the one hand, if Xo E Cr , 
say, the chain never leaves Cr and we might as well take Cr to be the whole state space. On 
the other hand, if Xo E T then the chain either stays in T for ever or moves eventually to one 
of the Ck where it subsequently remains. Thus, either the chain always takes values in the set 
of transient states or it lies eventually in some irreducible closed set of persistent states .  For 
the special case when S is finite the first of these possibilities cannot occur. 

(5) Lemma. If S is finite, then at least one state is persistent and all persistent states are 
non-null. 

Proof. If all states are transient, then take the limit through the summation sign to obtain the 
contradiction 

I = lim '" Pij (n) = 0 n -+ oo � 
j 

by Corollary (6 .2 .5) .  The same contradiction arises by Theorem (6 .2.9) for the closed set of 
all null persistent states, should this set be non-empty. • 

(6) Example. Let S = { I ,  2, 3 ,  4, 5 ,  6} and 

1 I 0 0 0 0 2: 2: 
1 3 0 0 0 0 4 4 
1 1 1 1 0 0 

P = 4 4 4 4 
1 0 1 1 0 1 
4 4 4 4 
0 0 0 0 I 1 

2: 2: 
0 0 0 0 1 1 

2: 2: 

The sets { I , 2} and {5 ,  6} are irreducible and closed, and therefore contain persistent non-null 
states. States 3 and 4 are transient because 3 -+ 4 -+ 6 but return from 6 is impossible. All 
states have period 1 because Pi i ( 1 ) > 0 for all i .  Hence, 3 and 4 are transient, and 1 , 2, 5 ,  
and 6 are ergodic. Easy calculations give 

if n = 1 ,  

if n ::: 2 ,  

and hence IL l = .En nfl l  (n) = 3 .  Other mean recurrence times can be found similarly. The 
next section gives another way of finding the ILi which usually requires less computation . • 

Exercises for Section 6.3  

1 .  Let X be a Markov chain on  {O ,  1 , 2 , . . .  } with transition matrix given by  POj = aj for j ::: 0, 
Pii = r and Pi, i- I = 1 - r for i ::: 1 .  Classify the states of the chain, and find their mean recurrence 
times. 

2. Determine whether or not the random walk on the integers having transition probabilities Pi, i +2 = 
p, Pi, i- I = 1 - p, for all i ,  is persistent. 
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3. Classify the states of the Markov chains with transition matrices ( 1 -:;2P 2p 0 ) 
(a) 1 - 2p P , 

2p 1 - 2p 

(b) 

( 0 P :;0 1 -� P )
. I � P 

I : P 
I - p 

In each case, calculate Pij (n) and the mean recurrence times of the states. 

4. A particle performs a random walk on the vertices of a cube. At each step it remains where it is 
with probability i, or moves to one of its neighbouring vertices each having probability i. Let v and 
w be two diametrically opposite vertices . If the walk starts at v, find: 
(a) the mean number of steps until its first return to v ,  
(b) the mean number of steps until its first visit to  w,  
(c) the mean number of  visits to  w before its first return to v .  

5 .  Visits. With the notation o f  Exercise (6.2 .4), show that 
(a) if i -+ j and i is persistent, then TJij = TJj i = 1 ,  
(b) TJij = 1 i f  and only if lP'(T; < 00 I Xo = i )  = IP'(Tj < 00 I Xo = j )  = l .  
6. First passages. Let TA = min {n 2: 0 : Xn E A } ,  where X i s  a Markov chain and A i s  a subset 
of the state space S, and let TJj = IP'(TA < 00 I Xo = j ) .  Show that 

{ I if j E A ,  
TJj = L PjkTJk if j rf. A .  

keS 

Show further that if  x = (Xj : j E S) is any non-negative solution of these equations then Xj 2: TJj for 
all j .  

7. Mean first passage. In the notation of Exercise (6), let Pj = E(TA I Xo = j ) .  Show that 

Pj = { � + L PjkPk 
keS 

if  j E A, 

if  j rf. A,  

and that if  x = (Xj : j E S) i s  any non-negative solution of these equations then Xj 2: Pj for all j .  

8. Let X be an irreducible Markov chain and let A be a subset of the state space. Let Sr and Tr 
be the successive times at which the chain enters A and visits A respectively. Are the sequences 
{XSr : r 2: I } ,  {XTr : r 2: I } Markov chains? What can be said about the times at which the chain 
exits A?  

9 .  (a) Show that for each pair i ,  j of  states of  an  irreducible aperiodic chain, there exists N = N(i ,  j )  
such that Pij (r ) > 0 for all r 2: N. 
(b) Show that there exists a function f such that, i fP is the transition matrix of an  irreducible aperiodic 

Markov chain with n states, then Pij (r ) > 0 for all states i ,  j ,  and all r 2: f (n) .  
(c) Show further that f (4) 2: 6 and fen) 2: (n - 1 ) (n - 2) . 

[Hint: The postage stamp lemma asserts that, for a, b coprime, the smallest n such that all integers 
strictly exceeding n have the form aa + fJb for some integers a, fJ 2: 0 is (a - l ) (b - 1 ) . ] 

10. An urn initially contains n green balls and n + 2 red balls .  A ball is picked at random: if it is 
green then a red ball is also removed and both are discarded; if it is red then it is replaced together 
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with an extra red and an extra green ball. This is repeated until there are no green balls in the urn. 
Show that the probability the process terminates is 1 / (n + 1 ) .  

Now reverse the rules: i f  the ball i s  green, i t  i s  replaced together with a n  extra green and a n  extra 
red ball ;  if it is red it is discarded along with a green ball. Show that the expected number of iterations 
until no green balls remain is L.-}=1 (2j + 1) = n (n + 2) . [Thus, a minor perturbation of a simple 
symmetric random walk can be non-null persistent, whereas the original is null persistent. ]  

6.4 Stationary distributions and the limit theorem 

How does a Markov chain Xn behave after a long time n has elapsed? The sequence {Xn }  
cannot generally, of course, converge to some particular state s since it enjoys the inherent 
random fluctuation which is specified by the transition matrix. However, we might hold out 
some hope that the distribution of Xn settles down. Indeed, subject to certain conditions this 
turns out to be the case. The classical study of limiting distributions proceeds by algebraic 
manipulation of the generating functions of Theorem (6 .2 .3 ) ;  we shall avoid this here, con­
tenting ourselves for the moment with results which are not quite the best possible but which 
have attractive probabilistic proofs . This section is in two parts, dealing respectively with 
stationary distributions and limit theorems. 

(A) Stationary distributions. We shall see that the existence of a limiting distribution for 
Xn , as n --+ 00, is closely bound up with the existence of so-called ' stationary distributions' . 

(1) Definition. The vector 'IC is called a stationary distribution of the chain if 'IC has entries 
(1f) : j E S) such that: 

(a) 1Cj ?; 0 for all j ,  and L} 1C} = 1 ,  
(b) 'IC = 'IC P, which is  to say that 1C} = Li 1ft Pi} for all j .  

Such a distribution i s  called stationary for the following reason. Iterate ( 1  b )  to obtain 
'lCP2 = (1fP)P = 'lCP = 1f ,  and so 

(2) 1fpn = 1f for all n 2: O. 

Now use Lemma (6. 1 . 8) to see that if Xo has distribution 1f then Xn has distribution 1f for all 
n, showing that the distribution of Xn is ' stationary ' as time passes; in such a case, of course, 
1f is also the limiting distribution of Xn as n --+ 00.  

Following the  discussion after the  decomposition theorem (6 . 3 .4), we  shall assume hence­
forth that the chain is irreducible and shall investigate the existence of stationary distributions. 
No assumption of aperiodicity is required at this stage . 

(3) Theorem. An irreducible chain has a stationary distribution 'IC if and only if all the states 
are non-null persistent; in this case, 1t is the unique stationary distribution and is given by 
1fi = fJ,i1 for each i E S, "'where fJ,i is the mean recurrence time oli. 

Stationary distributions 'IC satisfy 'IC = 'IC P. We may display a root x of the matrix equation 
x = xP explicitly as follows, whenever the chain is irreducible and persistent. Fix a state k 
and let Pi (k) be the mean number of visits of the chain to the state i between two successive 
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visits to state k; that is, pi (k) = lE(M I Xo = k) where 

00 
M = L I{xn=i}n{n :::n } 

n= l  

and Tk is the time of the first return to state k, as  before. Note that Nk = 1 so that Pk (k) = 1 ,  
and that 00 

pi (k) = L lP'(Xn = i, Tk ::: n I Xo = k) . 
n=l 

We write p (k) for the vector (Pi (k) : i E S) . Clearly Tk = Li ES M ,  since the time between 
visits to k must be spent somewhere; taking expectations, we find that 

(4) ILk = L Pi (k) ,  
i ES 

so that the vector p (k) contains terms whose sum equals the mean recurrence time ILk . 

(5) Lemma. For any state k of an irreducible persistent chain, the vector p (k) satisfies 
Pi (k) < 00 for all i, andfurthermore p (k) = p (k)P . 

Proof. We show first that Pi (k) < 00 when i =1= k .  Write 

the probability that the chain reaches i in n steps but with no intermediate return to its starting 
point k .  Clearly fkk (m + n) ::: hi (m)fik (n) ;  this holds since the first return time to k equals 
m + n if: (a) Xm = i ,  (b) there is no return to k prior to time m, and (c) the next subsequent 
visit to k takes place after another n steps .  By the irreducibility of the chain, there exists n 
such that fik (n) > O. With this choice of n, we have that hi (m) s fkk (m + n)/fik (n) ,  and so 

as required. 
For the second statement of the lemma, we argue as follows. We have that Pi (k) 

L�l hi (n ) .  Now hi ( 1 )  = Pki , and 

hi (n) = L lP'(Xn = i ,  Xn- l = j , n ::: n I Xo = k) = L IkJ (n - 1 )PJ i for n ::: 2, 
J :J# J :J# 

by  conditioning on the value of  Xn- l .  Summing over n ::: 2 ,  we obtain 

pi (k) = Pki + L (L hJ (n - l ))PJ i = Pk (k)Pki + L PJ (k)PJi 
J :J# n:::2 J :J# 

since Pk (k) = 1 .  The lemma i s  proved. • 
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We have from equation (4) and Lemma (5) that, for any irreducible persistent chain, the 
vector p (k) satisfies p (k) = p (k)P , and furthermore that the components of p (k) are non­
negative with sum Itk . Hence, if Itk < 00, the vector 1C with entries Jri = Pi (k)/ltk satisfies 
Jr = Jrp and furthermore has non-negative entries which sum to 1 ;  that is to say, Jr is a 
stationary distribution . We have proved that every non-null persistent irreducible chain has a 
stationary distribution, an important step towards the proof of the main theorem (3 ) .  

Before continuing with the rest of the proof of (3 ) ,  we note a consequence of the results 
so far. Lemma (5) implies the existence of a root of the equation x = xP whenever the chain 
is irreducible and persistent. Furthermore, there exists a root whose components are strictly 
positive (certainly there exists a non-negative root, and it is not difficult-see the argument 
after (8)-to see that this root may be taken strictly positive). It may be shown that this root 
is unique up to a multiplicative constant (Problem (6 . 1 5 .7» , and we arrive therefore at the 
following useful conclusion . 

(6) Theorem. If the chain is irreducible and persistent, there exists a positive root x of the 
equation x = xP, which is unique up to a multiplicative constant. The chain is non-null if 
Li Xi < 00 and null ifLi Xi = 00. 

Proof of (3). Suppose that 1C is a stationary distribution of the chain. If all states are transient 
then Pij (n) � 0, as n � 00, for alI i and j by Corollary (6 .2 .5) .  From (2), 

(7) for all i and j , 

which contradicts ( l a) .  Thus all states are persistent. To see the validity o f  the limit i n  (7)t , 
let F be a finite subset of S and write 

L JriPij (n) .:s L JriPij (n) + L Jri 
iEF i rf-F 

� L Jri as n � 00, since F is finite 
i rf-F 

� 0 as F t S .  

We show next that the existence of Jr implies that all states are non-null and that Jri = It; 1 
for each i .  Suppose that Xo has distribution 1C ,  so that JP'(Xo = i )  = Jri for each i .  Then, by 
Problem (3 . 1 1 . 1 3a), 

00 00 
Jrj Itj = L JP'(1j 2: n I Xo = j )JP'(Xo = j ) = L JP'(1j 2: n , Xo = j ) . 

n= ! n= ! 
However, JP'(1j 2: 1 ,  Xo = j ) = JP'(Xo = j ) , and for n 2: 2 

JP'(1j 2: n, Xo = j ) = JP'(Xo = j, Xm =1= j for 1 .:s m .:s n - 1 )  
= JP'(Xm =1= j for 1 .:s m .:s n - 1 )  - JP'(Xm =1= j for O .:s m .:s n - 1 )  
= JP'(Xm =1= j for O .:s m .:s n - 2 )  - JP'(Xm =1= j for O .:s m .:s n - 1 )  

by homogeneity 
= an-2 - an- l 

tActually this argument is a fonn of the bounded convergence theorem (5.6. 1 2) applied to sums instead of 
to integrals. We shall make repeated use of this technique. 
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where an = JP'(Xm =I- j for 0 :s m :s n) . Sum over n to obtain 

1Tj/-Lj = JP'(Xo = j ) + JP'(Xo =I- j) - lim an = 1 - lim an . n----7 OO n---7 00 

However, an � JP'(Xm =I- j for all m) = 0 as n � 00, by the persistence of j (and surrepti­
tious use of Problem (6. 1 5 .6» . We have shown that 

(8) 1Tj/-Lj = 1 ,  

so that /-Lj = 1Tj- 1 < 00 if 1Tj > O .  To see that 1Tj > 0 for all j , suppose on the contrary that 
1Tj = 0 for some j .  Then 

for all i and n, 

yielding that 1Ti = 0 whenever i � j . The chain is assumed irreducible, so that 1Ti = 0 for 
all i in contradiction of the fact that the 1Ti have sum 1 .  Hence /-Lj < 00 and all states of the 
chain are non-null. Furthermore, (8) specifies 1Tj uniquely as /-Li

l . 
Thus, if 1T exists then it is unique and all the states of the chain are non-null persistent. 

Conversely, if the states of the chain are non-null persistent then the chain has a stationary 
distribution given by (5) .  • 

We may now complete the proof of Theorem (6 .3 .2c) . 

Proof of (6.3.2c). Let C (i ) be the irreducible closed equivalence class of states which contains 
the non-null persistent state i . Suppose that Xo E C (i ) .  Then Xn E C (i )  for all n, and (5) 
and (3) combine to tell us that all states in C (i ) are non-null. • 

(9) Example (6.3.6) revisited. To find /-L I and /-L2 consider the irreducible closed set C = 
{ l ,  2 } .  If Xo E C, then solve the equation 1T = 1TPc for 1T = (1TI , 1T2) in terms of ( I  -

4
23
1 ) 

Pc = i 
to find the unique stationary distribution 1T = ( � ,  � ) , giving that /-LI = 1Ti l = 3 and /-L2 = 
1Til = � .  Now find the other mean recurrence times yourself (exercise). • 

Theorem (3) provides a useful criterion for deciding whether or not an irreducible chain is 
non-null persistent: just look for a stationary distributiont .  There is a similar criterion for the 
transience of irreducible chains .  

(10) Theorem. Let s E S be any state of an irreducible chain. The chain is transient if and 
only if there exists a non-zero solution {Yj : j =I- s} , satisfying I Yj I :s 1 for all j, to the 
equations 

(11) Yi = L Pij Yj , 
J :i# 

i =I- s . 

t We emphasize that a stationary distribution i s  a left eigenvector of the transition matrix, not a right 
eigenvector. 
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Proof. The chain is transient if and only if s is transient. First suppose s is transient and 
define 

(12) 

Then 

Li (n) = JP'(no visit to s in first n steps I Xo = i )  
= JP'(Xm =1= s for 1 � m � n I Xo  = i ) .  

Li ( 1 ) = L Pij , 
j : jf-s 

Li (n + 1 )  = L Pij Lj (n) . 
j : jf-s 

Furthermore, Li (n) � Li (n + 1 ) ,  and so 

Li = lim Li (n) = JP'(no visit to s ever I Xo = i )  = 1 - fis n---+oo 

satisfies ( 1 1 ) . (Can you prove this? Use the method of proof of (7) . )  Also Li > 0 for some i ,  
since otherwise !is = 1 for all i =1= s , and therefore 

fss = Pss + L Psi fis = L PSi = 1 
i : if-s 

by conditioning on Xl ; this contradicts the transience of s . 
Conversely, let y satisfy ( 1 1 )  with I Yi I � 1 .  Then 

I Yi l � L Pij l Yj l � L Pij = Li ( I ) ,  
j : jf-s j : jf-s 

I Yi l � L Pij Lj ( 1 ) = Li (2) , 
j : Jf-s 

and so on, where the Li (n) are given by ( 1 2) .  Thus I y; i  � Li (n) for all n . Let n � 00 to 
show that Li = limn---+oo Li (n) > 0 for some i ,  which implies that s is transient by the result 
of Problem (6. 1 5 .6) . • 

This theorem provides a necessary and sufficient condition for persistence: an irreducible 
chain is persistent if and only if the only bounded solution to ( 1 1 )  is the zero solution. This 
combines with (3) to give a condition for null persistence. Another condition is the following 
(see Exercise (6.4. 1 0» ; a corresponding result holds for any countably infinite state space S. 

(13) Theorem. Let s E S be any state of an irreducible chain on S = {O, 1 , 2 , . . .  } . The 
chain is persistent if there exists a solution {Yj : j =1= s } to the inequalities 

(14) 

such that Yi � 00 as i � 00. 

Yi � L Pij Yj , 
j :jf-s 

i =1= s , 

(15) Example. Random walk with retaining barrier. A particle performs a random walk 
on the non-negative integers with a retaining barrier at O. The transition probabilities are 

pO ,o = q ,  Pi, i+ l  = P for i � 0, Pi, i- l = q for i � 1 ,  
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where P + q = 1 .  Let p = P / q .  
(a) If q < p, take s = O to see that Yj = I - p-j satisfies ( 1 1 ), and so the chain i s  transient. 
(b) Solve the equation 7r: = 7r: P to find that there exists a stationary distribution, with 

7r:j = pj ( 1  - p) ,  if and only if q > p. Thus the chain is non-null persistent if and only 
if q > p. 

(c) If q = p = � ,  take s = 0 in ( 13) and check that Yj = j , j ::: 1 ,  solves ( 14) .  Thus the 
chain is null persistent. Alternatively, argue as follows. The chain is persistent since 
symmetric random walk is persistent (just reflect negative excursions of a symmetric 
random walk into the positive half-line) . Solve the equation x = xP to find that Xi = 1 
for all i provides a root, unique up to a multiplicative constant. However, L i Xi = 00 
so that the chain is null, by Theorem (6) . 

These conclusions match our intuitions well . • 

(B) Limit theorems. Next we explore the link between the existence of a stationary distribution 
and the limiting behaviour of the probabilities Pij (n) as n � 00. The following example 
indicates a difficulty which arises from periodicity. 

(16) Example. If S = { l ,  2} and P12 = P21 = 1 ,  then 

{ 0 if n is odd, 
Pl l  (n) = P22 (n) = . .  1 If n IS even. 

Clearly Pii (n) does not converge as n � 00;  the reason is that both states are periodic with 
period 2 .  • 

Until further notice we shall deal only with irreducible aperiodic chains .  The principal 
result is the following theorem. 

(17) Theorem. For an irreducible aperiodic chain, we have that 
1 Pij (n) -+ - as n -+ 00, 

f.l-j 

We make the following remarks. 

for all i and j. 

(a) If the chain is transient or null persistent then Pij (n) � 0 for all i and j , since f.l-j = 00. 
We are now in a position to prove Theorem (6.2 .9) .  Let C (i ) be the irreducible closed 
set of states which contains the persistent state i .  If C (i ) is aperiodic then the result is 
an immediate consequence of ( 17 ) ;  the periodic case can be treated similarly, but with 
slightly more difficulty (see note (d) fOllowing). 

(b) If the chain is non-null persistent then Pi} (n) � 7r:} = f.l-j 1 , where 7r: is the unique 
stationary distribution by (3) . 

(c) It follows from (17) that the limit probability, limn--->oo Pi} (n) , does not depend on the 
starting point X 0 = i ;  that is, the chain forgets its origin. It is now easy to check that 

1 IP'(Xn = j ) = LIP'(Xo = i ) pij (n) � - as n � 00 
i f.l-} 

by Lemma (6. 1 . 8) , irrespective of the distribution of Xo . 



6.4 Stationary distributions and the limit theorem 233 

(d) If X = {Xn } is an irreducible chain with period d, then Y = { Yn = Xnd : n 2: O} is an 
aperiodic chain, and it follows that 

d pjj (nd) = JP'(Yn = j I Yo = j )  � - as n � 00. ILj 

Proof of (17). If the chain is transient then the result holds from Corollary (6 .2 .5 ) . The 
persistent case is treated by an important technique known as 'coupling' which we met first in 
Section 4. 1 2. Construct a 'coupled chain' Z = (X, Y) , being an ordered pair X = {Xn : n 2: 
O} ,  Y = {Yn : n 2: O} of independent Markov chains, each having state space S and transition 
matrix P. Then Z = {Zn = (Xn , Yn ) : n 2: O} takes values in S x S, and it is easy to check 
that Z is a Markov chain with transition probabilities 

Pij, kl = JP'(Zn+ ! = (k ,  I ) I Zn = (i , j) )  
= JP'(Xn+ ! = k I Xn = i )JP'(Yn+ l = I I Yn = j)  by independence 
= PikPjl . 

Since X is irreducible and aperiodic, for any states i , j ,  k ,  I there exists N = N(i ,  j ,  k ,  I ) 
such that Pik (n)pjl (n) > 0 for all n 2: N; thus Z also is irreducible (see Exercise (6 .3 .9) or 
Problem (6. 1 5 .4) ; only here do we require that X be aperiodic) . 

Suppose that X is non-null persistent. Then X has a unique stationary distribution Jr ,  by 
(3) , and it is easy to see that Z has a stationary distribution v = (Vij : i , j E S) given by 
Vij = JriJrj ; thus Z is also non-null persistent, by (3) . Now, suppose that Xo = i and Yo = j ,  
so that Zo = (i , j ) .  Choose any state S E S and let 

T = min {n 2: 1 : Zn = (s , s ) }  

denote the time of  the first passage of Z to (s , s ) ;  from Problem (6. 1 5 .6) and the persistence 
of Z, JP'(T < 00) = 1 .  The central idea of the proof is the following observation. If m S n 
and Xm = Ym , then Xn and Yn are identically distributed since the distributions of Xn and Yn 
depend only upon the shared transition matrix P and upon the shared value of the chains at the 
mth stage. Thus ,  conditional on {T S n } , Xn and Yn have the same distribution. We shall use 
this fact, together with the finiteness of T, to show that the ultimate distributions of X and Y 
are independent of their starting points . More precisely, starting from Zo = (Xo , Yo) = (i , j ) ,  

Pik (n) = JP'(Xn = k )  
= JP'(Xn = k ,  T S n) + JP'(Xn = k ,  T > n ) 
= JP'(Yn = k ,  T S n) + JP'(Xn = k ,  T > n ) 

because, given that T S n, Xn and Yn are identically distributed 
S JP'(Yn = k) + JP'(T > n) 
= pjk (n) + JP'(T > n ) . 

This, and the related inequality with i and j interchanged, yields 

I pik (n) - pjk (n) I S JP'(T > n) � 0 as n � 00 
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because IP'(T < (0 ) = 1 ;  therefore, 

(18) Pik (n) - pjk (n) -+ 0 as n -+ 00 for all i ,  j ,  and k . 

Thus, i f  limn---> 00 Pik (n) exists, then i t  does not depend on i .  To show that i t  exists , write 

giving the result. To see that the limit in ( 1 9) follows from ( 1 8), use the bounded convergence 
argument in the proof of (7) ;  for any finite subset F of S, 

L JTi l pik (n) - pjk (n) 1 .:s L I pik (n) - pjk (n) 1 + 2 L JTi 
i i EF i rf-F 

-+ 2 L JTi as n -+ 00 
i rf- F  

which i n  turn tends to zero a s  F t S . 
Finally, suppose that X i s  null persistent; the  argument i s  a little trickier i n  this case. I f  Z 

is transient, then from Corollary (6 .2 .5) applied to Z, 

IP'(Zn = (j , j) I Zo = (i , i ») = Pij (n)2 -+ 0 as n -+ 00 

and the result holds . If Z is non-null persistent then, starting from Zo = (i , i ) ,  the epoch 1ff 
of the first return of Z to (i , i )  is no smaller than the epoch Ti of the first return of X to i ;  
however, lE(1! ) = 00 and lE(1ff) < 00 which is a contradiction . Lastly, suppose that Z is 
null persistent. The argument which leads to ( 1 8) still holds, and we wish to deduce that 

Pij (n) -+ 0 as n -+ 00 for all i and j .  

If this does not hold then there exists a subsequence n I , n2 , . . .  along which 

(20) Pij (nr ) -+ aj as r -+ 00 for all i and j ,  

for some a. ,  where the aj are not all zero and are independent of i by ( 1 8) ; this i s  an application 
of the principle of 'diagonal selection' (see Billingsley 1 995, Feller 1968, p. 336, or Exercise 
(5» . Equation (20) implies that, for any finite set F of states, 

and so a = Lj aj satisfies 0 < a .:s 1 .  Furthermore 

L Pik (nr )Pkj .:s Pij (nr + 1 )  = L PikPkj (nr ) ; 
kEF k 

let r -+ 00 here to deduce from (20) and bounded convergence (as used in the proof of ( 1 9» 
that 

L akPkj .:s L Pikaj = aj , 
kEF k 
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and so, letting F t S, we obtain Lk CikPkj � Cij for each j E S. However, equality must 
hold here, since if strict inequality holds for some j then 

LCik = LCikPkj < LCij , 
k k, j j 

which is a contradiction . Therefore 

for each j E S, 

giving that 1C = {Cij / Ci : j E S} is a stationary distribution for X ; this contradicts the nullity 
of X by (3 ) .  • 

The original and more general version of the ergodic theorem ( 17 )  for Markov chains does 
not assume that the chain is irreducible. We state it here; for a proof see Theorem (5 .2 .24) or 
Example ( 10.4.20). 

(21) Theorem. For any aperiodic state j of a Markov chain, pjj (n) � f.-Ljl as n � 00. 
Furthermore, if i is any other state then Pij (n) � fij / f.-L j as n � 00. 

(22) Corollary. Let 
1 n 

Lij (n) = - L Pij (m) n m=l 
be the mean proportion of elapsed time up to the nth step during which the chain was in state 
j, starting from i. If j is aperiodic, Lij (n) � fij / f.-L j as n � 00. 

Proof. Exercise: prove and use the fact that, as n � 00, n- 1 Ll Xi � X if Xn � x .  • 

(23) Example. The coupling game. You may be able to amaze your friends and break the ice 
at parties with the following card ' trick' . A pack of cards is shuffled, and you deal the cards 
(face up) one by one. You instruct the audience as follows .  Each person is to select some card, 
secretly, chosen from the first six or seven cards, say. If the face value of this card is m (aces 
count I and court cards count 1 0), let the next m - 1 cards pass and note the face value of the 
mth. Continuing according to this rule, there will arrive a last card in this sequence, face value 
X say, with fewer than X cards remaining . Call X the ' score' . Each person ' s  score is known 
to that person but not to you, and can generally be any number between 1 and 10 .  At the end 
of the game, using an apparently fiendishly clever method you announce to the audience a 
number between I and 1 0 . If few errors have been made, the majority of the audience will 
find that your number agrees with their score . Your popularity will then be assured, for a short 
while at least. 

This is the 'trick' . You follow the same rules as the audience, beginning for the sake of 
simplicity with the first card. You will obtain a ' score' of Y, say, and it happens that there is a 
large probability that any given person obtains the score Y also; therefore you announce the 
score Y .  

Why does the  game often work? Suppose that someone picks the m 1 th card, m2th card, 
and so on, and you pick the n l (= l )th, n2th, etc . If ni = mj for some i and j ,  then the two 
of you are ' stuck together' forever after, since the rules of the game require you to follow the 
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same pattern henceforth; when this happens first, we say that 'coupling ' has occurred. Prior 
to coupling, each time you read the value of a card, there is a positive probability that you will 
arrive at the next stage on exactly the same card as the other person . If the pack of cards were 
infinitely large, then coupling would certainly take place sooner or later, and it turns out that 
there is a good chance that coupling takes place before the last card of a regular pack has been 
dealt. 

You may recognize the argument above as being closely related to that used near the 
beginning of the proof of Theorem ( 1 7) .  • 

Exercises for Section 6.4 

1. The proof copy of a book is read by an infinite sequence of editors checking for mistakes. Each 
mistake is detected with probability P at each reading; between readings the printer corrects the 
detected mistakes but introduces a random number of new errors (errors may be introduced even if no 
mistakes were detected) . Assuming as much independence as usual, and that the numbers of new errors 
after different readings are identically distributed, find an expression for the probability generating 
function of the stationary distribution of the number Xn of errors after the nth editor-printer cycle, 
whenever this exists . Find it explicitly when the printer introduces a Poisson-distributed number of 
errors at each stage. 

2. Do the appropriate parts of Exercises (6.3 . 1 )-(6.3 .4) again, making use of the new techniques at 
your disposal. 

3. Dams. Let Xn be the amount of water in a reservoir at noon on day n. During the 24 hour period 
beginning at this time, a quantity Yn of water flows into the reservoir, and just before noon on each 
day exactly one unit of water is removed (if this amount can be found). The maximum capacity of 
the reservoir is K, and excessive inflows are spilled and lost. Assume that the Yn are independent 
and identically distributed random variables and that, by rounding off to some laughably small unit of 
volume, all numbers in this exercise are non-negative integers . Show that (Xn ) is a Markov chain, and 
find its transition matrix and an expression for its stationary distribution in terms of the probability 
generating function G of the Y n . 

Find the stationary distribution when Y has probability generating function G(s) = p( l - qs)- I . 
4. Show by example that chains which are not irreducible may have many different stationary 
distributions. 

5. Diagonal selection. Let (Xi (n ) : i ,  n :::: 1) be a bounded collection of real numbers. Show that 
there exists an increasing sequence n l , n2 , . . .  of positive integers such that limr---+oo xi (nr ) exists for 
all i .  Use this result to prove that, for an irreducible Markov chain, if it is not the case that Pi} (n) -+ 0 
as n -+ 00 for all i and j ,  then there exists a sequence (nr : r :::: 1 ) and a vector a. (# 0) such that 
Pij (nr ) -+ {X} as r -+ 00 for all i and j .  

6. Random walk on a graph. A particle performs a random walk on the vertex set of a connected 
graph G, which for simplicity we assume to have neither loops nor multiple edges. At each stage it 
moves to a neighbour of its current position, each such neighbour being chosen with equal probability. 
If G has T/ « (0) edges, show that the stationary distribution is given by Jiv = dv / (2T/), where dv is 
the degree of vertex v .  
7. Show that a random walk on the infinite binary tree is  transient. 

8. At each time n = 0, 1 , 2, . . . a number Yn of particles enters a chamber, where {Yn : n :::: O} 
are independent and Poisson distributed with parameter A. Lifetimes of particles are independent and 
geometrically distributed with parameter p. Let Xn be the number of particles in the chamber at time 
n .  Show that X is a Markov chain, and find its stationary distribution. 

9. A random sequence of convex polygons is generated by picking two edges of the current polygon 
at random, joining their midpoints, and picking one of the two resulting smaller polygons at random 
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to be the next in the sequence. Let Xn + 3 be the number of edges of the nth polygon thus constructed. 
Find IE(Xn) in terms of Xo, and find the stationary distribution of the Markov chain X. 
10. Let s be a state o f  an irreducible Markov chain o n  the non-negative integers . Show that the chain 
is persistent if there exists a solution y to the equations Yi 2: L.j :j # Pij Yj , i =I- s, satisfying Yi ---+ 00. 

U. Bow ties. A particle performs a random walk on a bow tie ABCDE drawn beneath on the left, 
where C is the knot. From any vertex its next step is equally likely to be to any neighbouring vertex. 
Initially it is at A. Find the expected value of: 
(a) the time of first return to A, 
(b) the number of visits to D before returning to A, 
(c) the number of visits to C before returning to A, 
(d) the time of first return to A, given no prior visit by the particle to E, 
(e) the number of visits to D before returning to A, given no prior visit by the particle to E. 

A D 

[?<J 
B E 

A B 

12. A particle starts at A and executes a symmetric random walk on the graph drawn above on the 
right. Find the expected number of visits to B before it returns to A.  

6.5 Reversibility 

Most laws of physics have the property that they would make the same assertions if the 
universal clock were reversed and time were made to run backwards. It may be implausible 
that nature works in such ways (have you ever seen the fragments of a shattered teacup re­
assemble themselves on the table from which it fell?), and so one may be led to postulate a 
non-decreasing quantity called 'entropy ' .  However, never mind such objections; let us think 
about the reversal of the time scale of a Markov chain. 

Suppose that {Xn : 0 S n S N} is an irreducible non-null persistent Markov chain, with 
transition matrix P and stationary distribution 1r: . Suppose further that Xn has distribution 1r: 
for every n. Define the 'reversed chain' Y by Yn = XN-n for 0 S n S N. We first check as 
follows that Y is a Markov chain. 

(1) Theorem. The sequence Y is a Markov chain with lP'(Yn+ l = j I Yn = i )  = (1Cj /1Ci )Pj i . 
Proof. We have as required that 

lP'(Yn+ 1 = in+ l I Yn = in , Yn- I = in- I , . . .  , Yo = io) 
lP'(Yk = ik , 0 S k S n + 1 )  
lP'(Yk = ik , 0 S k S n) 

lP'(XN-n- l = in+ 1 , XN-n = in , . . . , XN = io) 
lP'(XN-n = in , . . .  , XN = io) 

1Cin+1 Pin+ 1 , in 
1Cin 

• 
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We call the chain Y the time-reversal of the chain X, and we say that X is reversible if X 
and Y have the same transition probabilities . 

(2) Definition. Let X = {Xn : 0 :S n :S N} be an irreducible Markov chain such that Xn has 
the stationary distribution 1r: for all n . The chain is called reversible if the transition matrices 
of X and its time-reversal Y are the same, which is to say that 

(3) 1r:i Pij = 1r:j pj i for all i , j . 

Equations (3) are called the detailed balance equations, and they are pivotal to the study of 
reversible chains .  More generally we say that a transition matrix P and a distribution 1 are in 
detailed balance if Ai Pij = A j pj i for all i , j E S. An irreducible chain X having a stationary 
distribution 1r: is called reversible in equilibrium if its transition matrix P is in detailed balance 
with 1r: . It may be noted that a chain having a tridiagonal transition matrix is reversible in 
equilibrium; see Exercise ( 1 )  and Problem (6. 1 5 . 1 6c) . 

The following theorem provides a useful way of finding the stationary distribution of an 
irreducible chain whose transition matrix P is in detailed balance with some distribution 1 .  

(4) Theorem. Let P be the transition matrix of an irreducible chain X, and suppose that 
there exists a distribution 1r: such that 1r:i Pij = 1r:j pj i for all i, j E S. Then 1r: is a stationary 
distribution of the chain. Furthermore, X is reversible in equilibrium. 
Proof. Suppose that 1r: satisfies the conditions of the theorem. Then 

and so 1r: = 1r:P , whence 1r: is stationary. The reversibility in eqUilibrium of X follows from 
the definition (2) . • 

Although the above definition of reversibility applies to a Markov chain defined on only 
finitely many time points 0, 1 , 2, . . .  , N, if is easily seen to apply to the infinite time set 
0, 1 , 2, . . . .  It may be extended also to the doubly-infinite time set . . .  , -2, - 1 , 0, 1 , 2, . . . .  
In the last case it is necessary to note the following fact. Let X = {Xn : -00 < n < oo} be a 
Markov chain with stationary distribution 1r: . In order that Xn have distribution 1r: for all n, it 
is not generally sufficient that Xo has distribution 1r: .  

(5) Example. Ehrenfest model of diffusiont. Two containers A and B are placed adjacent 
to each other and gas is allowed to pass through a small aperture joining them. A total of m 
gas molecules is distributed between the containers . We assume that at each epoch of time 
one molecule, picked uniformly at random from the m available, passes through this aperture. 
Let Xn be the number of molecules in container A after n units of time has passed. Clearly 
{Xn } is a Markov chain with transition matrix 

i 
Pi, i+ l = 1 - - , m 

i 
Pi, i- l = - if O :s  i :S m . m 

Rather than solve the equation 1r: = 1r:P to find the stationary distribution, we note that such 
a reasonable diffusion model should be reversible in equilibrium. Look for solutions of the 
detailed balance equations 1r:i Pij = 1r:j Pj i to obtain 1r:i = (7) ( ! )m . • 

tOriginally introduced by Paul and Tatiana Ehrenfest as the 'dog-flea model ' .  
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Here is a way of thinking about reversibility and the equations 1Ti Pij = 1Tj Pj i . Suppose 
we are provided with a Markov chain with state space S and stationary distribution 1T .  To this 
chain there corresponds a 'network' as follows. The nodes of the network are the states in S, 
and arrows are added between certain pairs of nodes; an arrow is added pointing from state 
i to state j whenever Pij > O. We are provided with one unit of material (disease, water, 
or sewage, perhaps) which is distributed about the nodes of the network and allowed to flow 
along the arrows. The transportation rule is as follows :  at each epoch of time a proportion PU 
of the amount of material at node i is transported to node j .  Initially the material is distributed 
in such a way that exactly 1Ti of it is at node i ,  for each i . It is a simple calculation that 
the amount at node i after one epoch of time is Lj 1Tj Pj i , which equals 1Ti , since 1T = 1TP. 
Therefore the system is in equilibrium: there is a 'global balance' in the sense that the total 
quantity leaving each node equals the total quantity arriving there. There may or may not be a 
'local balance' , in the sense that, for all i, j ,  the amount flowing from i to j equals the amount 
flowing from j to i .  Local balance occurs if and only if 1Ti Pij = 1Tj pj i for all i , j ,  which is to 
say that P and 1T are in detailed balance. 

Exercises for Section 6.5 

1. A random walk on the set {O , 1 , 2 , . . .  , b} has transition matrix given by Poo = 1 - AO, Pbb = 1 - tLb, Pi,H I  = Ai and Pi+ l , i = tLi+ l for 0 ::s i < b, where 0 < Ai , tLi < 1 for all i ,  and 
Ai + tLi = 1 for 1 ::s i < b. Show that this process is reversible in equilibrium. 

2. Kolmogorov's criterion for reversibility. Let X be an irreducible non-null persistent aperiodic 
Markov chain. Show that X is reversible in equilibrium if and only if 

for all n and all finite sequences h ,  h, . . .  , jn of states . 

3. Let X be a reversible Markov chain, and let C be a non-empty subset of the state space S. Define 
the Markov chain Y on S by the transition matrix Q = (qij ) where 

q o o _ { {3Pij 
IJ - Pij 

if i E C and j 1: C ,  
otherwise, 

for i =f. j, and where {3 is a constant satisfying 0 < {3 < 1. The diagonal terms qu are arranged so that 
Q is a stochastic matrix. Show that Y is reversible in equilibrium, and find its stationary distribution. 
Describe the situation in the limit as {3 t O. 
4. Can a reversible chain be periodic? 

5. Ehrenfest dog-flea model. The dog-flea model of Example (6.5.5) is a Markov chain X on the 
state space {O, 1 ,  . . .  , m }  with transition probabilities 

Show that, if Xo = i ,  

i 
Pi, i+ 1  = 1 - - , 

m 
i 

Pi, i- l = ;;. ' for O ::s  i ::s m .  

E (Xn - I) = (i - I) (1 - �) n � 0 a s  n � 00 .  

6. Which of the following (when stationary) are reversible Markov chains? 

(a) The chain X = {Xn } having transition matrix P = ( 1 � IX 1 � {3 ) where IX + {3 > O. 
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(b) The chain Y = {Yn } having transition matrix P = ( 1 � P :; 1 ; p ) where 0 < p < 1 . 
P 1 - P 0 

(c) Zn = (Xn , Yn ) ,  where Xn and Yn are independent and satisfy (a) and (b). 

7. Let Xn , Yn be independent simple random walks . Let Zn be (Xn , Yn ) truncated to lie in the 
region Xn :::: 0, Yn :::: 0, Xn + Yn � a where a is integral. Find the stationary distribution of Zn . 
8. Show that an irreducible Markov chain with a finite state space and transition matrix P is reversible 
in equilibrium if and only if P = DS for some symmetric matrix S and diagonal matrix D with strictly 
positive diagonal entries. Show further that for reversibility in eqUilibrium to hold, it is necessary but 
not sufficient that P has real eigenvalues. 

9. Random walk on a graph. Let G be a finite connected graph with neither loops nor multiple 
edges, and let X be a random walk on G as in Exercise (6 .4.6) . Show that X is reversible in equilibrium. 

6.6 Chains with finitely many states 

The theory of Markov chains is much simplified by the condition that S be finite. By Lemma 
(6 .3 .5) , if S is finite and irreducible then it is necessarily non-null persistent. It may even be 
possible to calculate the n-step transition probabilities explicitly. Of central importance here 
is the following algebraic theorem, in which i = .J=T. Let N denote the cardinality of S. 
(1) Theorem (Perron-Frobenius) .  If P is the transition matrix of a finite irreducible chain 
with period d then: 

(a) A l = 1 is an eigenvalue ofP, 
(b) the d complex roots of unity 

are eigenvalues ofP, 
(c) the remaining eigenvalues Ad+ l , . . .  , AN satisfy I A) I < 1 .  

I f  the eigenvalues A I , . . . , AN are distinct then it i s  well known that there exists a matrix 
B such that P = B- 1 AB where A is the diagonal matrix with entries A I , . . . , AN . Thus 

o 

The rows of B are left eigenvectors of P. We can use the Perron-Frobenius theorem to explore 
the properties of pn for large n . For example, if the chain is aperiodic then d = 1 and 

When the eigenvalues of the matrix P are not distinct, then P cannot always be reduced to 
the diagonal canonical form in this way. The best that we may be able to do is to rewrite P in 
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its 'Jordan canonical form' P = B- 1 MB where 
o 
o (�1 :2 

M = 0 0 J3 
. . .  
. . .  ) 24 1 

and J 1 , J2 , . . .  are square matrices given as follows . Let )' 1 , .1..2 , . . .  , Am be the distinct 
eigenvalues of P and let ki be the multiplicity of Ai . Then 

J' = O � Ii � ]  
is a ki x ki matrix with each diagonal term Ai , each superdiagonal term 1 ,  and all other terms 
O. Once again we have that pn = B- 1MnB, where Mn has quite a simple form (see Cox and 
Miller ( 1 965, p. 1 1 8 et seq. ) for more details) .  

(2) Example. Inbreeding. Consider the genetic model described in Example (6. 1 . 1 1 c) and 
suppose that C 1 can take the values A or a on each of two homologous chromosomes. Then 
the possible types of individuals can be denoted by 

AA , Aa (= aA) , aa , 
and mating between types is denoted by 

AA x AA , AA x Aa, and so on . 
As described in Example (6. 1 . 1 1 c) , meiosis causes the offspring' s  chromosomes to be selected 
randomly from each parent; in the simplest case (since there are two choices for each of two 
places) each outcome has probability i .  Thus for the offspring of AA x Aa the four possible 
outcomes are 

AA , Aa , AA , Aa 
and lP'(AA)  = IP'(Aa) = !. For the cross Aa x Aa, 

IP'(AA) = lP'(aa) = !1P'(Aa) = i .  
Clearly the offspring of AA x AA can only be AA ,  and those of a a x a a can only be aa . 

We now construct a Markov chain by mating an individual with itself, then crossing a single 
resulting offspring with itself, and so on . (This scheme is possible with plants . )  The genetic 
types of this sequence of individuals constitute a Markov chain with three states, AA, Aa, aa . 
In view of the above discussion, the transition matrix is 

p = ( i i D 
and the reader may verify that 

P' = ( ! _ �)'+ 1 o 0 )  o ! 2 o 1 
as n � 00.  

Thus, ultimately, inbreeding produces a pure (AA or aa) line for which all subsequent off­
spring have the same type. In like manner one can consider the progress of many different 
breeding schemes which include breeding with rejection of unfavourable genes, back-crossing 
to encourage desirable genes, and so on. • 
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Exercises for Section 6 . 6  

The first two exercises provide proofs that a Markov chain with finitely many states has a stationary 
distribution. 

1. The Markov-Kakutani theorem asserts that, for any convex compact subset C of ]Rn and any 
linear continuous mapping T of C into C, T has a fixed point (in the sense that T (x) = x for some 
x E C) . Use this to prove that a finite stochastic matrix has a non-negative non-zero left eigenvector 
corresponding to the eigenvalue 1 .  

2. Let T be a m x n matrix and let v E ]Rn . Farkas 's theorem asserts that exactly one of the following 
holds: 
(i) there exists x E ]Rm such that x � 0 and xT = v, 

(ii) there exists y E ]Rn such that yv' < 0 and Ty' � O. 
Use this to prove that a finite stochastic matrix has a non-negative non-zero left eigenvector corre­
sponding to the eigenvalue 1 .  

3 .  Arbitrage. Suppose you are betting on a race with m possible outcomes. There are n bookmakers, 
and a unit stake with the i th bookmaker yields tij if the j th outcome of the race occurs . A vector 
x = (Xl , x2 , . . .  , xn ) ,  where Xr E ( - 00 ,  00) is your stake with the rth bookmaker, is called a betting 
scheme. Show that exactly one of (a) and (b) holds:  
(a) there exists a probability mass function p = (PI , P2 , . . .  , Pm ) such that 2:j=1 tij Pj = 0 for all 

values of i ,  
(b) there exists a betting scheme x for which you surely win, that is, 2:1=1 Xi tij > 0 for all j .  

4 .  Let X be a Markov chain with state space S = { I ,  2 ,  3 }  and transition matrix 

where 0 < P < 1 .  Prove that 

( 1 - P 
p = 0 

P 

P 
I - p 

o 

pn = ( :�� :�� :�� ) 
a2n a3n a l n 

where aln + wa2n + w2a3n = ( 1  - P + pw)n , w being a complex cube root of 1 .  

5. Let P be the transition matrix of a Markov chain with finite state space. Let 1 be the identity 
matrix, U the l S I  x l S I  matrix with all entries unity, and 1 the row l S I -vector with all entries unity. 
Let Jr be a non-negative vector with 2: i Jri = 1 .  Show that JrP = 1l" if and only if 1l" (I - P + U) = 1 .  
Deduce that if  P is irreducible then 1l" = 1 (I  - P + U) - I . 
6. Chess. A chess piece performs a random walk on a chessboard; at each step it is equally likely 
to make any one of the available moves. What is the mean recurrence time of a comer square if the 
piece is a: (a) king? (b) queen? (c) bishop? (d) knight? (e) rook? 

7. Chess continued. A rook and a bishop perform independent symmetric random walks with 
synchronous steps on a 4 x 4 chessboard ( 1 6  squares). If they start together at a comer, show that the 
expected number of steps until they meet again at the same comer is 448/3 . 

8. Find the n-step transition probabilities Pij (n) for the chain X having transition matrix 

P = ( ;3' t � ) . 
4 12 
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6.7 Branching processes revisited 

The foregoing general theory is an attractive and concise account of the evolution through time 
of a Markov chain . Unfortunately, it is an inadequate description of many specific Markov 
chains .  Consider for example a branching process {Zo , Z\ , . . .  } where Zo = 1 .  If there 
is strictly positive probability lP'(Z\ = 0) that each family is empty then 0 is an absorbing 
state. Hence 0 is persistent non-null, and all other states are transient. The chain is not 
irreducible but there exists a unique stationary distribution 1C given by 1Co = 1 ,  1Ci = 0 if 
i > O. These facts tell us next to nothing about the behaviour of the process, and we must 
look elsewhere for detailed information. The difficulty is that the process may behave in one 
of various qualitatively different ways depending, for instance, on whether or not it ultimately 
becomes extinct. One way of approaching the problem is to study the behaviour of the process 
conditional upon the occurrence of some event, such as extinction, or on the value of some 
random variable, such as the total number Li Zi of progeny. This section contains an outline 
of such a method. 

Let f and G be the mass function and generating function of a typical family size Z 1 : 

f(k) = lP'(Zl = k) , 

Let T = inf{n : Zn = O} be the time of extinction, with the convention that the infimum of 
the empty set is +00.  Roughly speaking, if T = 00 then the process will grow beyond all 
possible bounds, whilst if T < 00 then the size of the process never becomes very large and 
subsequently reduces to zero . Think of {Zn } as a fluctuating sequence which either becomes 
so large that it escapes to 00 or is absorbed at 0 during one of its fluctuations .  From the results 
of Section 5 .4, the probability lP'(T < 00) of ultimate extinction is the smallest non-negative 
root of the equation s = G(s ) . Now let 

En = {n < T < oo} 

be the event that extinction occurs at some time after n . We shall study the distribution of  Zn 
conditional upon the occurrence of En . Let 

be the conditional probability that Zn = j given the future extinction of Z. We are interested 
in the limiting value 

01C '  = lim oP ' (n) , } n-+CXJ J 

if this limit exists . To avoid certain trivial cases we assume henceforth that 

o < f(O) + f( 1 ) < 1 ,  f(O) > 0; 

these conditions imply for example that 0 < lP'(En) < 1 and that the probability TJ of ultimate 
extinction satisfies 0 < TJ S 1 .  
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(1) Lemma. If lE(Zl ) < 00 then limn-HXl opj {n) = oJr} exists. The generating function 

G1r (s) = LOJr}s} 
} 

satisfies the functional equation 

(2) 

where TJ is the probability of ultimate extinction and m = G' (TJ) .  
Note that if f.J, = lEZl S 1 then TJ = 1 and m = f.J,. Thus (2) reduces to 

G1r (G(s» = f.J,G1r (s) + 1 - f.J, . 

Whatever the value of f.J" we have that G' (TJ) S 1 ,  with equality if and only if f.J, = 1 .  

Proof. For s E [0, 1 ) ,  let 

} 

where Gn (s) = lE(sZn ) as before, since 

JP'(Zn = j, En) = JP'(Zn = j and all subsequent lines die out) 

= JP'(Zn = j ) TJ} if j 2: 1 ,  

and JP'(En ) = JP'(T < (0 )  - JP'(T S n )  = TJ - Gn (O) . Let 

so that 

(3) 

H (s ) = 
TJ - Gn (s) n TJ - Gn (O) ' 

h (s) = 
TJ - G(s ) 

, TJ - s O s  s < TJ ,  

Note that Hn has domain [0, TJ) and G� has domain [0 , 1 ) .  By Theorem (5.4. 1 ) , 

Hn (s) h (Gn- l (s» 
Hn- l (S) h (Gn- l (O» 

However, Gn- l is non-decreasing, and h is non-decreasing because G is convex on [0, TJ) ,  
giving that Hn (s) 2: Hn- l (s) for s < TJ .  Hence, by (3) ,  the limits 
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exist for s E [0, 1 )  and satisfy 

(4) GJr (s) = 1 - H(srJ) i f  O .:s  s < 1 .  
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Thus the coefficient onj of sj in GJr (s) exists for all j as required. Furthermore, if 0 .:s s < rJ , 

(5) Hn (G(s» = 
rJ - Gn (G(s» 

= 
rJ - G(Gn (O» . rJ - Gn+l (S ) 

rJ - Gn (0) rJ - Gn (0) rJ - Gn+l (0) 
= h(Gn (O»Hn+l (s) .  

As n � 00 ,  Gn (O) t rJ and so 

h(Gn (O» � lim rJ - G(s) 
= G'(rJ) . s t1J rJ - s 

Let n � 00 in (5) to obtain 

(6) 

and (2) follows from (4) . 

H(G(s» = G' (rJ)H (s ) i f  O .:s  s < rJ 

(7) Corollary. If /-L =f. 1, then Lj onj = l . 
If /-L = 1 ,  then Onj = 0 for all j . 

• 

Proof. We have that /-L = 1 if and only if G'(rJ) = 1 .  If /-L =f. 1 then G'(rJ) =f. 1 and letting s 
increase to rJ in (6) gives limst1J H (s ) = 0; therefore, from (4), limst l GJr (s ) = 1 ,  or 

L onj = 1 .  
i 

If /-L = I then G'(rJ) = 1 ,  and (2) becomes GJr (G(s» = GJr (s) . However, G(s) > s for all 
s < 1 and so GJr (s ) = GJr (0) = 0 for all s < 1 .  Thus Onj = 0 for all j .  • 

So long as /-L =f. 1 ,  the distribution of Zn , conditional on future extinction, converges as 
n � 00 to some limit {onj } which is a proper distribution. The so-called 'critical' branching 
process with /-L = 1 is more difficult to study in that, for j � 1 ,  

JP'(Zn = j ) � 0 because extinction is certain, 
JP'(Zn = j I En) � 0 because Zn � 00, conditional on En . 

However, it is possible to show, in the spirit of the discussion at the end of Section 5 .4, that 
the distribution of 

Zn 2 Yn = -2 where a = var Zl , nO' 
conditional on En , converges as n � 00. 

(8) Theorem. If /-L = 1 and G" ( I ) < 00 then Yn = Zn/ (nO'2) satisfies 

JP'(Yn .:s y I En ) � 1 - e-2y , as n � 00.  

Proof. See Athreya and Ney ( 1 972, p. 20) . • 

So, if /-L = 1 ,  the distribution of Yn , given En , is asymptotically exponential with parameter 
2. In this case, the branching process is called critical; the cases /-L < 1 and /-L > 1 are called 
subcritical and supercritical respectively. See Athreya and Ney ( 1 972) for further details .  
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Exercises for Section 6 . 7  

1 .  Let Zn b e  the size o f  the nth generation of a branching process with Zo = 1 and JP'(Z) = k )  = 2-k 

for k 2: O. Show directly that, as n � 00, JP'(Zn :::: 2yn I Zn > 0) � 1 - e-2y , y > 0, in agreement 
with Theorem (6.7 . 8) .  

2. Let Z be a supercritical branching process with Zo = 1 and family-size generating function G. 
Assume that the probability 11 of extinction satisfies 0 < 11 < 1 . Find a way of describing the process 
Z, conditioned on its ultimate extinction. 

3. Let Zn be the size of the nth generation of a branching process with Zo = 1 and JP'(Z) = k) = qpk 
for k 2: 0, where p + q = l and p > � .  Use your answer to Exercise (2) to show that, if we condition 
on the ultimate extinction of Z, then the process grows in the manner of a branching process with 
generation sizes 2n satisfying 20 = 1 and JP'(2) = k) = pqk for k 2: O. 
4. (a) Show that E(X I X > 0) :::: E(X2) /E(X) for any random variable X taking non-negative 

values . 
(b) Let Zn be the size of the nth generation of a branching process with Zo = 1 and JP'(Z) = k) = qpk 

for k 2: 0, where p > � .  Use part (a) to show that E(Zn /J-tn I Zn > 0) :::: 2p/ (p - q) ,  where 
J-t = p/q . 

(c) Show that, in the notation of part (b) , E(Zn /J-tn I Zn > 0) � p/(p - q) as n � 00. 

6.S Birth processes and the Poisson process 

Many processes in nature may change their values at any instant of time rather than at certain 
specified epochs only. Such a process is a family {X (t) : t � O} of random variables indexed 
by the half-line [0, 00) and taking values in a state space S. Depending on the underlying 
random mechanism, X may or may not be a Markov process. Before attempting to study any 
general theory of continuous-time processes we explore one simple but non-trivial example 
in detail . 

Given the right equipment, we should have no difficulty in observing that the process of 
emission of particles from a radioactive source seems to behave in a manner which is not totally 
predictable. If we switch on our Geiger counter at time zero, then the reading N(t) which it 
shows at a later time t is the outcome of some random process. This process {N(t) : t � O } 
has certain obvious properties, such as: 

(a) N(O) = 0, and N(t) E {O, 1 , 2, . . .  }, 
(b) if s < t then N(s ) S N(t) , 

but it i s  not s o  easy to specify more detailed properties. We might use the following description. 
In the time interval (t , t + h) there may or may not be some emissions. If h is small then the 
likelihood of an emission is roughly proportional to h ; it is not very likely that two or more 
emissions will occur in a small interval. More formally, we make the following definition of 
a Poisson processt . 

t Developed separately but contemporaneously by Erlang, Bateman, and Campbell in 1 909, and named after 
Poisson by Feller before 1 940. 
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(1) Definition. A Poisson process with intensity )" is a process N == {N(t) : t 2: O} taking 
values in S == to, 1 , 2, . . .  } such that: 

(a) N(O) == 0; if s < t then N(s) :.:; N(t), { )"h + o(h) if m "'" 1 ,  
(b) lP'(N(t + h) == n + m I N(t) "'" n) == o(h) ifm > 1 ,  

l - Ah + o(h) if m == O, 
(c) if s < t. the number N(t) - N(s) of emissions in the interval (s , t] is independent of 

the times of emissions during [0. s}. 
We speak of N(t) as the number of 'arrivals '  or 'occurrences' or 'events ' ,  or in this example 

'emissions' , of the process by time t . The process N is called a 'counting process' and is one 
of the simplest examples of continuous-time Markov chains . We shall consider the general 
theory of such processes in the next section ; here we study special properties of Poisson 
processes and their generalizations. 

We are interested first in the distribution of N(t) . 

(2) Theorem. N (t) has the Poisson distribution with parameter At; that is to say, 

(At) j lP'(N(t) = j ) = _. ,_e
-At , 

J .  
j = 0, 1 , 2 , . . . . 

Proof. Condition N(t + h) on N(t) to obtain 

lP'(N(t + h) = j ) = LlP'(N(t) = i )lP'(N(t + h) = j I N(t) = i ) 
i 

= LlP'(N(t) = i )lP' ((j - i ) arrivals in (t , t + hJ) 

= lP'(N(t) = j - 1 )lP'(one arrival) + lP'(N(t) = j )lP'(no arrivals) + o(h) . 

Thus Pj (t) = lP'(N(t) = j )  satisfies 

Pj (t + h) = 'AhPj- l (t) + (1 - 'Ah)pj (t) + o (h) if j =1= 0, 
po (t + h) = (1 - )"h)po (t) + o(h) . 

Subtract pj (t) from each side of the first of these equations, divide by h, and let h + 0 to 
obtain 

(3) 

likewise 

(4) 

The boundary condition is 

(5) 

pb (t) = -'Apo(t) .  

{ 1 if j = 0, 
Pj (O) = 8jo = 

0 if j =1= O. 
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Equations (3) and (4) form a collection of differential-difference equations for the Pj (t) .  Here 
are two methods of solution, both of which have applications elsewhere. 

Method A. Induction. Solve (4) subject to the condition po (O) = 1 to obtain po (t) = e-At . 
Substitute this into (3) with j = 1 to obtain P I (t) = Me-At and iterate, to obtain by induction 
that 

(A.t) j 
Pj (t) = _. ,_e-At . 

J . 

Method B. Generating functions. Define the generating function 

00 
G(s , t) = L pj (t)sj = lE(sN(t» . 

j=O 

Multiply (3) by sj and sum over j to obtain 

aG 
- = A. (s - 1 )G a t 

with the boundary condition G(s , 0) = 1 .  The solution is, as required, 

(6) 
00 (M)j . G(s , t) = eA (s- I ) t = e-At L -. ,-sJ . 
j=o J . 

• 

This result seems very like the account in Example (3 .5 .4) that the binomial bin(n , p) 
distribution approaches the Poisson distribution if n -+ 00 and np -+ A.. Why is this no 
coincidence? 

There is an important alternative and equivalent formulation of a Poisson process which 
provides much insight into its behaviour. Let To , TI , . . .  be given by 

(7) To = 0, Tn = inf{t : N(t) = n } . 

Then Tn is the time of the nth arrival . The interarrival times are the random variables 
X l , X2 , . . .  given by 

(8) 

From knowledge of N, we can find the values of X I , X2 , . . .  by (7) and (8). Conversely, we 
can reconstruct N from a knowledge of the Xi by 

(9) 
n 

Tn = L Xi , N(t) = max{n : Tn S t } .  
I 

Figure 6 . 1 is an illustration of this . 

(10) Theorem. The random variables XJ , X2 • . . . are independent, each having the expo­
nential distribution with parameter A. 
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Figure 6. 1 .  A typical realization of a Poisson process N(t) .  

249 

There is an important generalization of this result to arbitrary continuous-time Markov 
chains with countable state space. We shall investigate this in the next section. 

Proof. First consider Xl : 

lP'(XI > t) = lP' (N(t ) = 0) = e-At 

and so Xl is exponentially distributed. Now, conditional on X I ,  

lP'(X2 > t I X l = tl ) = lP'(no arrival in (tl , tl + t ]  I X l = tl ) . 

The event {XI = tl } relates to arrivals during the time interval [0, tl l , whereas the event 
{no arrival in (tl , tl + t ] ) relates to arrivals after time tl . These events are independent, by 
( I c) , and therefore 

lP'(X2 > t I X l = tl ) = lP'(no arrival in (tl , tl + t J ) = e-At . 

Thus X 2 is independent of Xl , and has the same distribution. Similarly, 

lP' (Xn+l  > t I X l = tl , · · · , Xn = tn ) = lP' (no arrival in (T,  T + t J ) 

where T = tl + t2 + . . . + tn , and the claim of the theorem follows by induction on n .  • 

It is not difficult to see that the process N, constructed by (9) from a sequence Xl , X 2 , . . .  , 
is a Poisson process if and only if the Xi are independent identically distributed exponential 
variables (exercise: use the lack-of-memory property of Problem (4. 1 4.5» . If the Xi form 
such a sequence, it is a simple matter to deduce the distribution of N(t) directly, as follows. 
In this case, Tn = "L7 Xi is r (A , n) and N(t) is specified by the useful remark that 

N(t) :::: j if and only if Tj S t . 



250 
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lP'(N(t) = j )  = lP'(1j S t < 1j+ I ) = lP'(1j S t) - lP'(1j+ 1 S t) 
(At)j -At = --e 
j ! 

using the properties of gamma variables and integration by parts (see Problem (4. l4. l 1 c)) .  
The Poisson process is a very satisfactory model for radioactive emissions from a sample 

of uranium-235 since this isotope has a half-life of 7 x 108 years and decays fairly slowly. 
However, for a newly produced sample of strontium-92, which has a half-life of 2.7 hours, 
we need a more sophisticated process which takes into account the retardation in decay rate 
over short time intervals .  We might suppose that the rate A at which emissions are detected 
depends on the number detected already. 

(11)  Definition. A birth process with intensities AD , A I , . . .  is a process {N(t) : t :::: O} 
taking values in S = {O, 1 , 2 ,  . . .  } such that: 

(a) N(O) :::: 0; if s < t then N (s ) S N(t) , 

I Anh + o(h) if m = 1 ,  
(b) lP'(N(t + h) = n + m I N(t) = n) =  o(h) if m > l , 

1 - Anh + o(h) if m = 0, 
(c) if s < t then, conditional on the value of N(s) ,  the increment N(t) -N(s) is independent 

of all arrivals prior to s . 

Here are some interesting special cases. 

(a) Poisson process. An = A for all n. • 

(b) Simple birth. An = nA . This models the growth of a population in which living individuals 
give birth independently of one another, each giving birth to a new individual with probability 
Ah + o(h) in the interval (t , t + h) .  No individuals may die. The number M of births in the 
interval ( t , t + h) satisfies: 

lP'(M = m I N(t) = n) = (:) (Ah)m ( l  - Aht-m + o(h) 1 1 - nAh + o(h) if m = 0, 
= nAh + o(h) ifm = 1 ,  

o (h) if m > 1 .  
• 

(c) Simple birth with immigration. An = nA + v .  This models a simple birth process which 
experiences immigration at constant rate v from elsewhere. • 

Suppose that N is a birth process with positive intensities AD , A I , . . . .  Let us proceed as 
for the Poisson process. Define the transition probabilities 

Pij (t) = lP'(N (s + t) = j I N(s) = i ) = lP'(N(t) = j I N(O) = i ) ;  
now condition N(t + h )  o n  N(t) and let h ,J, 0 as we did for (3) and (4), to obtain the so-called 
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(12) Forward system of equations: p;/t ) = Aj - I Pi ,j - I (t) - Aj Pij (t) for j :::: i ,  

25 1 

with the convention that A- I = 0, and the boundary condition Pij (0) = 8ij . Alternatively we 
might condition N(t + h) on N(h) and let h t O to obtain the so-called 
(13) Backward system of equations: P;j (t) = Ai PHI , j  (t) - Ai Pij (t) for j :::: i ,  
with the boundary condition Pij (0) = 8ij . 

Can we solve these equations as we did for the Poisson process? 

(14) Theorem. The forward system has a unique solution, which satisfies the backward 
system. 

Proof. Note first that Pij (t) = 0 if j < i .  Solve the forward equation with j = i to 
obtain Pii (t) = e-A, t . Substitute into the forward equation with j = i + 1 to find Pi,HI (t ) .  
Continue this operation to deduce that the forward system has a unique solution . To obtain 
more information about this solution, define the Laplace transformst 

Transform the forward system to obtain 

this is a difference equation which is readily solved to obtain 

(15) 

This determines Pij (t) uniquely by the inversion theorem for Laplace transforms . 
To see that this solution satisfies the backward system, transform this system similarly to 

obtain that any solution 1Tij (t) to the backward equation, with Laplace transform 

satisfies 
«() + Ai )Jrij «(}) = 8ij + AiJri+ I , j «(} ) .  

The Pij , given by ( 1 5) ,  satisfy this equation, and so the Pij satisfy the backward system. • 

We have not been able to show that the backward system has a unique solution, for the very 
good reason that this may not be true. All we can show is that it has a minimal solution. 

(16) Theorem. If {Pij (t ) }  is the unique solution of the forward system, then any solution 
{1Tij (t ) }  of the backward system satisfies Pij (t) .:s 1Tij (t) for all i, j, t . 

Proof. See Feller ( 1 968,  pp. 475-477). • 

tSee Section F of Appendix I for some properties of Laplace transforms. 
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There may seem something wrong here, because the condition 

(17) L Pi} (t) = 1 } 
in conjunction with the result of ( 1 6) would constrain {Pi} (t ) }  to be the unique solution of the 
backward system which is a proper distribution . The point is that ( 1 7) may fail to hold. A 
problem arises when the birth rates An increase sufficiently quickly with n that the process N 
may pass through all (finite) states in bounded time, and we say that explosion occurs if this 
happens with a strictly positive probability. Let Too = limn--->oo Tn be the limit of the arrival 
times of the process .  

(18) Definition. We call the process N honest i f  JP>(T 00 = 00) = 1 for all t , and dishonest 
otherwise. 

Equation ( 17) is equivalent to JP>(Too > t ) = 1 ,  whence ( 1 7) holds for all t if and only if N 
is honest. 

(19) Theorem. The process N is honest if and only if Ln A;; 1 = 00. 

This beautiful theorem asserts that if the birth rates are small enough then N(t) is almost 
surely finite, but if they are sufficiently large that L A;; 1 converges then births occur so 
frequently that there is positive probability of infinitely many births occurring in a finite 
interval of time; thus N(t) may take the value +00 instead of a non-negative integer. Think 
of the deficit 1 - L} Pi} (t) as the probability JP>(T 00 � t) of escaping to infinity by time t , 
starting from i . 

Theorem ( 1 9) is a immediate consequence of the following lemma. 

(20) Lemma. Let XI , X2 , . . .  be independent random variables, Xn having the exponential 
distribution with parameter An- I , and let Too = Ln Xn . We have that 

Proof. We have by equation (5 .6 . 1 3) that 

if Ln A;; I = 00, 
if Ln A;; I < 00. 

( 00  ) 00 1 
lE(Too) = lE L Xn = L - .  An- I n= l  n= 1  

If Ln A;; I < 00 then lE(Too) < 00, whence JP>(Too = 00) = O .  
In order to study the atom o f  Too at 00 we  work with the bounded random variable e-Too , 

defined as the limit as n -+ 00 of e-Tn . By monotone convergence (5 .6 . 1 2) ,  

lE (e-Too ) = lE Q] e-xn) = J�oo lEQj e-xn ) 
N 

= lim n lE(e-xn ) N--->oo n= 1  
by  independence 

= lim n
N 

__ 1 ----;- = {nOO ( l  + A;;-2 1 ) } - 1 N--->oo 1 + A- 1  n= l n- I n= 1  
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The last productt equals 00 if Ln ",;;- 1 = 00, implying in turn that lE(e-Too ) = O. However, 
e-Too ::: 0, and therefore lP'(Too = (0) = lP'(e-Too = 0) = I as required. • 

In summary, we have considered several random processes, indexed by continuous time, 
which model phenomena occurring in nature. However, certain dangers arise unless we 
take care in the construction of such processes . They may even find a way to the so-called 
'boundary' of the state space by exploding in finite time. 

We terminate this section with a brief discussion of the Markov property for birth processes . 
Recall that a sequence X = {Xn : n ::: O} is said to satisfy the Markov property if, conditional 
on the event {Xn = i } , events relating to the collection {Xm : m > n} are independent 
of events relating to {Xm : m < n } . Birth processes have a similar property. Let N be a 
birth process and let T be a fixed time. Conditional on the event {N(T) = i } , the evolution 
of the process subsequent to time T is independent of that prior to T ;  this is an immediate 
consequence of ( l l c) ,  and is called the 'weak Markov property ' .  It is often desirable to make 
use of a stronger property, in which T is allowed to be a random variable rather than merely 
a constant. On the other hand, such a conclusion cannot be valid for all random T, since if T 
' looks into the future' as well as the past, then information about the past may generally be 
relevant to the future (exercise: find a random variable T for which the desired conclusion is 
false) . A useful class of random times are those whose values depend only on the past, and 
here is a fonnal definition. We call the random time T a stopping time for the process N if, for 
all t ::: 0, the indicator function of the event {T S t } is a function of the values {N (s) : S S t } 
of the process up to time t ;  that is to say, we require that it be decidable whether or not T has 
occurred by time t knowing only the values of the process up to time t .  Examples of stopping 
times are the times Tl , T2 , . . .  of arrivals ;  examples of times which are not stopping times are 
T4 - 2, ! (TJ + T2) ,  and other random variables which 'look into the future' . 

(21) Theorem. Strong Markov property. Let N be a birth process and let T be a stopping 
time for N. Let A be an event which depends on {N(s) : s > T } and B be an event which 
depends on {N(s) : s ::: T} . Then 

(22) lP'(A I N (T ) = i , B) = lP'(A I N (T ) = i ) for all i .  

Proof. The following argument may be made rigorous . The event B contains infonnation 
about the process N prior to T ;  the 'worst' such event is one which tells everything. Assume 
then that B is a complete description of {N(s) : s S T } (problems of measurability may 
in general arise here, but these are not serious in this case since birth processes have only 
countably many arrivals) . Since B is a complete description, knowledge of B carries with it 
knowledge of the value of the stopping time T, which we write as T = T (B) . Therefore 

lP'(A I N(T) = i, B) = lP'(A I N(T) = i, B ,  T = T (B» ) .  

The event {N (T ) = i } n B n {T = T (B ) } specifies :  (i) the value of  T,  (ii) the value of  N (T ) ,  
and (iii) the history o f  the process up to time T ;  i t  i s  by  virtue o f  the fact that T i s  a stopping 
time that this event is defined in tenns of {N(s) : s S T (B) } .  By the weak Markov property, 
since T is constant on this event, we may discount infonnation in (iii), so that 

lP'(A I N (T ) = i , B) = lP'(A I N (T ) = i , T = T (B» ) .  

tSee Subsection (8) o f  Appendix I for some notes about infinite products. 
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Now, the process is temporally homogeneous, and A is defined in terms of {N(s) : s > T} ; it 
follows that the (conditional) probability of A depends only on the value of N(T) , which is 
to say that 

lP'(A I N(T) = i , T = T (B) ) = lP'(A I N(T) = i ) 
and (22) follows. 

To obtain (22) for more general events B than that given above requires a small spot of 
measure theory. For those readers who want to see this, we note that, for general B , 

lP'(A I N(T) = i , B) = lE(IA I N(T) = i , B) 

= lE{lE(IA I N(T) = i, B , H) I N(T) = i , B } 
where H = {N(s) : s ::::: T } . The inner expectation equals lP'(A I N(T) = i ) , by the argument 
above, and the claim follows. • 

We used two properties of birth processes in our proof of the strong Markov property : 
temporal homogeneity and the weak Markov property. The strong Markov property plays an 
important role in the study of continuous-time Markov chains and processes, and we shall 
encounter it in a more general form later. When applied to a birth process N, it implies that 
the new process N', defined by N'(t) = N(t + T) - N(T) , t 2: 0, conditional on {N(T) = i }  
is also a birth process, whenever T is a stopping time for N ;  it is easily seen that this new 
birth process has intensities Ai , Ai+ 1 , . . . .  In the case of the Poisson process, we have that 
N' (t) = N(t + T) - N(T) is a Poisson process also. 

(23) Example. A Poisson process N is said to have ' stationary independent increments' ,  
since : (a) the distribution of N(t) - N(s) depends only on t - s, and (b) the increments 
{N(ti ) - N(Si ) : i = 1 , 2 ,  . . .  , n} are independent if Sl ::::: t1 ::::: S2 ::::: t2 ::::: . . .  ::::: tn . this 
property is nearly a characterization of the Poisson process . Suppose that M = {M (t) : t 2: O} 
is a non-decreasing right-continuous integer-valued process with M (0) = 0, having stationary 
independent increments, and with the extra property that M has only jump discontinuities of 
size 1 .  Note first that, for u , v 2: 0, 

lEM(u + v) = lEM (u ) + lE [M (u + v) - M(u)] = lEM (u ) + lEM (v) 

by the assumption of stationary increments . Now lEM (u) is non-decreasing in u , so that there 
exists A such that 

(23) lEM (u) = AU , u 2: O. 
Let T = sup{ t : M(t) = O} be the time of the first jump of M. We have from the right­
continuity of M that M(T) = 1 (almost surely) ,  so that T is a stopping time for M. Now 

(24) lEM(s) = lE{lE(M(s) I T) } . 

Certainly lE (M (s ) I T) = 0 if s < T, and for s 2: t 
lE(M(s) I T = t) = lE(M (t ) I T = t) + lE(M(s) - M(t) I T = t) 

= 1 + lE (M(s) - M(t) I M(t) = 1 ,  M(u) = O for u < v) 
= 1 + lEM (s - t) 
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by the assumption of stationary independent increments . We substitute this into (24) to obtain 

lEM(s) = los 
[ 1  + lEM(s - t)] dF(t) 

where F is the distribution function of T .  Now lEM(s) = AS for all s ,  so that 

(25) AS = F(s) + A los 
(s - t) dF(t) , 

an integral equation for the unknown function F. One of the standard ways of solving such 
an equation is to use Laplace transforms. We leave it as an exercise to deduce from (25) that 
F(t) = 1 - e-At , t 2: 0, so that T has the exponential distribution. An argument similar to 
that used for Theorem ( 10) now shows that the ' inter-jump' times of M are independent and 
have the exponential distribution. Hence M is a Poisson process with intensity A .  • 

Exercises for Section 6 . 8  

1 .  Superposition. Flies and wasps land o n  your dinner plate i n  the manner o f  independent Poisson 
processes with respective intensities A and /-L. Show that the arrivals of flying objects form a Poisson 
process with intensity A + /-L. 
2. Thinning. Insects land in the soup in the manner of a Poisson process with intensity A, and each 
such insect is green with probability p, independently of the colours of all other insects . Show that 
the arrivals of green insects form a Poisson process with intensity Ap . 
3. Let Tn be the time of the nth arrival in a Poisson process N with intensity A, and define the excess 
lifetime process E (t) = TN(t)+ l - t, being the time one must wait subsequent to t before the next 
arrival. Show by conditioning on Tl that 

lP' (E (t) > x) = e-A(t+x) + fot 
lP' (E (t - u) > x) Ae-AU du o 

Solve this integral equation in order to find the distribution function of E (t ) . Explain your conclusion. 

4. Let B be a simple birth process (6. 8 . l Ib) with B (O) = I ;  the birth rates are An = nA. Write 
down the forward system of equations for the process and deduce that 

Show also that IE(B(t» = I eAt and var(B (t» = I e2At ( 1 - e-At ) . 

k ?:.  I .  

5.  Let B be  a process of  simple birth with immigration (6.8 . l Ic) with parameters A and v ,  and 
with B(O) = 0; the birth rates are An = nA + V .  Write down the sequence of differential-difference 
equations for Pn (t) = lP'(B (t) = n) . Without solving these equations, use them to show that met) = 
IE(B(t» satisfies m' (t) = Am (t) + v, and solve for met ) .  
6 .  Let N be  a birth process with intensities AO , A I ,  . . .  , and let N (0) = O. Show that Pn (t) = 
lP'(N (t) = n) is given by 

1 
n n A ' 

Pn (t) = - L Ai e-Ai t II __ J -
An ' 0 . 0 A ; - Ai 

provided that Ai =f. A j whenever i =f. j .  

1= J = J 

j#i 
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7. Suppose that the general birth process of the previous exercise is such that 2:n A;;- 1 < 00. 
Show that An Pn (t) -7 J(t) as n -7 00 where J is the density function of the random variable 
T = sup{t  : N(t) < oo} .  Deduce that lE(N(t) I N(t) < 00) is finite or infinite depending on the 
convergence or divergence of 2:n nA;;- 1 . 

Find the Laplace transform of J in closed form for the case when An = (n + ! )2 , and deduce an 
expression for J . ' 

6.9 Continuous-time Markov chains 

Let X = {X (t) : t :::: OJ be a family of random variables taking values in some countable state 
space S and indexed by the half-line [0, (0) . As before, we shall assume that S is a subset 
of the integers . The process X is called a (continuous-time) Markov chain if it satisfies the 
following condition. 

(1) Definition. The process X satisfies the Markov property if 

for all j ,  i I ,  . . .  , in-l E S and any sequence tl < t2 < . . .  < tn of times. 
The evolution of continuous-time Markov chains can be described in very much the same 

terms as those used for discrete-time processes. Various difficulties may arise in the analysis, 
especially when S is infinite. The way out of these difficulties is too difficult to describe in 
detail here, and the reader should look elsewhere (see Chung 1 960, or Freedman 1 97 1  for 
example) . The general scheme is as follows. For discrete-time processes we wrote the n-step 
transition probabilities in matrix form and expressed them in terms of the one-step matrix P. 
In continuous time there is no exact analogue of P since there is no implicit unit length of 
time. The infinitesimal calculus offers one way to plug this gap; we shall see that there exists 
a matrix G, called the generator of the chain, which takes over the role of P. An alternative 
way of approaching the question of continuous time is to consider the imbedded discrete-time 
process obtained by listing the changes of state of the original process. 

First we address the basics. 

(2) Definition. The transition probability Pij (S , t) is defined to be 

Pij (S , t) = lP'(X (t) = j I X (s) = i ) for s S t . 

The chain is called homogeneous if Pij (S , t) = Pij (O, t - s) for all i , j ,  s , t, and we write 
Pij (t - s) for Pij (S , t ) . 
Henceforth we suppose that X is a homogeneous chain, and we write P t  for the lS I  x l S I  

matrix with entries Pij (t) . The family {Pt : t :::: O J i s  called the transition semigroup o f  the 
chain . 

(3) Theorem. The family {Pt ; t 2: OJ is a stochastic semigroup; that is, it satisfies the 
following: 

(a) Po = I. the identity matrix, 
(b) Pt is stochastic, that is Pt has non-negative entries and row sums 1, 
(c) the Chapman-Kolmogorov equations, PH! = PsP, tjs, t :::: O. 
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Proof. Part (a) is obvious .  
(b) With 1 a row vector of ones, we have that 

(Pt l') i = � Pij (t) = lP{l){X (t) = j }  I X (O) = i) = 1 .  
] ] 

(c) Using the Markov property, 

Pij (S + t) = lP'(X (s + f) = j I X (O) = i) 
= �)P'(X (s + f) = j I X (s) = k, X (O) = i)lP'(X (s) = k I X (O) = i) 

k 
= L Pik (S)Pkj (f) as for Theorem (6 . 1 .7) .  • 

k 
As before, the evolution of X (f) is specified by the stochastic semigroup {Pt } and the 

distribution of X (0) . Most questions about X can be rephrased in terms of these matrices and 
their properties . 

Many readers will not be very concerned with the general theory of these processes, but will 
be much more interested in specific examples and their stationary distributions .  Therefore, 
we present only a broad outline of the theory in the remaining part of this section and hope 
that it is sufficient for most applications .  Technical conditions are usually omitted, with the 
consequence that some of fhe stafements which follow are false in general; such statements are 
marked with an asterisk. Indications of how to fill in the details are given in the next section. 
We shall always suppose that the transition probabilities are continuous . 

(4) Definition. The semigroup {Pt } is called standard if Pt -+ I as f + 0, which is to say 
that Pii (t) -+ 1 and Pij (f) -+ 0 for i =1= j as f + O. 

Note that the semigroup is standard if and only if its elements Pij (f) are continuous func­
tions of f .  In order to see this, observe that Pij (f) is continuous for all f whenever the semigroup 
is standard; we just use the Chapman-Kolmogorov equations (3c) (see Problem (6. 1 5 . 1 4» . 
Henceforth we consider only Markov chains with standard semigroups of transition probabil­
ities .  

Suppose that the chain is in state X (t) = i at time f . Various things may happen in the 
small time interval (t , f + h) : 

(a) nothing may happen, with probability Pii (h) + o(h ) ,  the error term taking into account 
the possibility that the chain moves out of i and back to i in the interval, 

(b) the chain may move to a new state j with probability Pij (h) + o(h) .  
We are assuming here that the probability o f  two or more transitions in the interval (f , f + h ) 

i s  o(h) ;  this can b e  proved. Following (a) and (b) , we  are interested in the behaviour o f  Pij (h) 
for small h; it turns out that Pij (h) is approximately linear in h when h is small . That is, there 
exist constants {gij : i, j E S} such that 

(5) Pij (h) ::: gijh if i :f:  j, pu (h) � 1 + gii h .  
Clearly gij � 0 for i =1= j and gi i .:s 0 for all i ;  the matrixt G = (gij ) i s  called the 

tSome writers use the notation qi; in place of g'j , and term the resulting matrix Q the ' Q-matrix' of the 
process. 
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generator of the chain and takes over the role of the transition matrix P for discrete-time 
chains .  Combine (5) with (a) and (b) above to find that, starting from X (t) = i ,  

(a) nothing happens during (t , t + h ) with probability 1 + gii h + o(h) , 
(b) the chain jumps to state j (# i ) with probability gijh + o(h ) . 

One may expect that Lj Pij ( t ) = 1 ,  and so 

leading to the equation 

(6*) 

j j 

L gij = 0 for all i ,  or G I' = 0' , 
j 

where 1 and 0 are row vectors of ones and zeros . Treat (6) with care; there are some chains 
for which it fails to hold. 

(7) Example. Birth process (6.8.11). From the definition of this process, it is clear that 

Thus 

gii = -Ai , gi, i+ l = Ai , gij = 0 if j < i or j > i + 1 .  

AO 
-A I 

o 

0 
A l 
-A2 

0 0 

) 0 0 . . .  
A2 0 

Relation (5) is usually written as 

(8) . 1 
G hm - (Ph - I) = , htO h 

• 

and amounts to saying that Pt is differentiable at t = O. It is clear that G can be found from 
knowledge of the Pt . The converse also is usually true. We argue roughly as follows. Suppose 
that X (0) = i ,  and condition X (t + h) on X (t) to find that 

giving that 

Pij (t + h) = LPik (t)Pkj (h) 
k 

c::: Pij (t) ( 1 + gjjh) + L Pik (t)gkj h by (5) 
k :kf.j 

= Pij (t) + h L Pik (t)gkj , 
k 

1 h [Pij (t + h) - Pij (t)] c::: L Pik (t)gkj = (PtG)ij . 
k 

Let h ,J, 0 to obtain the forward equations . We write P; for the matrix with entries P;j (t) . 



6.9 Continuous-time Markov chains 

(9*) Forward equations. We have that p;: = PtG, which is to say that 

P�j (t) =: L Pik (t)gkj for all i, j € S. 
k 
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A similar argument, by conditioning X (t + h) on X (h) , yields the backward equations. 

(10*) Backward equations. We have that P� =: GPt, which is to say that 

p�/t) =: LgikPkj (t) jor aU i, j E S. 
k 

These equations are general forms of equations (6. 8 . 1 2) and (6 . 8 . 1 3) and relate {Pt } to G. 
Subject to the boundary condition Po = I, they often have a unique solution given by the 
infinite sum 

(11*) 
00 n 
L t n Pt = - G  n !  n=O 

of powers of matrices (remember that GO = I) .  Equation ( 1 1 )  is deducible from (9) or ( 1 0) in 
very much the same way as we might show that the function of the single variable pet) = egt 
solves the differential equation p' (t) = g p (t) . The representation ( 1 1 )  for P t is very useful 
and is usually written as 

(12*) Pt = etG or Pt = exp(tG). 
where eA is the natural abbreviation for .E�o(l /n ! )An whenever A is a square matrix. 

So, subject to certain technical conditions, a continuous-time chain has a generator G which 
specifies the transition probabilities . Several examples of such generators are given in Section 
6. 1 1 .  In the last section we saw that a Poisson process (this is Example (7) with Ai = A for 
all i 2: 0) can be described in terms of its interarrival times ; an equivalent remark holds here. 
Suppose that Xes) = i . The future development of X es + t ) ,  for t 2: 0, goes roughly as 
follows. Let U = inf {t 2: 0 : X (s + t) =f. i }  be the further time until the chain changes its 
state; U is called a 'holding time' . 

(13*) Claim. The random variable U is exponentially distributed with parameter -gil -
Thus the exponential distribution plays a central role in the theory of Markov processes. 

Sketch proof. The distribution of U has the 'lack of memory ' property (see Problem (4 . 14 .5» 
because 

lP'(U > x + y I U > x) = lP'(U > x + y I X (t + x) = i ) 
= lP'(U > y)  if x , y 2: 0 

by the Markov property and the homogeneity of the chain . It follows that the distribution 
function Fu of U satisfies 1 - Fu (x + y) = [ 1 -Fu (x ) ] [ l -Fu (y ) ] , and so 1 -Fu (x ) = e-J..x 
where A = F& (O) = -gii . • 

Therefore, if X es) = i , the chain remains in state i for an exponentially distributed time 
U, after which it jumps to some other state j .  
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(14*) Claim. The probability that the chain jumps to j (::p i) is -Sij / Su , 
Sketch proof. Roughly speaking, suppose that x < U S x + h and suppose that the chain 
jumps only once in (x , x + hJ . Then 

JP'O 
. 
I " ) Pij (h) gij umps to ] It Jumps � � - -

1 - Pii (h) gii 
as h ,J,  O. • 

(15) Example. Consider a two-state chain X with S = { l ,  2 } ;  X jumps between 1 and 2 as 
time passes. There are two equivalent ways of describing the chain, depending on whether 
we specify G or we specify the holding times : ( -a a ) (a) X has generator G = fJ -fJ ; 

(b) if the chain is in state 1 (or 2), then it stays in this state for a length of time which is 
exponentially distributed with parameter a (or fJ) before jumping to 2 (or 1 ) . 

The forward equations (9), P; = PtG, take the form 

p� I (t) = -apl l (t) + fJpn{t) 

and are easily solved to find the transition probabilities of the chain (exercise) . • 

We move on to the classification of states ;  this is not such a chore as it was for discrete-time 
chains .  It turns out that for any pair i, j of states 

(16) either Pij (t) = 0 for all t > 0, or Pij (t) > 0 for all t > 0, 

and this leads to a definition of irreducibility. 

(17) Definition. The chain is called irreducible if for any pair i, j of states we have that 
Pij (t) > 0 for some t . 

Any time t > 0 will suffice in  ( 1 7) ,  because of  ( 1 6) .  The birth process i s  not irreducible, 
since it is non-decreasing. See Problem (6. 1 5 . 1 5) for a condition for irreducibility in terms of 
the generator G of the chain. 

As before, the asymptotic behaviour of X (t) for large t is closely bound up with the 
existence of stationary distributions .  Compare their definition with Definition (6.4. 1 ) .  

(18) Definition. The vecton'r is a stationary distribution of the chain if tr} 2:: O .  Lj ;If} = 1 .  
and 1£ "" 1£Pt for all t 2:: O. 

If X (0) has distribution /L (0) then the distribution /L (t) of X (t) is given by 

(19) 

If /L (0) = /L, a stationary distribution, then X (t) has distribution /L for all t . For discrete-time 
chains we found stationary distributions by solving the equations Jr = Jr P; the corresponding 
equations Jr = JrPt for continuous-time chains may seem complicated but they amount to a 
simple condition relating Jr and G. 
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(20*) Claim. We have that It = ItPt for all t if and only if ItG = O. 
Sketch proof. From ( 1 1 ) , and remembering that GO = J, 

00 tn 
<=> L - 11"Gn = 0 

n= l n !  

00 tn 
<=> 11" '" - Gn = 11" � n ! n=O 
<=> 11"Pt = 11" 

for all n 2: 1 

for all t 

for all t 

for all t . 

26 1 

• 

This provides a useful collection of equations which specify stationary distributions, when­
ever they exist. The ergodic theorem for continuous-time chains is as follows; it holds exactly 
as stated, and requires no extra conditions. 

(21) Theorem. Let X be irreducible with a standard semigroup {Pt } of transition probabili­
ties. 

(a) If there exists a stationary distribution It then it is unique and 

Pij (t) -+ Jrj as t -+ 00, for aU i and j. 
(b) If there is no stationary distribution then Pii (t) -+ 0 as t -+ oo, for all i and j. 

Sketch proof. Fix h > 0 and let Yn = X (nh) . Then Y = { Yn } is an irreducible aperiodic 
discrete-time Markov chain ; Y is called a skeleton of X . If Y is non-null persistent, then it 
has a unique stationary distribution 11"h and 

as n -+ 00;  

otherwise Pij (nh) -+ 0 as  n -+ 00.  Use this argument for two rational values h I and h2 
and observe that the sequences {nh l : n 2: O} , {nh2 : n 2: O} have infinitely many points in 
common to deduce that 11"hl = 11"h2 in the non-null persistent case . Thus the limit of Pij (t) 
exists along all sequences {nh : n 2: O} of times, for rational h ; now use the continuity of 
Pij (t) to fill in the gaps . The proof is essentially complete. • 

As noted earlier, an alternative approach to a continuous-time chain X is to concentrate 
on its changes of state at the times of jumps. Indeed one may extend the discussion leading 
to ( 1 3) and ( 14) to obtain the following, subject to conditions of regularity not stated here . 
Let Tn be the time of the nth change in value of the chain X, and set To = O. The values 
Zn = X (Tn+) of X immediately after its jumps constitute a discrete-time Markov chain Z 
with transition matrix hij = gij / gi , when gi = -gii satisfies gi > 0; if gi = 0, the chain 
remains forever in state i once it has arrived there for the first time. Furthermore, if Zn = j , 
the holding time Tn+ I - Tn has the exponential distribution with parameter gj . The chain Z 
is called the jump chain of X. There is an important and useful converse to this statement, 
which illuminates the interplay between X and its jump chain . Given a discrete-time chain Z, 
one may construct a continuous-time chain X having Z as its jump chain ; indeed many such 
chains X exist. We make this more formal as follows. 
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Let S be a countable state space, and let H = (hij ) be the transition matrix of a discrete­
time Markov chain Z taking values in S. We shall assume that hu = 0 for all i E S; this is 
not an essential assumption, but recognizes the fact that jumps from any state i to itself will 
be invisible in continuous time. Let gi , i E S, be non-negative constants . We define 

(22) 
if i =/= j , 
if i = j . 

We now construct a continuous-time chain X as follows. First, let X (0) = Zo o After a holding 
time Uo having the exponential distribution with parameter gZo ' the process jumps to the state 
Z I .  After a further holding time UI having the exponential distribution with parameter gZl ' 
the chain jumps to Z2 , and so on. 

We argue more fully as follows . Conditional on the values Zn of the chain Z, let Uo , UI , . . .  
be independent random variables having the respective exponential distributions with param­
eters gzo ' gZl ' . . . , and set Tn = Uo + UI + . . .  + Un . We now define 

(23) 
{ Zn X (t) = 

00 
if Tn S t < Tn+1 for some n , 
otherwise. 

The special state denoted 00 is introduced in case Too = limn�oo Tn satisfies Too S t < 00. 
The time Too is called the explosion time of the chain X, and the chain is said to explode if 
JP'(Too < 00) > O. It may be seen that X is a continuous-time chain on the augmented state 
space S U {oo} ,  and the generator of X, up to the explosion time Too, is the matrix G = (gij ) . 
Evidently Z i s  the jump chain o f  X .  No major difficulty arises i n  verifying these assertions 
when S is finite. 

The definition of X in (23) is only one of many possibilities, the others imposing different 
behaviours at times of explosion . The process X in (23) is termed the minimal process, since 
it is 'active ' for a minimal interval of time. It is important to have verifiable conditions under 
which a chain does not explode. 

(24) Theorem. The chain X constructed above does not explode if any of the following three 
conditions holds : 

(a) S isfinite; 
(b) sUPi gi < 00; 
(c)  X (0) = i where i is a persistent state for the jump chain Z. 

Proof. First we prove that (b) suffices, noting in advance that (a) implies (b) . Suppose that 
gi < Y < 00 for all i .  The nth holding time Un of the chain has the exponential distribution 
with parameter gZn . If gZn > 0, it is an easy exercise to show that Vn = gZn Un has the 
exponential distribution with parameter 1 .  If gZn = 0, then Un = 00 almost surely. Therefore, 

if gZn = 0 for some n , 

otherwise. 

It follows by Lemma (6 . 8 .20) that the last sum is almost surely infinite; therefore, explosion 
does not occur. 
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Suppose now that (c) holds. If gi = 0, then X (t) = i for all t, and there is nothing to 
prove. Suppose that gi > O. Since Zo = i and i is persistent for Z, there exists almost surely 
an infinity of times No < NJ < . . .  at which Z takes the value i . Now, 

00 
gi Too 2: L gi UN" 

i=O 

and we may once again appeal to Lemma (6 .8 .20). • 

(25) Example. Let Z be a discrete-time chain with transition matrix H = (h ij ) satisfying 
hii = 0 for all i E S, and let N be a Poisson process with intensity A. We define X by 
X (t) = Zn if Tn :'S t < Tn+ ! where Tn is the time of the nth arrival in the Poisson process 
(and To = 0) . The process X has transition semigroup Pt = (Pij (t» given by 

Pij (t ) = lP'(X (t) = j I X (O) = i ) 

We note that 

00 
= LlP'(X (t) = j , N(t) = n I X (O) = i ) 

n=O 
00 (M)n 00 (M)n (Hn ) . .  - L - -

AtlP'(Z - . I Z - ' ) - L -At IJ - e n - j 0 - 1 - e . n !  n !  n=O n=O 

• 

The interplay between a continuous-time chain X and its jump chain Z provides a basic 
tool for the study of the former. We present just one example of this statement; others may be 
found in the exercises. We call the state i 

(26) 
persistent for X if lP' (the set {t : X (t) = i }  is unbounded I X (O) = i ) = 1 ,  
transient for X if lP'(the set { t  : X (t) = i }  i s  unbounded I X (O) = i ) = O. 

(27) Theorem. Consider the chain X constructed above. 
(a) If gi = 0, the state i is persistent for the continuous-time chain X. 
(b) Assume that gi > O. State i is persistent for the continuous-time chain X if and only 

if it is persistent for the jump chain Z. Furthermore, i is persistent if the transition 
probabilities Pii (t) = lP'(X (t) = i I X (O) = i) satisfy 1000 pii (t) dt = 00, and is 
transient otherwise. 

Proof. It is trivial that i is persistent if gi = 0, since then the chain X remains in the state i 
once it has first visited it. 

Assume gi > O. If i is transient for the jump chain Z, there exists almost surely a last 
visit of Z to i ; this implies the almost sure boundedness of the set {t : X (t ) = i } , whence 
i is transient for X. Suppose i is persistent for Z, and X (0) = i .  It follows from Theorem 
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(24c) that the chain X does not explode. By the persistence of i ,  there exists almost surely an 
infinity of values n with Zn = i .  Since there is no explosion, the times Tn of these visits are 
unbounded, whence i is persistent for X. 

Now, the integrand being positive, we may interchange limits to obtain 

1000 
Pii (t) dt = 1000 

lE(I(X (t )=i }  I X (O) = i ) dt 

= lE [looo 
I(x (t )=i } dt I X (O) = i J 

= lE [ f Un I(Zn=i } I Zo = i J 
n=O 

where { Un : n 2: I }  are the holding times of X. The right side equals 

00 1 00 
L lE(Uo I X (O) = i )hi i (n) = 

gi 
L hii (n) 

n=O n=O 

where hii (n) is the appropriate n-step transition probability of Z. By Corollary (6.2 .4), the 
last sum diverges if and only if i is persistent for Z. • 

Exercises for Section 6.9 

1. Let Ap, > 0 and let X be a Markov chain on { I ,  2 } with generator 

( - p,  p, ) G = 
A -A 

. 

(a) Write down the forward equations and solve them for the transition probabilities Pij (t ) ,  i ,  j = 
1 , 2. 

(b) Calculate Gn and hence find 2:�o(tn In ! )Gn . Compare your answer with that to part (a) . 
(c) Solve the equation JrG = 0 in order to find the stationary distribution . Verify that Pij (t) -+ 7rj 

as t -+ 00. 

2. As a continuation of the previous exercise, find: 
(a) IP'(X (t) = 2 I X(O) = 1 ,  X(3t) = 1 ) ,  
(b) IP'(X (t) = 2 I X (O) = 1 ,  X(3t) = 1 ,  X(4t) = 1 ) . 

3. Jobs arrive in a computer queue in the manner of a Poisson process with intensity A .  The central 
processor handles them one by one in the order of their arrival, and each has an exponentially distributed 
runtime with parameter p" the runtimes of different jobs being independent of each other and of the 
arrival process .  Let X(t) be the number of jobs in the system (either running or waiting) at time t ,  
where X (0) = O. Explain why X i s  a Markov chain, and write down its generator. Show that a 
stationary distribution exists if and only if A < p" and find it in this case. 

4. Pasta property. Let X = {X (t ) : t � O} be a Markov chain having stationary distribution 
Jr .  We may sample X at the times of a Poisson process: let N be a Poisson process with intensity 
A, independent of X, and define Yn = X(Tn+) , the value taken by X immediately after the epoch 
Tn of the nth arrival of N. Show that Y = { Yn : n � O} is a discrete-time Markov chain with the 
same stationary distribution as X. (This exemplifies the 'Pasta' property: Poisson arrival s see time 
averages . )  
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[The full assumption of the independence of N and X is not necessary for the conclusion. It suffices 
that {N(s ) : s 2: t} be independent of { X (s ) : s ::: t } ,  a property known as 'lack of anticipation' . It is 
not even necessary that X be Markov; the Pasta property holds for many suitable ergodic processes . ]  

5. Let X be a continuous-time Markov chain with generator G satisfying gi = -gii > 0 for all i .  
Let HA = inf{t 2: 0 : X (t ) E A } be the hitting time of the set A of states, and let 7)j = JP'(HA < 00 I 
X (0) = j )  be the chance of ever reaching A from j .  By using properties of the jump chain, which 
you may assume to be well behaved, show that 2:k gjk7)k = 0 for j 1. A .  

6. In continuation of the preceding exercise, let f-tj = E(HA I X (0) = j) .  Show that the vector IL 
is the minimal non-negative solution of the equations 

f-tj = 0 if j E A ,  1 + L gjkf-tk = 0 if j 1. A .  
kES 

7. Let X be a continuous-time Markov chain with transition probabilities Pij (t) and define Fi 
inf{t > TJ : X(t) = i }  where TJ is the time of the first jump of X .  Show that, if gji =f. 0, then 
JP'(Fi < 00 I X (0) = i )  = 1 if and only if i is persistent. 

8. Let X be the simple symmetric random walk on the integers in continuous time, so that 

Pi, i+ 1 (h) = Pi, i- I  (h) = 1Ah + o(h ) .  

Show that the walk i s  persistent. Let T be the time spent visiting m during an excursion from O .  Find 
the distribution of T .  

9 .  Let i be a transient state o f  a continuous-time Markov chain X with X (0) = i .  Show that the 
total time spent in state i has an exponential distribution. 

10. Let X be an asymmetric simple random walk in continuous time on the non-negative integers 
with retention at 0, so that 

{ Ah + o(h ) if j = i + 1 ,  i 2: 0,  Pij (h ) = . . . . 
f-th + o(h ) If J = I - 1 ,  I 2: 1 .  

Suppose that X (0) = 0 and A > f-t. Show that the total time Vr spent in state r is exponentially 
distributed with parameter A - f-t. 

Assume now that X (0) has some general distribution with probability generating function G .  
Find the expected amount of time spent at 0 in terms of G.  

1 1 .  Let X = {X(t) : t 2: O} be a non-explosive irreducible Markov chain with generator G and unique 
stationary distribution 1C .  The mean recurrence time f-tk is defined as follows.  Suppose X (0) = k ,  
and let U = inf{s : X (s)  =f. k} .  Then f-tk = E(inf{t > U :  X (t) = k }) .  Let Z = { Zn : n 2: O} be the 
imbedded 'jump chain' given by Zo = X (0) and Zn is the value of X just after its nth jump. 
(a) Show that Z has stationary distribution ii satisfying 

where gi = -gii , provided 2:i 7ii gi < 00. When is it the case that ii = 1C ?  
(b) Show that tii = l / (f-ti gi ) if f-ti < 00, and that the mean recurrence time 11k of the state k in the 

jump chain Z satisfies 11k = f-tk 2:i tii gi if the last sum is finite . 

12. Let Z be an irreducible discrete-time Markov chain on a countably infinite state space S, having 
transition matrix H = (h ij ) satisfying h i i = 0 for all states i , and with stationary distribution v .  
Construct a continuous-time process X on S for which Z i s  the imbedded chain, such that X has no 
stationary distribution. 
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6.10 Uniform semigroups 

This section is not for lay readers and may be omitted; it indicates where some of the difficulties 
lie in the heuristic discussion of the last section (see Chung ( 1 960) or Freedman ( 1 97 1 )  for 
the proofs of the following results) . 

Perhaps the most important claim is equation (6.9 .5) , that Pij (h) is approximately linear 
in h when h is small . 

(1) Theorem. If { Pt }  is a standard stochastic semigroup then there exists an I S I x I S I matrix 
G = (gij ) such that, as t ,J, 0, 

(a) Pij (t) = gij t + o(t) for i =1= j, 
(b) Pii (t) = 1 + gii t + o(t) . 

Also, 0 S gij < 00 if i =1= j, and 0 � gii � -00. The matrix G is called the generator of the 
semigroup { Pd. 

Equation ( l b) is fairly easy to demonstrate ( see Problem (6. 1 5 . 1 4» ; the proof of ( l a) is 
considerably more difficult. The matrix G has non-negative entries off the diagonal and 
non-positive entries (which may be -00) on the diagonal. We normally write 

(2) 

If S is finite then 

G = lim � (Pt - 1) . q ,o t 

Gl' = lim � (Pt - 1) 1' = lim � (Pt l' - I') = 0' t tO t t tO t 
from (6 .9 .3b), and so the row sums of G equal O. If S is infinite, all we can assert is that 

In the light of Claim (6 .9 . 1 3 ) , states i with gii = -00 are called instantaneous, since the 
chain leaves them at the same instant that it arrives in them. Otherwise, state i is called stable 
if 0 > gii > -00 and absorbing if gii = O. 

We cannot proceed much further unless we impose a stronger condition on the semigroup 
{Pt } than that it be standard. 

(3) Definition. We call the semigroup {Pt } uniform if Pt -+ 1 uniformly as t ,J, 0, which is 
to say that 

(4) Pii (t) -+ 1 as t ,J,  0, uniformly in i E S. 

Clearly (4) implies that Pij (t) -+ 0 for i =1= j ,  since Pij (t) S 1 - Pii (t ) .  A uniform 
semigroup is standard; the converse is not generally true, but holds if S is finite. The uniformity 
of the semigroup depends upon the sizes of the diagonal elements of its generator G. 
(5) Theorem. The semigroup {Pd is uniform if and only if supd-gii } < 00. 

We consider uniform semigroups only for the rest of this section. Here is the main result, 
which vindicates equations (6 .9 .9)-(6 .9 . 1 1 ) .  
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(6) Theorem. Kolmogorov's equations. If {Pt l is a uniform semigroup with generator G, 
then it is the unique solution to the: 
(7) forward equation : P; = PtG, 
(8) backward equation :  P; = GPt, 
subject to the boundary condition Po = I. Furthermore 

(9) Pt = etG and G1' = 0' . 

The backward equation is more fundamental than the forward equation since it can be 
derived subject to the condition that G I' = 0', which is a weaker condition than that the 
semigroup be uniform. This remark has some bearing on the discussion of dishonesty in 
Section 6 .8 .  (Of course, a dishonest birth process is not even a Markov chain in our sense, 
unless we augment the state space {O, 1 , 2 , . . .  } by adding the point {oo } . ) You can prove (6) 
yourself. Just use the argument which established equations (6.9.9) and (6.9 . 1 0) with an eye 
to rigour; then show that (9) gives a solution to (7) and (8), and finally prove uniqueness. 

Thus uniform semigroups are characterized by their generators; but which matrices are 
generators of uniform semigroups? Let .M be the collection of l S I x l S I matrices A = (aij ) 
for which 

I I A I I  = s�p L l au I satisfies I I A I I < 00.  
I j ES 

(10) Theorem. A E .M is the generator of a uniform semigroup Pt = etA if and only if 

aij ::::: 0 for i =I- j , and L aij = 0 for all i . 
j 

Next we discuss irreducibility. Observation (6.9 . 1 6) amounts to the following. 

(11) Theorem. If {P, } is standard (but not necessarily uniform) then: 
(a) Pii (t) > 0 for all t ::::: O. 
(b) Levy dichotomy: If i =I- j, either Pi/t) = 0 for all t > 0, 

or Pij (t) > Ofor all t > O. 
Partial proof. (a) {Pt l is assumed standard, so Pii (t) � 1 as t .J, O. Pick h > 0 such 
that Pii (S) > 0 for all s S h. For any real t pick n large enough so that t S hn. By the 
Chapman-Kolmogorov equations, 

Pii (t) ::::: Pii (tln)n > 0 because t in S h . 

(b) The proof of  this i s  quite difficult, though the method of  (a) can easily be  adapted to 
show that if ex = inf {t : Pij (t) > O} then Pij (t) > 0 for all t > ex .  The full result asserts that 
either ex = 0 or ex = 00. • 

(12) Example (6.9.15) revisited. If ex, f3 > 0 and S = { I ,  2 } , then 
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is the generator of a uniform stochastic semigroup {Pt } given by the following calculation. 
Diagonalize G to obtain G = BAB- 1 where 

Therefore 

Pt = f: :� Gn = B (f: :� An) B- 1 

n=O n=O 

= B ( hg) � )  B- 1 since A 0 = I 

1 ( ah (t) + fi = a + fi fi [ 1 - h (t) ] 
a [ 1 - h (t) ] ) a + fih (t) 

where h (t) = e-t (a+f3) . Let t � 00 to obtain 

and so 

P � ( 1 - p p ) t 1 - p p 
a 

where p = a + fi 

{ 1 - P lP'(X (t) = i) � 
P 

if i = 1 ,  

if i = 2, 

irrespective of the initial distribution of X (0) . This shows that 1C = (1 - p, p) is the limiting 
distribution . Check that 1CG = O. The method of Example (6 .9 . 15 )  provides an alternative 
and easier route to these results . • 

(13) Example. Birth process. Recall the birth process of Definition (6. 8 . 1 1 ) ,  and suppose 
that Ai > 0 for all i .  The process is uniform if and only if supd -gii } = SUpdAd < 00, and 
this is a sufficient condition for the forward and backward equations to have unique solutions .  
We saw in Section 6 . 8  that the weaker condition Li Ai I = 00 is necessary and sufficient for 
this to hold. • 

6.11 Birth-death processes and imbedding 

A birth process is a non-decreasing Markov chain for which the probability of moving from 
state n to state n + 1 in the time interval (t , t + h) is Anh + o(h) . More realistic continuous-time 
models for population growth incorporate death also. Suppose then that the number X (t) of 
individuals alive in some population at time t evolves in the following way : 

(a) X is a Markov chain taking values in {O, 1 , 2, . . . } , 
(b) the infinitesimal transition probabilities are given by 

(1) 

( Anh + o(h) 
lP'(X (t + h) = n + m / X (t) = n) = f.tnh + o(h) 

o(h) 

if m = 1 ,  

ifm = - 1 ,  

if lm l > 1 ,  
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(c) the 'birth rates ' AO , A I , . . .  and the 'death rates ' /-Lo, /-L 1 , . . .  satisfy Ai ::::: 0, /-Li ::::: 0, 
/-Lo = O. 

Then X is called a birth-death process. It has generator G = (gij : i ,  j ::::: 0) given by ( -'0 AO 0 0 0 1 /-L I - (A I + /-L I ) A l 0 0 . . .  

G = 0 /-L2 - (A2 + /-L2) A2 0 
0 0 /-L3 - (A3 + /-L3) A3 

The chain is uniform if and only if sUPi {Ai + /-Li } < 00.  In many particular cases we have that 
AO = 0, and then 0 is an absorbing state and the chain is not irreducible. 

The transition probabilities Pij (t) = JP>(X (t) = j I X (0) = i )  may in principle be 
calculated from a knowledge of the birth and death rates, although in practice these functions 
rarely have nice forms. It is an easier matter to determine the asymptotic behaviour of the 
process as t � 00. Suppose thaUi > 0 and /-Li > 0 for all relevant i .  A stationary distribution 
1C would satisfy 1CG = 0 which is to say that 

-A01CO + /-L 11C I  = 0, 

An- l 1Cn- 1 - (An + /-Ln)1Cn + /-Ln+ l1Cn+ 1  = 0 if n ::::: 1 .  

A simple inductiont yields that 

(2) 
AOA 1 . . .  An- l 1Cn = 1C0 , /-L 1 /-L2 . . .  /-Ln 

n ::::: 1 .  

Such a vector 1C is a stationary distribution if and only if Ln 1Cn = 1 ;  this may happen if and 
only if 

(3) 
00 '" AOA I . . .  An- 1 �---------- < 00,  
n=O /-L I /-L2 . . .  /-Ln 

where the term n = 0 is interpreted as 1 ;  if this holds, then 

(4) Jro = L AOA 1 . . .  An- 1 ( 00  ) - 1 

n=O /-L 1 /-L2 . . .  /-Ln 

We have from Theorem (6.9 . 2 1 )  that the process settles into equilibrium (with stationary 
distribution given by (2) and (4» if and only if the summation in (3) is finite, a condition 
requiring that the birth rates are not too large relative to the death rates .  

Here are some examples of birth-death processes. 

(5) Example. Pure birth. The death rates satisfy /-Ln = 0 for all n .  • 

t Alternatively, note that the matrix is tridiagonal, whence the chain is reversible in equilibrium (see Problem 
(6. 1 5 . l 6c» . Now seek a solution to the detailed balance equations. 



270 6 . 1 1  Markov chains 

(6) Example. Simple death with immigration. Let us model a population which evolves in 
the following way. At time zero the size X (0) of the population equals I .  Individuals do not 
reproduce, but new individuals immigrate into the population at the arrival times of a Poisson 
process with intensity 'A > O. Each individual may die in the time interval (t, t + h) with 
probability J-Lh + o(h) ,  where J-L > O. The transition probabilities of X (t) satisfy 

Pij (h) = lP'(X (t + h) = j I X (t) = i ) 
= 
{ lP'(j - i arrivals, no deaths) + o(h) 
lP'(i - j deaths, no arrivals) + o(h) 

if j � i ,  
if j < i , 

since the probability of two or more changes occurring during the interval (t , t + h) is o(h) .  
Therefore 

Pi, i+ l (h) = 'Ah ( 1  - J-Lh) i + o(h) = 'Ah + o(h) , 

Pi, i- l (h) = i (J-Lh) ( 1  - J-Lh) i- l ( 1  - 'Ah) + o(h) = (iJ-L)h + o(h) ,  
Pij (h) = o(h) i f  I j  - i l > 1 ,  

and we recognize X as a birth-death process with parameters 

(7) 

It is an irreducible continuous-time Markov chain and, by Theorem (6 . 1 0.5) , it is not uniform. 
We may ask for the distribution of X (t) and for the limiting distribution of the chain as t � 00. 
The former question is answered by solving the forward equations; this is Problem (6. 1 5 . 1 8) .  
The latter question is answered by the following. • 

(8) Theorem. In the limit as t � 00, X (t) is asymptotically Poisson distributed with param­
eter p = 'A / J-L. That is, 

n = 0, 1 , 2, . . . . 

Proof. Either substitute (7) into (2) and (4), or solve the equation :n:G = 0 directly. • •  

(9) Example. Simple birth-death. Assume that each individual who is alive in the popula­
tion at time t either dies in the interval (t , t + h) with probability J-Lh + o(h) or splits into two 
in the interval with probability 'Ah + o(h ) .  Different individuals behave independently of one 
another. The transition probabilities satisfy equations such as 

Pi, i+ l  (h) = lP'(one birth, no deaths) + o(h) 

= i ('Ah) ( 1 - 'Ah) i- l ( l  - J-Lh)i + o(h) 
= (i 'A)h + o(h) 

and it is easy to check that the number X (t) of living individuals at time t satisfies ( 1 )  with 
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We shall explore this model in detail. The chain X = {X (t) } is standard but not uniform. We 
shall assume that X (0) = I > 0; the state 0 is absorbing. We find the distribution of X (t) 
through its generating function . 

(10) Theorem. The generating function of X (t) is { ( At ( 1 - S) + S ) / 
At ( 1 - s) + 1 

G(s, t) = JE(sx(t» ) = / (JL( I - s) - (JL - AS)e-t (A-/1-» ) 
A ( 1 - s) - (JL - As)e-t (A-/1-) 

if JL = A , 

if JL =1= A . 

Proof. This i s  like Proof B of Theorem (6 . 8 .2) .  Write pj (t) = JP>(X (t) = j ) and condition 
X (t + h) on X (t) to obtain the forward equations 

Pj (t) = A(j - I )Pj - l (t) - (A + JL)jPj (t) + JL(j + I )Pj+l (t) if j � 1 ,  
pb (t) = JLPI (t) . 

Multiply the jth equation by sj and sum to obtain 

00 00 00 
L:> j Pj (t) = As2 L(j - l )sj-2 Pj- l (t) - (A + JL)s L jsj- l Pj (t) 
j=O j= ! j=O 

00 
+ JL L(j + I)sj Pj+l (t) . 

j=O 

Put G(s, t) = L� sj Pj (t) = JE(sX (t» ) to obtain 

(11) 
aG 2 aG aG aG - = A S - - (A + JL)s- + JL­at as as as 

aG 
= (AS - JL) (s - 1 )­as 

with boundary condition G(s, 0) = s l . The solution to this partial differential equation i s  
given by ( 1 0) ; to see this either solve ( 1 1 ) by standard methods, or substitute the conclusion 
of ( 10) into ( 1 1 ) . • 

Note that X is honest for all A and JL since G( I , t) = 1 for all t . To find the mean and 
variance of X (t) , differentiate G: 

Write p = AI JL and notice that 

{ 0 if p < 1 ,  
JE(X (t)) � 

00 if p > 1 . 



272 6 . 1 1  Markov chains 

(12) Corollary. The extinction probabilities 1J (t) = JP>(X (t) = 0) satisfy, as t -+ 00, 

1J (t) -+ { :-1 if P S I , 

ifp > 1 . 

Proof. We have that 1J (t) = G(O, t ) . Substitute s = 0 in G(s, t) to find 1J (t) explicitly. • 

The observant reader will have noticed that these results are almost identical to those 
obtained for the branching process, except in that they pertain to a process in continuous time. 
There are (at least) two discrete Markov chains imbedded in X.  

(A) Imbedded random walk. We saw in Claims (6 .9 . 1 3) and (6.9. 14) that if  X (s) = n, say, then 
the length of time T = inf{t > 0 : X es + t) =1= n} until the next birth or death is exponentially 
distributed with parameter -gnn = n (A + /-L) . When this time is complete, X moves from 
state n to state n + M where 

JP>(M = 1 )  = _ 
gn ,n+l = _A_, gnn A + /-L 

/-L 
JP>(M = - 1 )  = -- .  A + /-L 

Think of this transition as the movement of a particle from the integer n to the new integer 
n + M, where M = ± 1 .  Such a particle performs a simple random walk with parameter 
p = A/ (A + /-L) and initial position I .  We know already (see Example (3.9.6» that the 
probability of ultimate absorption at 0 is given by ( 1 2) . Other properties of random walks (see 
Sections 3 .9  and 5 .3 )  are applicable also. 

(B) Imbedded branching process. We can think of the birth-death process in the following way. 
After birth an individual lives for a certain length of time which is exponentially distributed 
with parameter A + /-L. When this period is over it dies, leaving behind it either no individuals, 
with probability /-LI(A + /-L), or two individuals, with probability A/(A + /-L) . This is just an 
age-dependent branching process with age density function 

(13) u 2: 0, 

and family-size generating function 

(14) 

in the notation of Section 5 .5  (do not confuse G in ( 1 4) with G(s, t) = lE(sx (t ») .  Thus if 
I = 1 ,  the generating function G(s, t) = lE(sx (t » satisfies the differential equation 

(15) 

After ( 1 1 ) , this is the second differential equation for G(s, t ) . Needless to say, ( 1 5) is really 
just the backward equation of the process; the reader should check this and verify that it has the 
same solution as the forward equation ( 1 1 ) .  Suppose we lump together the members of each 
generation of this age-dependent branching process . Then we obtain an ordinary branching 
process with family-size generating function G(s) given by ( 14) .  From the general theory, 
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the extinction probability of the process is the smallest non-negative root of the equation 
s = G(s) , and we can verify easily that this is given by ( 1 2) with I = 1 .  • 

(16) Example. A more general branching process. Finally, we consider a more general type 
of age-dependent branching process than that above, and we investigate its honesty. Suppose 
that each individual in a population lives for an exponentially distributed time with parameter 
A say. After death it leaves behind it a (possibly empty) family of offspring: the size N of this 
family has mass function f (k) = lP'(N = k) and generating function GN . Let X (t) be the 
size of the population at time t; we assume that X (0) = 1 .  From Section 5 .5 the backward 
equation for G(s , t) = JE(sx (t) ) is 

with boundary condition G(s , 0) = s ; the solution is given by 

(17) 
lG(S , t ) du -=---,--,-- = At 

s GN (U) - U 

provided that G N (u) - U has no zeros within the domain of the integral. There are many 
interesting questions about this process ; for example, is it honest in the sense that 

00 
L lP'(X (t) = j ) = I ? 
j=O 

(18) Theorem. The process X is honest if and only if 

(19) 
[ I  du diverges for all E > O. JI -E GN (U ) - U 

Proof. See Harris ( 1 963 , p. 107) .  

If condition ( 1 9) fails then the population size may explode to +00 in finite time. 

(20) Corollary. X is honest if JE(N) < 00. 

Proof. Expand GN (U) - U about U = 1 to find that 

GN (U) - U = [JE(N) - l ] (u - 1 )  + o(u - 1 )  as u t I . 

• 

• •  
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Exercises for Section 6 . 1 1  

1. Describe the jump chain for a birth-death process with rates An and ILn . 

2. Consider an immigration-death process X, being a birth-death process with birth rates An = A 
and death rates ILn = nIL. Find the transition matrix of the jump chain Z, and show that it has as 
stationary distribution 

Jrn = _
1_ (1 + �) pne-p 

2(n ! ) p 
where p = AI IL. Explain why this differs from the stationary distribution of X.  

3. Consider the birth-death process X with An = nA and ILn = nIL for all n 2: O. Suppose X (0) = 1 
and let I) (t) = lP'(X (t) = 0) . Show that I) satisfies the differential equation 

I) ' (t) + (A + IL) I) (t)  = IL + AI) (t)2 . 

Hence find I) (t ) ,  and calculate lP'(X (t) = 0 I X (u)  = 0) for 0 < t < u .  

4 .  For the birth-death process o f  the previous exercise with A < IL, show that the distribution of 
X (t ) ,  conditional on the event { X (t) > OJ, converges as t ---+ 00 to a geometric distribution. 

5. Let X be a birth-death process with An = nA and ILn = nIL, and suppose X (O) = 1 .  Show that 
the time T at which X (t) first takes the value 0 satisfies { � log ( �) it A < IL,  

E(T I T < 00) = � (
IL � A 

) - log -- it A > IL .  
IL A - IL  

What happens when A = IL? 

6. Let X be the birth-death process of Exercise (5) with A =I- IL, and let Vr (t)  be the total amount 
of time the process has spent in state r 2: 0, up to time t. Find the distribution of VI (00) and the 
generating function I:r s

rE(Vr (t» . Hence show in two ways that E(VI (00» = [max{A ,  IL}]- I . 
Show further that E(Vr (oo» = Ar- I r - l [max{A , IL}rr . 

7. Repeat the calculations of Exercise (6) in the case A = IL. 

6.12 Special processes 

There are many more general formulations of the processes which we modelled in Sections 
6 .8 and 6 . 1 1 .  Here is a very small selection of some of them, with some details of the areas 
in which they have been found useful. 

(1) Non-homogeneous chains. We may relax the assumption that the transition probabilities 
Pi} (s, t) = JP>(X (t) = j I X (s ) = i )  satisfy the homogeneity condition Pi} (s, t) = Pi} (0, t -
s ) . This leads to some very difficult problems. We may make some progress in the special 
case when X is the simple birth-death process of the previous section, for which An = nA and 
f-tn = nf-t. The parameters A and f-t are now assumed to be non-constant functions of t .  (Mter 
all, most populations have birth and death rates which vary from season to season.) It is easy 
to check that the forward equation (6 . 1 1 . 1 1 ) remains unchanged: 

a G  a G  at = [A (t)S - f-t (t ) ] (s - 1 ) a;- . 
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where I = X (0) and 
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er(t) t [ _ I ] t 
G (s, t) = 1 + ( s _ 1 - fo A (u)er (u ) dU) 

r (t) = fo t 
[Jt (u ) - A (U ) ] du o 
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The extinction probability lP'(X (t) = 0) is the coefficient of sO in G(s , t), and it is left as an 
exercise for the reader to prove the next result. 

(2) Theorem. lP'(X (t) = 0) � 1 ifand only if 

foT 
Jt(u)er(u) du � 00 as T � 00 . • 

(3) A bivariate branching process. We advertised the branching process as a feasible model 
for the growth of cell populations; we should also note one of its inadequacies in this role. 
Even the age-dependent process cannot meet the main objection, which is that the time of 
division of a cell may depend rather more on the size of the cell than on its age. So here is a 
model for the growth and degradation of long-chain polymerst .  

A population comprises particles. Let N(t) be the number of particles present at  time t , 
and suppose that N(O) = 1 . We suppose that the N(t) particles are partitioned into W(t) 
groups of size NI , N2 , . . .  , Nw such that the particles in each group are aggregated into a 
unit cell. Think of the cells as a collection of W(t) polymers, containing NI , N2 , . . .  , Nw 
particles respectively. As time progresses each cell grows and divides .  We suppose that each 
cell can accumulate one particle from outside the system with probability Ah + o(h) in the 
time interval (t , t + h) .  As cells become larger they are more likely to divide . We assume 
that the probability that a cell of size N divides into two cells of sizes M and N - M, for 
some 0 < M < N, during the interval (t , t + h) ,  is Jt(N - l)h + o(h ) .  The assumption that 
the probability of division is a linear function of the cell size N is reasonable for polymer 
degradation since the particles are strung together in a line and any of the N - 1 ' links ' between 
pairs of particles may sever. At time t there are N (t) particles and W (t) cells, and the process 
is said to be in state X(t) = (N(t) , W(t» . During the interval (t, t + h) various transitions 
for X (t) are possible. Either some cell grows or some cell divides , or more than one such 
event occurs . The probability that some cell grows is A W h + o(h) since there are W chances 
of this happening; the probability of a division is 

Jt(NI + . . .  + Nw - W)h + o(h) = Jt(N - W)h + o(h) 
since there are N - W links in all ; the probability of more than one such occurrence is o(h) . 
Putting this information together results in a Markov chain X (t) = (N(t) , W(t» with state 
space { I ,  2, . . .  }2 and transition probabilities 
lP'(X (t + h) = (n , w) + E I X (t) = (n , w») 

i f  E = ( 1 , 0) , 
Jt (n - w)h + o(h) if E = (0, 1 ) ,  
{ Awh + o(h) 

- 1 - [W (A - Jt) + Jtn]h + o(h) if E = (0, 0) , 
o(h) otherwise. 

t In physical chemistry, a polymer is  a chain of molecules, neighbouring pairs of which are joined by bonds. 
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Write down the forward equations as usual to obtain that the joint generating function 

satisfies the partial differential equation 

aG aG aG 
- = f-Lx (y - 1 )- + y [).. (x - 1 ) - f-L(Y - 1 ) ] ­a t � � 

with G (x , y ; 0) = xy . The joint moments of N and W are easily derived from this equa­
tion .  More sophisticated techniques show that N(t) -+ 00, W(t) -+ 00, and N(t) / W(t) 
approaches some constant as t -+ 00. 

Unfortunately, most cells in nature are irritatingly non-Markovian ! • 

(4) A non-linear epidemic. Consider a population of constant size N + 1 , and watch the 
spread of a disease about its members . Let X (t) be the number of healthy individuals at time 
t and suppose that X (0) = N. We assume that if X (t) = n then the probability of a new 
infection during (t ,  t + h) is proportional to the number of possible encounters between ill 
folk and healthy folk. That is, 

lP'(X (t + h) = n - 1 1 X (t) = n) = )..n (N + I - n)h + o(h) .  

Nobody ever gets better. In the usual way, the reader can show that 

N 

satisfies 

G(s , t) = lE(sX (t) = L::>nlP'(X (t) = n) 
n=O 

aG ( aG a2G ) 
at = ).. ( 1  - s) N a:; - s as2 

with G (s , 0) = sN . There is no simple way of solving this equation, though a lot of information 
is available about approximate solutions. • 

(5) Birth-death with immigration. We saw in Example (6 . 1 1 .6) that populations are not 
always closed and that there is sometimes a chance that a new process will be started by an 
arrival from outside. This may be due to mutation (if we are counting genes) , or leakage (if 
we are counting neutrons) , or irresponsibility (if we are counting cases of rabies) . 

Suppose that there is one individual in the popUlation at time zero ; this individual is the 
founding member of some birth-death process N with fixed but unspecified parameters . Sup­
pose further that other individuals immigrate into the popUlation in the manner of a Poisson 
process I with intensity v. Each immigrant starts a new birth-death process which is an inde­
pendent identically distributed copy of the original process N but displaced in time according 
to its time of arrival . Let To (= 0), Tl , T2 , . . .  be the times at which immigrants arrive, and 
let Xl , X2 , . . .  be the interarrival times Xn = Tn - Tn- I . The total population at time t is the 
aggregate of the processes generated by the I (t) + 1 immigrants up to time t .  Call this total 
Y (t) to obtain 

I (t) 
(6) Y (t) = L Ni (t - 1'; )  

i=O 
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where Nt , N2 , . . .  are independent copies of N = No .  The problem is to find how the 
distribution of Y depends on the typical process N and the immigration rate v ;  this is an 
example of the problem of compounding discussed in Theorem (5 . 1 .25) . 

First we prove an interesting result about order statistics .  Remember that I is a Poisson 
process and Tn = inf{t : I (t) = n} is the time of the nth immigration. 

(7) Theorem. The conditional joint distribution of Tt ,  Tz ,  . . .  , Tn , conditional on the event 
{I (t) = n}, is the same as the joint distribution of the order statistics of a family of n 
independent variables which are uniformly distributed on [0 ,  t ] . 

This is something of a mouthful, and asserts that if we know that n immigrants have arrived 
by time t then their actual arrival times are indistinguishable from a collection of n points 
chosen uniformly at random in the interval [0 ,  t ] . 
Proof. We want the conditional density function ofT = (Tl , T2 , . . . , Tn ) given that I (t) = n . 
First note that X t ,  X2 , . . . , Xn  are independent exponential variables with parameter v s o  that 

Make the transformation X � T and use the change of variable formula (4 .7 .4) to find that 

Let C C ]Rn . Then 

(8) 

but 

(9) 

and 

(10) 

(T C I ) 
lP'(I (t) = n and T E C) 

lP' E I (t) = n = , 
lP'(I = n) 

lP' (I (t) = n and T E C) = L lP'(I (t) = n i T = t)h(t) dt 

= L lP'(I (t) = n I Tn = tn )h (t) dt 

so long as tn .:s t .  Substitute ( 1 0) into (9) and (9) into (8) to obtain 

where 

lP'(T E C I I (t) = n) = L L (t)n ! t-n dt 

{ I  if tl < t2 < . . .  < tn , 
L(t) = 

° otherwise. 

We recognize g (t) = L (t)n ! t-n from the result of Problem (4. 1 4 .23) as the joint density 
function of the order statistics of n independent uniform variables on [0, t ] . • 



278 6 . 1 2  Markov chains 

We are now ready to describe Y (t) in terms of the constituent processes M .  
(11) Theorem. If N(t) has generating function GN (S , t) = lE(sN(t» then the generating 
function G (s , t) = lE(sY (t » satisfies 

Proof. Let UI , U2 , . . .  be a sequence of independent uniform variables on [0, t ] . By (6), 

where I = I (t) . By independence, conditional expectation, and (7) , 

(12) 

However, 

(13) 

(14) 

lE(sY (t » = lE(sNo (t » lE {lE(sN1 (t-T1 )+ ·+N/ (t-T/ ) I I) } 
= GN (S , t)lE {lE(SN1 (t-U1 )+ ·+N/ (t-U/ ) I I) } 
= GN (S , t)lE{lE(sN1 (t-U1 » I } . 

and 

Substitute ( 1 3) and ( 1 4) into ( 1 2) to obtain the result. • •  

(15) Branching random walk. Another characteristic of many interesting populations is 
their distribution about the space that they inhabit. We introduce this spatial aspect gently, 
by assuming that each individual lives at some point on the real line. (This may seem a 
fair description of a sewer, river, or hedge. )  Let us suppose that the evolution proceeds as 
follows. After its birth, a typical individual inhabits a randomly determined spot X in � for 
a random time T . After this time has elapsed it dies ,  leaving behind a family containing N 
offspring which it distributes at points X + YI , X + Y2 , . . .  , X + YN where YI , Y2 , . . .  are 
independent and identically distributed. These individuals then behave as their ancestor did, 
producing the next generation offspring after random times at points X + Yi + Yij , where Yij 
is the displacement of the jth offspring of the i th individual, and the Yij are independent and 
identically distributed. We shall be interested in the way that living individuals are distributed 
about � at some time t . 

Suppose that the process begins with a single newborn individual at the point O. We require 
some notation. Write GN (S) for the generating function of a typical family size N and let F 
be the distribution function of a typical Y .  Let Z (x , t) be the number of living individuals at 
points in the interval (-00, x] at time t . We shall study the generating function 

G (s ; x , t) = lE(sZ(x , t » . 
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Let T be the lifetime of the initial individual, N its family size, and Yl , Y2 , . . .  , YN the 
positions of its offspring. We shall condition Z on all these variables to obtain a type of 
backward equation . We must be careful about the order in which we do this conditioning, 
because the length of the sequence Yl , Y2 , . . .  depends on N. Hold your breath, and note 
from Problem (4. 14 .29) that 

Clearly 

G(s ; x , t) = lE{lE[lE(lE(SZ I T, N, Y) I T, N) I T] } . 

{ Z(X , O) if T > t , 
Z (x , t) = N . Li=l Zi (X - Yi , t - T) If T S t , 

where the processes Z I , Z2 , . . .  are independent copies of Z .  Hence 

lE(SZ I T, N, Y) = 
{ G� ; x ,  0) if T > t , 

ni=l G (s ; x - Yi , t - T) if T S t . 

Thus, if T S t then 

lE[lE(lE(SZ I T, N, Y) I T, N) I T] = lE [(I: G(s ; x - y , t - T) dF(y) r I T] 
= GN (i: G(s ; x - y , t - T) dF(Y)) . 

Now breathe again . We consider here only the Markovian case when T is exponentially 
distributed with some parameter J-L. Then 

Substitute v = t - u inside the integral and differentiate with respect to t to obtain 

aG 
+ J-LG = J-LGN ( rJO G(s ; x - y , t) dF(Y)) . a t  J-oo 

It is not immediately clear that this is useful. However, differentiate with respect to s at s = I 
to find that m(x , t) = lE (Z (x , t ) )  satisfies 

am 100 
- + J-Lm = J-LlE(N) m (x - y , t) dF(y) a t  -00 

which equation is approachable by Laplace transform techniques. Such results can easily be 
generalized to higher dimensions . • 

(16) Spatial growth. Here is a simple model for skin cancer. Suppose that each point (x , y) 
of the two-dimensional square lattice 712 = { (x ,  y) : x, y = 0, ± 1 ,  ±2, . . .  } is a skin cell. 
There are two types of cell, called b-cells (benign cells) and m-cells (malignant cells) . Each 
cell lives for an exponentially distributed period of time, parameter f3 for b-cells and parameter 
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/-L for m -cells, after which it splits into two similar cells, one of which remains at the point 
of division and the other displaces one of the four nearest neighbours, each chosen at random 
with probability ! . The displaced cell moves out of the system. Thus there are two competing 
types of cell . We assume that m-cells divide at least as fast as b-cells; the ratio K = /-LI f3 2: 1 
is the 'carcinogenic advantage' .  

Suppose that there is only one m-cell initially and that all other cells are benign. What 
happens to the resulting tumour of malignant cells? 

(17) Theorem. If K = 1 , the m-cells die out with probability 1 , but the mean time until 
extinction is infinite. If K > 1, there is probability K- I that the m-cells die out, and probability 
1 - K- I that their number grows beyond all bounds. 

Thus there is strictly positive probability of the malignant cells becoming significant if and 
only if the carcinogenic advantage exceeds one. 

Proof. Let X (t) be the number of m-cells at time t, and let To (= 0), TI , T2 , . . .  be the 
sequence of times at which X changes its value. Consider the imbedded discrete-time process 
X = {Xn } , where Xn = X (Tn+) is the number of m-cells just after the nth transition; X is 
a Markov chain taking values in {O , 1 ,  2 , . . .  }. Remember the imbedded random walk of the 
birth-death process, Example (6 . 1 1 .9) ; in the case under consideration a little thought shows 
that X has transition probabilities 

/-L K 
Pi,HI = /-L + f3 

= K + 1 ' 
1 

Pi, i- I = K + 1 
if i =I- 0, PO,o = 1 .  

Therefore Xn is simply a random walk with parameter p = KI(K + 1 ) and with an absorbing 
barrier at O. The probability of ultimate extinction from the starting point X (0) = 1 is K- I . 
The walk is symmetric and null persistent if K = 1 and all non-zero states are transient if 
K > 1 . • 

If K = 1 ,  the same argument shows that the m-cells certainly die out whenever there is a 
finite number of them to start with. However, suppose that they are distributed initially at the 
points of some (possibly infinite) set. It is possible to decide what happens after a long length 
of time; roughly speaking this depends on the relative densities of benign and malignant cells 
over large distances. One striking result is the following. 

(18) Theorem. If K = 1 , the probability that a specified finite collection of points contains 
only one type of cell approaches one as t -+ 00. 

Sketch proof. If two cells have a common ancestor then they are of the same type. Since off­
spring displace any neighbour with equal probability, the line of ancestors of any cell performs 
a symmetric random walk in two dimensions stretching backwards in time. Therefore, given 
any two cells at time t, the probability that they have a common ancestor is the probability 
that two symmetric and independent random walks SI and S2 which originate at these points 
have met by time t. The difference SI - S2 is also a type of symmetric random walk, and, as 
in Theorem (5 . 10 . 1 7) , SI - S2 almost certainly visits the origin sooner or later, implying that 
JP>(SI (t) = S2 (t) for some t) = 1 .  • •  

(19) Example. Simple queue. Here is a simple model for a queueing system. Customers 
enter a shop in the manner of a Poisson process, parameter A .  They are served in the order of 
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their arrival by a single assistant; each service period is a random variable which we assume 
to be exponential with parameter /1 and which is independent of all other considerations .  Let 
X (t) be the length of the waiting line at time t (including any person being served) . It is easy 
to see that X is a birth-death process with parameters An = A for n :::: 0, /1n = /1 for n :::: 1 .  
The server would be very unhappy indeed if the queue length X (t) were to tend to infinity as 
t -+ 00, since then he or she would have very few tea breaks . It is not difficult to see that the 
distribution of X (t) settles down to a limit distribution, as t -+ 00, if and only if A < /1, which 
is to say that arrivals occur more slowly than departures on average (see condition (6 . 1 1 .3 ) ) .  
We shall consider this process in detail in Chapter 1 1 , together with other more complicated 
queueing models .  • 

Exercises for Section 6. 1 2  

1. Customers entering a shop are served in the order of their arrival by the single server. They 
arrive in the manner of a Poisson process with intensity A, and their service times are independent 
exponentially distributed random variables with parameter /-t. By considering the jump chain, show 
that the expected duration of a busy period B of the server is (/-t - A)- 1 when A < /-t. (The busy 
period runs from the moment a customer arrives to find the server free until the earliest subsequent 
time when the server is again free. )  

2. Disasters. Immigrants arrive at  the instants of a Poisson process of rate 1J ,  and each independently 
founds a simple birth process of rate A . At the instants of an independent Poisson process of rate 8 ,  
the population i s  annihilated. Find the probability generating function o f  the population X (t) , given 
that X (0) = o. 
3. More disasters. In the framework of Exercise (2), suppose that each immigrant gives rise to a 
simple birth-death process of rates A and /-t. Show that the mean population size stays bounded if and 
only if 8 > A - /-t .  
4 .  The queue MlG/oo. (See Section 1 1 . 1 . ) A n  ftp server receives clients at the times o f  a Poisson 
process with parameter A, beginning at time O. The i th client remains connected for a length Sj 
of time, where the Si are independent identically distributed random variables, independent of the 
process of arrivals. Assuming that the server has an infinite capacity, show that the number of clients 
being serviced at time t has the Poisson distribution with parameter A fci [ l  - G (x)]  dx, where G is 
the common distribution function of the Sj . 

6.13 Spatial Poisson processes 

The Poisson process of Section 6. 8 is a cornerstone of the theory of continuous-time Markov 
chains .  It is also a beautiful process in its own right, with rich theory and many applications. 
While the process of Section 6 . 8  was restricted to the time axis IR+ = [0, 00) ,  there is a useful 
generalization to the Euclidean space IRd where d :::: 1 .  

We begin with a technicality. Recall that the essence of the Poisson process of Section 6 .8  
was the set of  arrival times, a random countable subset of  IR+ . Similarly, a realization of  a 
Poisson process on IRd will be a countable subset n of IRd . We shall study the distribution of 
Il through the number I Il n A I of its points lying in a typical subset A of IRd . Some regularity 
will be assumed about such sets A, namely that there is a well defined notion of the 'volume' 
of A .  Specifical ly, we shall assume that A E fBd , where fBd denotes the Borel a -field of IRd , 
being the smallest a-field containing all boxes of the form n1=1 (aj , bd . Members of fBd are 
called Borel sets, and we write I A I for the volume (or Lebesgue measure) of the Borel set A .  
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(1) Definition. The random countable subset n of Rd is called a Poisson process with 
(constant) intensity A if, for all A E 1Bd, the random variables N(A) .", III n A I  satisfy: 

(a) N(A) has the Poisson distribution with parameter A lA I ,  and 
(b) if A t ,  Al • . . .  , An are disjoint sets in jJd, then N(A l ) ,  N(A2) .  � . . , N(An) are indepen­

dent random variables. 
We often refer to the counting process N as being itself a Poisson process if it satisfies (a) 

and (b) above. In the case when A > 0 and I A I = 00, the number I n n A I has the Poisson 
distribution with parameter 00, a statement to be interpreted as lP'( l n n A I = 00) = 1 .  

It is not difficult to see the equivalence of ( 1 )  and Definition (6 . 8 . 1 )  when d = 1 .  That is, 
if d = 1 and N satisfies ( 1 ) ,  then 

(2) M(t ) = N([O, t 1 ) , t 2: 0, 

satisfies (6. 8 . 1 ) .  Conversely, if M satisfies (6 . 8 . 1 ) , one may find a process N satisfying ( 1 )  
such that (2) holds. Attractive features o f  the above definition include the facts that the origin 
plays no special role, and that the definition may be extended to sub-regions of ]Rd as well as 
to a -fields of subsets of general measure spaces .  

There are many stochastic models based on the Poisson process . One-dimensional pro­
cesses were used by Bateman, Erlang, Geiger, and Rutherford around 1 909 in their investiga­
tions of practical situations involving radioactive particles and telephone calls .  Examples in 
two and higher dimensions include the positions of animals in their habitat, the distribution 
of stars in a galaxy or of galaxies in the universe, the locations of active sites in a chemical 
reaction or of the weeds in your lawn, and the incidence of thunderstorms and tornadoes . Even 
when a Poisson process is not a perfect description of such a system, it can provide a relatively 
simple yardstick against which to measure the improvements which may be offered by more 
sophisticated but often less tractable models .  

Definition ( 1 )  utilizes as reference measure the Lebesgue measure on ]Rd , in the sense that 
the volume of a set A is its Euclidean volume. It is useful to have a definition of a Poisson 
process with other measures than Lebesgue measure, and such processes are termed 'non­
homogeneous ' .  Replacing the Euclidean element A dx with the element A(X) dx, we obtain 
the following, in which A (A) is given by 

(3) A (A) = i A(x) dx, A E :J3d . 

(4) Definition. Let d � 1 and let A : Rd -+ R be a non-negative measurable function such 
that A(A) < 00 for all bounded A .  The random countable subset n of lR.d is called a non­
homogeneous Poisson process with intensity fnnction A if, for all A E fBd, the random 
variables N(A) = III n A I  satisfy: 

(a) N(A) has the Poisson distribution with parameter A(A), and 
(b) if A t ,  A2.  " . ,  An are disjoint sets in /Bd, then N(Al ) ,  N(A2) • . . .  , N(An) are indepen­

dent random variables. 
We call the function A (A) , A E j3d , the mean measure of the process n. We have 

constructed A as the integral (3 )  of the intensity function A; one may in fact dispense altogether 
with the function A, working instead with measures A which 'have no atoms'  in the sense that 
A ({x}) = 0 for all x E ]Rd . 
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Our first theorem states that the union of two independent Poisson processes is also a 
Poisson process . A similar result is valid for the union of countably many independent 
Poisson processes. 

(5) Superposition theorem. Let TI' and TI" be independent Poisson processes on ]Rd with 
respective intensity functions A' and A". The set TI = TI' U TI" is a Poisson process with 
intensity function A = A' + A". 

Proof. Let N' (A) = I TI' n A I and Nil (A) = I TI" n A I . Then N' (A) and Nil (A) are indepen­
dent Poisson-distributed random variables with respective parameters A' (A) and A" (A) , the 
integrals (3) of A' and A" .  It follows that the sum SeA) = N' (A) + N" (A) has the Poisson 
distribution with parameter A' (A) + A"(A) . Furthermore, if A I , A2 , . . .  are disjoint, the 
random variables SeA l ) , S(A2) , . . .  are independent. It remains to show that, almost surely, 
SeA) = I TI n A I for all A, which is to say that no point of TI' coincides with a point of TI" . 
This i s  a rather technical step, and the proof may be  omitted on  a first read. 

Since ]Rd is a countable union of bounded sets , it is enough to show that, for every bounded 
A <; ]Rd , A contains almost surely no point common to TI' and TI" . Let n :::: 1 and, for 
k = (kl , k2 , . . .  , kd) E 7ld , let Bk (n) = n1= 1  (ki 2-n , (ki + 1 )2-n ] ;  cubes o f  this form are 
termed n-cubes or n-boxes. Let A be a bounded subset of ]Rd , and A be the (bounded) union 
of all Bk(O) which intersect A. The probability that A contains a point common to TI' and TI" 
is bounded for all n by the probability that some Bk (n) lying in A contains a common point. 
This is no greater than the mean number of such boxes, whence 

lP'(TI' n TI" n A =1= 0) S L lP'(N' (Bk (n» :::: 1 ,  N" (Bk (n» :::: 1 ) 

where 

k :Bk(n)<;A 

L ( 1 - e-A' (Bk (n) ) ) ( 1 - e-A" (Bk(n» ) 
k: Bk (n) <;A 

< L A'(Bk (n»A"(Bk (n» since 1 - e-x S x for x :::: 0 

k: Bk (n)<;A 

S max JA' (Bk (n» } L A"(Bk (n» k: Bk (n)<;A k :Bk (n)<;A 

= Mn (A)A" (A) 

Mn (A) = max A' (Bk(n» . k :Bk (n) <;A 

It is the case that Mn (A) -+ 0 as n -+ 00. This is easy to prove when A' is a constant function, 
since then Mn (A) ex I Bk (n) 1 = 2-nd . It is not quite so easy to prove for general A' .  Since we 
shall need a slightly more general argument later, we state next the required result. 

(6) Lemma. Let /-L be a measure on the pair (]Rd , :J3d ) which has no atoms, which is to say 
that /-L( {Y} ) = Ofor all y E ]Rd. Let n :::: 1, and Bk (n) = n1=1 (ki 2-n , (ki + 1 )2-n ], k E 7ld . 
For any bounded set A, we have that 

as n -+ 00.  
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Returning to the proof of the theorem, it follows by Lemma (6) applied to the set if that 
Mn (A) -+ 0 as n -+ 00, and the proof is complete . • 

Proof of Lemma (6). We may assume without loss of generality that A is a finite union of 
O-cubes .  Let 

and note that Mn � Mn+1 . Suppose that Mn (A) fr O. There exists 8 > 0 such that 
Mn (A) > 8 for all n , and therefore, for every n � 0, there exists an n-cube Bk (n) <; A with 
tJ.(Bk (n» > 8 . We colour an m -cube C black if, for all n � m, there exists an n-cube C' <; C 
such that tJ.(C') > 8 . Now A is the union of finitely many translates of (0, l ]d , and for at 
least one of these, Bo say, there exist infinitely many n such that Bo contains some n-cube B' 
with tJ.(B') > 8 . Since tJ.0 is monotonic, the O-cube Bo is black. By a similar argument, 
Bo contains some black I -cube B1 . Continuing similarly, we obtain an infinite decreasing 
sequence Bo , B1 , . . .  such that each Br is a black r -cube . In particular, tJ.(Br ) > 8 for all r , 
whereast 

r!iI1Jo tJ.(Br ) = tJ. ( n Br) = tJ.({y} ) = 0 
r 

by assumption, where y is the unique point in the intersection of the Br . The conclusion of 
the theorem follows from this contradiction. • 

It is possible to avoid the complication of Lemma (6) at this stage, but we introduce the 
lemma here since it will be useful in the forthcoming proof of Renyi ' s  theorem ( 1 7) . In 
an alternative and more general approach to Poisson processes, instead of the 'random set' 
TI one studies the 'random measure ' N. This leads to substantially easier proofs of results 
corresponding to (5) and the forthcoming (8) , but at the expense of of extra abstraction . 

The following 'mapping theorem' enables us to study the image of a Poisson process TI 
under a (measurable) mapping f : IRd -+ IRs . Suppose that TI is a non-homogeneous Poisson 
process on IRd with intensity function A. , and consider the set f (TI) of images of TI under f. 
We shall need that f(TI) contains (with probability 1 )  no multiple points, and this imposes a 
constraint on the pair A. , f . The subset B <; IRs contains the images of points of TI lying in 
f- 1 B ,  whose cardinality is a random variable having the Poisson distribution with parameter 
AU- 1 B) .  The key assumption on the pair A. , f will therefore be that 

(7) AU- 1 {y} )  = 0 for all y E IRs , 

where A is the integral (3) of A. .  

(8) Mapping theorem. Let TI be a non-homogeneous Poisson process on IRd with intensity 
function A., and let f : IRd -+ IRS satisfy (7). Assume further that 

(9) tJ.(B)  = AU-1 B) = ( A. (x) dx, B E :Bs , 
1f-1 B 

satisfies tJ.(B) < 00 for all bounded sets B. Then f (TI) is a non-homogeneous Poisson 
process on IRs with mean measure tJ.. 

tWe use here a property of continuity of general measures, proved in the manner of Lemma ( 1 .3 .5) .  
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Proof. Assume for the moment that the points in f(TI) are distinct. The number of points 
of f(TI) lying in the set B (� ]RS ) is I TI n f- 1 B I , which has the Poisson distribution with 
parameter /-t(B ) , as required. If B1 , B2 , . . .  are disjoint, their pre-images f- 1 B1 , f- 1 B2 , . . .  
are disjoint also, whence the numbers of points in the Bi are independent. It follows that 
f(TI) is a Poisson process, and it remains only to show the assumed distinctness of f (TI) . 
The proof of this is similar to that of (5), and may be omitted on first read. 

We shall work with the set TI n U of points of TI lying within the unit cube U = (0, l ]d of 
]Rd . This set is a Poisson process with intensity function 

{ A (X) 
AU (X) = 

0 
if x E U, 
otherwise, 

and with finite total mass A(U) = Iu A(X) dx . (This is easy to prove, and is in any case a 
very special consequence of the forthcoming colouring theorem ( 14) .) We shall prove that 
f(TI n U) is a Poisson process on ]Rs with mean measure 

/-tU (B) = ( AU (x) dx. 
1f- 1 8 

A similar conclusion will hold for the set f(TI n Uk) where Uk = k + U for k E 7ld , and 
the result will follow by the superposition theorem (5) (in a version for the sum of countably 
many Poisson processes) on noting that the sets f (TI n Uk) are independent, and that, in the 
obvious notation, 

Write TI' = TI n U, and assume for the moment that the points f(TI/) are almost surely 
distinct. The number of points lying in the subset B of ]Rs is I TI' n f- 1 B I , which has the 
Poisson distribution with parameter /-tu (B) as required. If B1 , B2 , . . .  are disjoint, their pre­
images f- 1 B1 , f- 1 B2 , . . .  are disjoint also, whence the numbers of points in the Bi are 
independent. It follows that f(TI/) is a Poisson process with mean measure /-tu . 

It remains to show that the points in f (TI') are almost surely distinct under hypothesis (7). 
The probability that the small box Bk = TIf=l (ki 2-n , (ki + 1 )2-n ] of ]Rs contains two or 
more points of f(TI/) is 

1 - e-JLk - /-tke-JLk S 1 - ( 1 + /-tk) ( 1  - /-tk) = /-t� , 

where /-tk = /-tu (Bk) , and we have used the fact that e-x 2: 1 - x for x 2: O. The mean 
number of such boxes within the unit cube Us = (0, l Y  is no greater than 

where 

L /-t� S Mn L /-tk = Mn/-tu (Us ) 
k k 

Mn = max /-tk � 0 k as n � oo 

by hypothesis (7) and Lemma (6) . Now /-tu (Us ) s A(U) < 00, and we deduce as in the 
proof of Theorem (5) that Us contains almost surely no repeated points . Since ]Rs is the union 



286 6 . 1 3  Markov chains 

of countably many translates of Us to each of which the above argument may be applied, we 
deduce that ]Rs contains almost surely no repeated points of f (TI') . The proof is complete . •  

(10) Example. Polar coordinates. Let TI be a Poisson process on ]R2 with constant rate A, 
and let f : ]R2 -+ ]R2 be the polar coordinate function f (x , y) = (r, 8) where 

It is straightforward to check that (7) holds, and we deduce that f (TI) is a Poisson process on 
]R2 with mean measure 

f.-L(B) = { A dx dy = ( Ar dr d8 , 
1f- 1 8 18ns 

where S = f (]R2 ) is the strip { (r, 8) : r � 0, ° S 8 < 2n } .  We may think of f(TI) as a 
Poisson process on the strip S having intensity function Ar . • 

We tum now to one of the most important attributes of the Poisson process, which unlocks 
the door to many other useful results . This is the so-called 'conditional property' , of which 
we saw a simple version in Theorem (6 . 1 2 .7) .  

(11) Theorem. Conditional property. Let TI be a non-homogeneous Poisson process on ]Rd 
with intensityfunction A, and let A be a subset of]Rd such that ° < A (A) < 00. Conditional on 
the event that I TI n A I = n, the n points of the process lying in A have the same distribution as 
n points chosen independently at random in A according to the common probability measure 

Since 

(12) 

A(B) Ql(B) = A (A) ' B � A . 

B - ( A (x) dx Ql( ) - 18 A(A) 
, 

the relevant density function is A(x)1 A (A) for x E A. When TI has constant intensity A, the 
theorem implies that, given I TI n A I = n, the n points in question are distributed uniformly 
and independently at random in A . 

Proof. Let A I , A2 , . . .  , Ak be  a partition o f  A . It i s  an elementary calculation that, i f  n l + 
n2 + . . .  + nk = n , 

TIi JP'(N(Ai ) = ni ) 
JP'(N(A) = n) 

TIi A (Ai )n' e-A(A' ) lni !  
A (A)ne-A(A) In ! 

by independence 

n '  --_·--Ql(A I )n1 Ql(A2)n2 • • •  Ql(Ak )nk • n l ! n2 ! · · · nk ! 
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The conditional distribution of the positions of the n points is specified by this function of 
AI , A2 , . · . ,  An . 

We recognize the multinomial distribution of ( 1 3 ) as the joint distribution of n points 
selected independently from A according to the probability measure IQ. It follows that the 
joint distribution of the points in TI n A, conditional on there being exactly n of them, is the 
same as that of the independent sample . • 

The conditional property enables a proof of the existence of Poisson processes and aids 
the simulation thereof. Let A > 0 and let A I , A2 , . " be a partition of IRd into Borel sets of 
finite Lebesgue measure . For each i ,  we simulate a random variable Ni having the Poisson 
distribution with parameter A lAi I . Then we sample n independently chosen points in Ai ,  each 
being uniformly distributed on Ai . The union over i of all such sets of points is a Poisson 
process with constant intensity A. A similar construction is valid for a non-homogeneous 
process .  The method may be facilitated by a careful choice of the A i , perhaps as unit cubes 
of lRd . 

The following colouring theorem may be viewed as complementary to the superposition 
theorem (5). As in the latter case, there is a version of the theorem in which points are marked 
with one of countably many colours rather than just two.  

(14) Colouring theorem. Let TI be a non-homogeneous Poisson process on IRd with intensity 
function A. We colour the points of TI in the following way. A point of TI at position x 
is coloured green with probability y (x); otherwise it is coloured scarlet (with probability 
a (x) = 1 - y (x)) . Points are coloured independently of one another. Let r and Y. be the sets 
of points coloured green and scarlet, respectively. Then r and Y. are independent Poisson 
processes with respective intensity functions y (x)A (x) and a (x)A (x) . 
Proof. Let A f:: IRd with A (A) < 00. By the conditional property ( 1 1 ) , if I TI n A I = n, 
these points have the same distribution as n points chosen independently at random from A 
according to the probability measure IQ(B) = A(B)/ A (A) . We may therefore consider n 
points chosen in this way. By the independence of the points , their colours are independent 
of one another. The chance that a given point is coloured green is y = fA y (x) dlQ, the 
corresponding probability for the colour scarlet being a = 1 - Y = fA a (x) dlQ. It follows 
that, conditional on I TI n A I = n , the numbers Ng and Ns of green and scarlet points in A 
have, jointly, the binomial distribution 

lP'(Ng = g , Ns = s I N(A) = n) = �ygaS ,  where g + s = n . g !  s !  
The unconditional probability is therefore 

(g + s) ! _ _  s A (A)g+se-A (A ) 
lP'(Ng = g , Ns = s) = yga -----,---g ! s !  (g + s) ! 

(yA (A))ge-YA (A ) (aA (A)Ye-aA (A ) 
g !  s !  

which is to say that the numbers of green and scarlet points in A are independent. Furthermore 
they have, by ( 1 2) , Poisson distributions with parameters 

yA(A) = i y (x)A (A) dlQ = i y (x)A (x) dx, 
aA(A) = i a (x)A (A) dlQ = i a (x)A (x) dx . 
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Independence of the counts of points in disjoint regions follows trivially from the fact that 
TI has this property. • 

(15) Example. The Alternative Millennium Dome contains n zones, and visitors are required 
to view them all in sequence. Visitors arrive at the instants of a Poisson process on lR+ with 
constant intensity A., and the rth visitor spends time Xr, s in the sth zone, where the random 
variables Xr,s , r 2: 1 ,  1 .:s s .:s n, are independent. 

Let t 2: 0, and let Vs (t) be the number of visitors in zone s at time t . Show that, for fixed 
t, the random variables Vs (t ) , 1 .:s s .:s n, are independent, each with a Poisson distribution. 
Solution. Let Tl < T2 < . . .  be the times of arrivals of visitors, and let c} , C2 , . . . , C n, 8 be 
distinct colours. A point of the Poisson process at time x is coloured Cs if and only if 

(16) 
s- 1 s 

X + L Xv .:s t < x + L Xv 
v= 1  v=1 

where Xl , X2 , . . .  , Xn are the times to be spent in the zones by a visitor arriving at time x . 
If ( 16) holds for n o  s , w e  colour the point at x with the colour 8 ; at time t , such a visitor has 
either not yet arrived or has already departed. Note that the colours of different points of the 
Poisson process are independent, and that a visitor arriving at time x is coloured Cs if and only 
if this individual is in zone s at time t . 

The required independence follows by  a version o f  the colouring theorem with n + I 
available colours instead of just two. • 

Before moving to other things, we note yet another characterization of the Poisson process . 
It turns out that one needs only check that the probability that a given region is empty is given 
by the Poisson formula. Recall from the proof of (5) that a box is a region of lRd of the form 
Bk (n) = n1=1 (ki 2-n , (ki + I ) 2-n ] for some k E Zd and n 2: 1 . 

(17) Renyi's theorem. Let TI be a random countable subset oflRd, and let A. : lRd � lR be a 
non-negative integrable function satisfying A(A) = fA A.(x) dx < 00 for all bounded A. If 

(18) JP'(TI n A = 0) = e-A(A) 

for any finite union A of boxes, then TI is a Poisson process with intensity function A.. 

Proof. Let n 2: 1 ,  and denote by hen) the indicator function of the event that Bk (n) is 
non-empty. It follows by ( 1 8) that the events Ik (n) , k E Zd , are independent. 

Let A be a bounded open set in lRd , and let Xn (A) be the set of all k such that Bk (n) S; A. 
Since A is open, we have that 

(19) N(A) = I TI n A I = lim Tn (A) where Tn (A) = '" Ik (n) ; n-+oo � kEXn (A) 

note that, by the nesting of the boxes Bk (n) , this is a monotone increasing limit. We have also 
that 

(20) A (A) = lim '" A (Bk (n» . n-+oo � kEXn (A) 
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The quantity Tn (A) is the sum of independent variables, and has probability generating 
function 

(21) E(S Tn (A) ) = n {s + (1 - s)e-A(Bk (n) ) } . 
kEXn (A) 

We have by Lemma (6) that A(Bk (n)) -+ 0 uniformly in k E Xn (A) , as n -+ 00. Also, for 
fixed s E [0, 1 ) , there exists ep (8)  satisfying ep (8 )  t 1 as 8 + 0 such that 

(22) e-( l -s)a S s + ( 1 - s)e-a s e-( I -s)r/> (8)a if 0 S a s 8 .  

[The left inequality holds b y  the convexity of e -x, and the right inequality b y  Taylor's theorem.] 
It follows by ( 19), (2 1 ) , and monotone convergence, that 

for O S s < 1 ,  

and by (20) and (22) that, for fixed s E [0, 1 ) , 

e-( I -s)A (A) S E (sN(A) ) S e-( I -s)r/> (8)A (A) for all 8 > O .  

We take the limit as  8 + 0 to obtain the Poisson distribution of N(A) . 
It remains to prove the independence of  the  variables N(A I ) , N(A2 ) , . . .  for disjoint 

A I , A2 , . . . .  This is an immediate consequence of the facts that Tn (A I ) , Tn (A2) , . . .  are 
independent, and Tn (Ai ) -+ N(Ai ) as n -+ 00. • 

There are many applications of the theory of Poisson processes in which the points of a 
process have an effect elsewhere in the space . A well-known practical example concerns the 
fortune of someone who plays a lottery. The player wins prizes at the times of a Poisson process 
IT on lR+ , and the amounts won are independent identically distributed random variables .  
Gains are discounted at rate a .  The total gain G (t) by time t may be expressed in the form 

G(t) = L at -T WT ,  
TEn , T::sr 

where WT is the amount won at time T (E IT).  We may write 

where 

G(t) = L r et - T )WT 
TEn 

r (u ) = { 0 

aU 

if u < 0, 

if u 2: o. 
Such sums may be studied by way of the next theorem. We state this in the special case 
of a homogeneous Poisson process on the half-line lR+ , but it is easily generalized. The 
one-dimensional problem is sometimes termed shot noise, since one may think of the sum 
as the cumulative effect of pulses which arrive in a system, and whose amplitudes decay 
exponential I y. 
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(23) Theoremt. Let TI be a Poisson process on IR with constant intensity A, let r : IR -+ IR 
be a smooth function, and let { Wx : x E TI} be independent identically distributed random 
variables, independent of TI. The sum 

G(t) = L r et - x )Wx 
x en ,  x",:O 

has characteristic function 

where W has the common distribution of the Wx . In particular, 

lE(G (t» = AlE(W) fot r (s ) ds . 

Proof. This runs just like that of Theorem (6 . 1 2. 1 1 ) , which is in fact a special case. It is 
left as an exercise to check the details .  The mean of G(t) is calculated from its characteristic 
function by differentiating the latter at () = O. • 

A similar idea works in higher dimensions, as the following demonstrates. 

(24) Example. Olbers's paradox. Suppose that stars occur in 1R3 at the points {Ri : i 2: I }  
of a Poisson process with constant intensity A . The star at Ri has brightness Bi , where the Bi 
are independent and identically distributed with mean fJ . The intensity of the light striking 
an observer at the origin 0 from a star of brightness B ,  distance r away, is (in the absence 
of intervening clouds of dust) equal to c B / r2 , for some absolute constant c . Hence the total 
illumination at 0 from stars within a large ball S with radius a is 

Conditional on the event that the number Na of such stars satisfies Na = n, we have from the 
conditional property ( 1 1 )  that these n stars are uniformly and independently distributed over 
S. Hence 

Now lE(Na ) = A I S I , whence 

lEla = ACfJ ( � dV = AcfJ (4rca ) . is I r l 
The fact that this is unbounded as a -+ 00 is called 'Olbers 's paradox' ,  and suggests that 

the celestial sphere should be uniformly bright at night. The fact that it is not is a problem 
whose resolution is still a matter for debate. One plausible explanation relies on a sufficiently 
fast rate of expansion of the Universe .  • 

tThis theorem is sometimes called the Campbell-Hardy theorem. See also Exercise (6. 1 3 .2). 
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Exercises for Section 6. 1 3  

29 1 

1. In a certain town at time t = 0 there are no bears . Brown bears and grizzly bears arrive as 
independent Poisson processes B and G with respective intensities f3 and y . 
(a) Show that the first bear is brown with probability f3 / (f3 + y) .  
(b) Find the probability that between two consecutive brown bears, there arrive exactly r grizzly 

bears. 
(c) Given that B ( l )  = 1 ,  find the expected value of the time at which the first bear arrived. 

2. Campbell-Hardy theorem. Let IT be the points of a non-homogeneous Poisson process on JR.d 

with intensity function A. Let S = 2:xEn g(x) where g is a smooth function which we assume for 
convenience to be non-negative. Show that JB:(S) = Ir�.d g(U)A (U) du and var(S) = J)Rd g(u)2 A(U) du, 
provided these integrals converge. 

3. Let IT be a Poisson process with constant intensity A on the surface of the sphere of JR.3 with radius 
1 .  Let P be the process given by the (X, Y) coordinates of the points projected on a plane passing 
through the centre of the sphere. Show that P is a Poisson process ,  and find its intensity function. 

4. Repeat Exercise (3), when IT is a homogeneous Poisson process on the ball { (Xl , x2 , X3 ) : Xf + 
xi + x� ::: 1 ) . 

5. You stick pins in a Mercator projection of the Earth in the manner of a Poisson process with 
constant intensity A. What is the intensity function of the corresponding process on the globe? What 
would be the intensity function on the map if you formed a Poisson process of constant intensity A of 
meteorite strikes on the surface of the Earth? 

6. Shocks. The rth point Tr of a Poisson process N of constant intensity A on JR.+ gives rise to an 
effect Xre-a(t -Tr) at time t � Tr , where the Xr are independent and identically distributed with 
finite variance. Find the mean and variance of the total effect Set) = 2:�t? Xre-a (t -Tr) in terms of 
the first two moments of the Xr , and calculate cov(S(s ) ,  Set)) . 

What is the behaviour of the correlation p (S(s ) ,  Set))  as s ----+ 00 with t - s fixed? 

7. Let N be a non-homogeneous Poisson process on lR+ with intensity function A .  Find the joint 
density of the first two inter-event times, and deduce that they are not in general independent. 

8. Competition lemma. Let { Nr (t) : r � 1 )  be a collection of independent Poisson processes on lR+ 
with respective constant intensities {Ar : r � 1 ) , such that 2:r Ar = A < 00. Set N(t) = 2:r Nr (t) , 
and let I denote the index of the process supplying the first point in N, occurring at time T. Show that 

A '  11"(1 = i ,  T � t )  = 11"(1 = i )lI"(T � t )  = ; e-J..t , i � 1 . 

6.14 Markov chain Monte Carlo 

In applications of probability and statistics, we are frequently required to compute quantities 
of the form Je g (B )n(B)  dB or LOEe g (B )n(B ) ,  where g : 8 � IR and n is a density or mass 
function, as appropriate . When the domain 8 is large and n is complicated, it can be beyond 
the ability of modem computers to perform such a computation, and we may resort to 'Monte 
Carlo ' methods (recall Section 2.6) . Such situations arise surprisingly frequently in areas as 
disparate as statistical inference and physics. Monte Carlo techniques do not normally yield 
exact answers, but instead give a sequence of approximations to the required quantity. 
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(1) Example. Bayesian inference. A prior mass function n (8 ) is postulated on the discrete 
set e of possible values of 8 ,  and data x is collected. The posterior mass function n (8 I x) is 
given by 

n (8 I x) = 
f (x I 8)n (8) 

Ll/fEE> f(x 1 1/! )n (1/!) 
It is required to compute some characteristic of the posterior, of the form 

JE(g (8) I x ) = L g(8)n (8 I x ) .  
(J 

Depending on the circumstances, such a quantity can be hard to compute . This problem arises 
commonly in statistical applications including the theory of image analysis, spatial statistics, 
and more generally in the analysis of large structured data sets . • 

(2) Example. Ising modelt. We are given a finite graph G = (V , E) with vertex set V and 
edge set E . Each vertex may be in either of two states, - l or 1 ,  and a configuration is a vector 
8 = {8v : v E V}  lying in the state space e = {- I ,  1 }  v .  The configuration 8 is assigned the 
probability 

n (8) = � exp { L 8v8w } 
v#w ,  v � w  

where the sum is over all pairs v ,  w of distinct neighbours in the graph G (the relation � 

denoting adjacency), and Z is the appropriate normalizing constant, or 'partition function' , 

Z = L exP { L 8v8w } . 
(JEE> v#w ,  v�w 

For t, u E V, the chance that t and u have the same state is 

L n(8) = L � (8t8u + l )n (8 ) . 
(J :(J,=(Ju (J 

The calculation of such probabilities can be strangely difficult. • 

It can be difficult to calculate the sums in such examples, even with the assistance of 
ordinary Monte Carlo methods. For example, the elementary Monte Carlo method of Section 
2.6 relied upon having a supply of independent random variables with mass function n .  In 
practice, e is often large and highly structured, and n may have complicated form, with the 
result that it may be hard to simulate directly from n .  The 'Markov chain Monte Carlo' 
(McMC) approach is to construct a Markov chain having the following properties :  

(a) the chain has n as  unique stationary distribution, 
(b) the transition probabilities of the chain have a simple form. 

Property (b) ensures the easy simulation of the chain, and property (a) ensures that the distri­
bution thereof approaches the required distribution as time passes. Let X = {Xn : n � O} be 
such a chain. Subject to weak conditions, the Cesaro averages of g (Xr ) satisfy 

1 
n- l 

- L g(Xr) � L g(8)n (8 ) . n r=O (J 

tThis famous model of ferromagnetism was proposed by Lenz, and was studied by Ising around 1 924. 
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The convergence is usually in mean square and almost surely (see Problem (6 . 1 5 .44) and 
Chapter 7), and thus the Cesaro averages provide the required approximations .  

Although the methods of this chapter may be adapted to continuous spaces 8, we consider 
here only the case when 8 is finite. Suppose then that we are given a finite set 8 and a mass 
function 1C = (1Ci : i E 8) ,  termed the 'target distribution' . Our task is to discuss how to 
construct an ergodic discrete-time Markov chain X on 8 with transition matrix P = (Pij ) , 
having given stationary distribution 1C ,  and with the property that realizations of the X may 
be readily simulated. 

There is a wide choice of such Markov chains. Computation and simulation is easier 
for reversible chains, and we shall therefore restrict out attention to chains whose transition 
probabilities Pi} satisfy the detailed balance equations 

(3) 1CkPkj = 1Cjpjk , j ,  k E 8 ; 

recall Definition (6 .5 .2) .  Producing a suitable chain X turns out to be remarkably straightfor­
ward. There are two steps in the following simple algorithm. Suppose that Xn = i ,  and it is 
required to construct X n+ I . 

(i) Let H = (hi) : i , j E 8) be an arbitrary stochastic matrix, called the 'proposal matrix' .  
We pick Y E 8 according to the probabilities JP>(Y = j I Xn = i )  = h ij . 

(ii) Let A = (ai) : i , j E 8) be a matrix with entries satisfying 0 S ai} S 1 ;  the ail are 
called 'acceptance probabilities ' . Given that Y = j ,  we set 

Xn+l = { j 

Xn 
with probability aU ' 

with probability 1 - ail . 

How do we determine the matrices H, A? The proposal matrix H is chosen in such a way 
that it is easy and cheap to simulate according to it. The acceptance matrix A is chosen in 
such a way that the detailed balance equations (3) hold. Since Pij is given by 

(4) 
{ hij ai} if i ::j:. j , 

Pi} = 1 - L hikaik if i = j ,  
k :kf=i 

the detailed balance equations (3) will be satisfied if we choose 

(5) ai j = 1 1\ --L.l.!:-
(1C o h ' o ) 
1Cih ij 

where x 1\ y = min{x , y }  as usual. This choice of A leads to an algorithm called the Hastings 
algorithmt . It may be considered desirable to accept as many proposals as possible, and 
this may be achieved as follows. Let (tij )  be a symmetric matrix with non-negative entries 
satisfying ail tij S 1 for all i, j E 8, and let ail be given by (5) .  It is easy to see that one may 
choose any acceptance probabilities a;j given by a;j = aij tij .  Such a generalization is termed 
Hastings 's general algorithm. 

While the above provides a general approach to McMC, further ramifications are relevant 
in practice. It is often the case in applications that the space 8 is a product space. For example, 

tOr the Metropolis-Hastings algorithm; see Example (8). 
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it was the case in (2) that e = { - I ,  I }  v where V is the vertex set of a certain graph; in the 
statistical analysis of images, one may take e = SV where S is the set of possible states of 
a given pixel and V is the set of all pixels. It is natural to exploit this product structure in 
devising the required Markov chain, and this may be done as follows. 

Suppose that S is a finite set of ' local states ' ,  that V is a finite index set, and set e = SV . 
For a given target distribution 1C on e, we seek to construct an approximating Markov chain 
X .  One way to proceed is to restrict ourselves to transitions which flip the value of the 
current state at only one coordinate v E V ; this is called 'updating at v ' .  That is, given that 
Xn = i = (iw : W E V) , we decide that Xn+l takes a value in the set of all j = (jw : W E V) 
such that jw = iw whenever W =1= v .  This may be achieved by following the above recipe in 
a way specific to the choice of the index v. 

How do we decide on the choice of v?  Several ways present themselves, of which the 
following two are obvious examples. One way is to select v uniformly at random from V at 
each step of the chain X .  Another is to cycle through the elements of V is some deterministic 
manner. 

(6) Example. Gibbs sampler, or heat bath algorithm. As in Example (2), take e = SV 

where the ' local state space' S and the index set V are finite. For i = (iw : W E V) E e and 
v E V , let ej, v = {j E e : jw = iw for W =1= v } .  Suppose that Xn = i and that we have 
decided to update at v .  We take 

(7) 

which is to say that the proposal Y is chosen from ej, v according to the conditional distribution 
given the other components iw , W =1= v .  

We have from (5 )  that ajj = 1 for all j E ej, v , on noting that e;, v = ej, v i f  j E e;, v ' 
Therefore lP'v (Xn+l = j I Xn = i )  = h jj for j E e;, v , where lP'v denotes the probability 
measure associated with updating at v .  

We may choose the value of  v either by  flipping coins or  by  cycling through V i n  some 
pre-determined manner. • 

(8) Example. Metropolis algorithm. If the matrix H is symmetric, equation (5) gives ajj = 
1 /\ (1Cj 11C; ) , whence P;j = hij { 1 /\ (n} In; ) }  for i =1= j .  

A simple choice for the proposal probabilities hij would be to sample the proposal 'uni­
formly at random' from the set of available changes . In the notation of Example (6), we might 
take 

if j =1= i ,  j E e;, v , 

if j = i .  
• 

The accuracy of McMC hinges on the rate at which the Markov chain X approaches its 
stationary distribution 1C .  In practical cases, it is notoriously difficult to decide whether or not 
Xn is close to its equilibrium, although certain theoretical results are available. The choice of 
distribution a of Xo is relevant, and it is worthwhile to choose a in such a way that Xo has 
strictly positive probability of lying in any part of the set e where 1C has positive weight. One 
might choose to estimate Le g ((} )n ((})  by n - 1  L��-l g (Xr ) for some large 'mixing time' 
M. We do not pursue here the determination of suitable M. 
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This section closes with a precise mathematical statement concerning the rate of conver­
gence of the distribution apn to the stationary distribution Je .  We assume for simplicity that 
X is aperiodic and irreducible . Recall from the Perron-Frobenius theorem (6.6 . 1 )  that P has 
T = l e i  eigenvalues A I , A2 , . . .  , AT such that A l  = 1 and I Aj I < 1 for j =1= 1 .  We write A2 
for the eigenvalue with second largest modulus .  It may be shown in some generality that 

where I is the identity matrix, Je ' is the column vector (Jei : i E e) , and m is the multiplicity 
of A2 . Here is a concrete result in the reversible case. 

(9) Theorem. Let X be an aperiodic irreducible reversible Markov chain on the finite state 
space e, with transition matrix P and stationary distribution Je. Then 

(10) L I pik (n) - Jek l ::::; l e i · I A2 1
n 

sup{ l vr (i ) 1 : r E e } ,  
keG 

where vr (i ) is the i th term of the rth right-eigenvector vr ofP. 

i E e , n :::: 1 ,  

We note that the left side of ( 1 0) is the total variation distance (see equation (4 . 1 2.7)) 
between the mass functions Pi . (n) and Je .  

Proof. Let T = l e i  and number the states in e as 1 , 2 , . . .  , T . Using the notation and 
result of Exercise (6. 14 . 1 ) ,  we have that P is self-adjoint. Therefore the right eigenvec­
tors VI , V2 , . . .  , VT corresponding to the eigenvalues A I , A2 , . . .  , AT , are real. We may take 
V I , V2 , . . .  , VT to be an orthonormal basis of lRT with respect to the given scalar product. The 
unit vector ek , having 1 in its kth place and 0 elsewhere, may be written 

(11) 
T T 

ek = L (ek . vr )vr = L vr (k)71}Vr . 
r= 1 r=1 

Now pnek = (P l k (n) , P2k (n) , . . .  , PTk (n)) ' ,  and pnvr = A�Vr . We pre-multiply ( 1 1 )  by pn 
and deduce that 

T 
Pik (n ) = L Vr (k)likA� vr (i ) . 

r=1 
Now VI = 1 and A I = 1 ,  so that the term of the sum corresponding to r = 1 is simply lik . It 
follows that 

T 

L Ipik (n ) - Jek l ::::; L I Ar l n l vr (i ) 1 L lik l vr (k) l . 
k r=2 k 

By the Cauchy-Schwarz inequality, 

and ( 10) follows. 

L lik I Vr (k) 1 2 = 1 ,  
k 

• 
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Despite the theoretical appeal of such results, they are not always useful when P is large, 
because of the effort required to compute the right side of ( 1 0) .  It is thus important to establish 
readily computed bounds for 1 A.2 1 , and bounds on 1 Pik (n) - Jrk I ,  which do not depend on the 
Vj . We give a representative bound without proof. 

(12) Theorem. Conductance bound. We have under the assumptions o/ Theorem (9) that 
I - 2111 ::::: A.2 ::::: I - ! 1112 where 

Exercises for Section 6 . 1 4  

1 .  Let P b e  a stochastic matrix o n  the finite set e with stationary distribution Jr . Define the inner 
product (x , y) = L:kE8 xkYkJrk > and let /2 (Jr ) = {x E ]R8 : (x, x) < oo} .  Show, in the obvious 
notation, that P is reversible with respect to Jr if and only if (x , Py) = (Px, y) for all x, y E /2 (Jr ) .  

2 .  Barker's algorithm. Show that a possible choice for the acceptance probabilities i n  Hastings 's 
general algorithm is 

b o o  _ 
Jrj gj i 

IJ - Jr ' g o o  + Jr 0 g o , ' I IJ J J I 
where G = (gij ) is the proposal matrix. 

3. Let S be a countable set. For each j E S, the sets Ajb k E S, form a partition of the interval 
[0, 1 ] .  Let g : S x [0, 1 ]  --+ S be given by g(j , u) = k if U E Ajk . The sequence {Xn : n � O} of 
random variables is generated recursively by Xn+l = g (Xn , Un+ t > , n � 0, where {Un : n � I }  are 
independent random variables with the uniform distribution on [0, 1 1 . Show that X is a Markov chain, 
and find its transition matrix. 

4. Dobrushin's bound. Let U = (us t ) be a finite l S I x I T I stochastic matrix. Dobrushin 's ergodic 
coefficient is defined to be 

d (U) = i sup 2: I U i t - uj t l .  i, j ES tET 
(a) Show that, if V is a finite I T I x l U I stochastic matrix, then d(UV) .::: d (U)d(V) . 
(b) Let X and Y be discrete-time Markov chains with the same transition matrix P, and show that 

2:1lP'(Xn = k) - lP'(Yn = k) 1 .::: d (p)n 2:1lP'(Xo = k) - lP'(Yo = k) l .  
k k 

6.15 Problems 

1. Classify the states of the discrete-time Markov chains with state space S 
transition matrices 

( ! 
2 0 

n 0 
1 1 

i )  "3 'Z '2 1 0 0 0 (a) '2 (b) 
0 1 0 0 4 
0 0 0 1 

{ I ,  2, 3, 4} and 
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In case (a), calculate h4(n) ,  and deduce that the probability of ultimate absorption in state 4, starting 
from 3, equals �. Find the mean recurrence times of the states in case (b) . 

2. A transition matrix is called doubly stochastic if all its column sums equal 1 , that is, if L:i Pij = 1 
for all j E S .  
(a) Show that i f  a finite chain has a doubly stochastic transition matrix, then all its states are non-null 

persistent, and that if it is, in addition, irreducible and aperiodic then Pij (n) ---+ N- 1 as n ---+ 00, 
where N is the number of states. 

(b) Show that, if an infinite irreducible chain has a doubly stochastic transition matrix, then its states 
are either all null persistent or all transient. 

3. Prove that intercommunicating states of a Markov chain have the same period. 

4. (a) Show that for each pair i, j of states of an irreducible aperiodic chain, there exists N = N (i , j ) 
such that Pij (n) > 0 for all n :::: N .  

(b) Let X and Y be  independent irreducible aperiodic chains with the same state space S and transition 
matrix P. Show that the bivariate chain Zn = (Xn , Yn ) ,  n :::: 0, is irreducible and aperiodic . 

(c) Show that the bivariate chain Z may be reducible if X and Y are periodic . 

5. Suppose {Xn : n :::: OJ is a discrete-time Markov chain with Xo = i .  Let N be the total number 
of visits made subsequently by the chain to the state j .  Show that 

if n = 0, 

if n :::: 1 ,  

and deduce that IJD(N = (0) = 1 if and only if lij = Ijj = 1 .  

6. Let i and j be two states of a discrete-time Markov chain . Show that if i communicates with j , 
then there is positive probability of reaching j from i without revisiting i in the meantime. Deduce 
that, if the chain is irreducible and persistent, then the probability lij of ever reaching j from i equals 
1 for all i and j .  

7. Let {Xn : n :::: O J  be a persistent irreducible discrete-time Markov chain on the state space S with 
transition matrix P, and let x be a positive solution of the equation x = xP. 
(a) Show that 

i, j E S, n :::: 1 ,  

defines the n-step transition probabilities of a persistent irreducible Markov chain on S whose 
first-passage probabilities are given by 

i =f. j , n :::: l ,  

where lj i (n) = IJD(Xn = i ,  T > n I Xo = j )  and T = rnin {m > 0 :  Xm = j ) . 
(b) Show that x is unique up to a multiplicative constant. 
(c) Let 1) = min {n :::: 1 : Xn = j )  and define hij = 1JD(1) S Ti I Xo = i ) .  Show that xih ij = Xjhj i 

for all i ,  j E S. 
8. Renewal sequences. The sequence u = {un : n :::: OJ is called a 'renewal sequence' if 

n 
Uo = 1 ,  Un = L li Un-i 

i= l 
for n :::: 1 ,  

for some collection I = {In : n :::: 1 j of non-negative numbers summing to 1 .  
(a) Show that U is a renewal sequence if and only if there exists a Markov chain X on a countable 

state space S such that Un = IJD(Xn = s I Xo = s ) ,  for some persistent s E S and all n :::: 1 .  
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(b) Show that if u and v are renewal sequences then so is {un vn : n :::: OJ .  

9. Consider the symmetric random walk in  three dimensions on the set of  points { (x ,  y ,  z) : x ,  y ,  z = 
0, ± I ,  ±2, . . .  } ;  this process is a sequence {Xn : n :::: O} of points such that lP'(Xn+ l = Xn + E) = i 
for E = (± I ,  0, 0) , (0, ± I ,  0) , (0, 0, ±I ) .  Suppose that Xo = (0, 0, 0) . Show that 

( I ) 2n (2n) ! ( I ) 2n (2n) ( n ! ) 2 
lP' (X2n = (0, 0, 0» ) = 6" L C ' " k , )2 

= "2 L 3n " " k ' i+j+k=n I . J .  . n i+j+k=n I . J . . 

and deduce by Stirling's formula that the origin is a transient state. 

10. Consider the three-dimensional version of the cancer model (6. 1 2. 1 6) .  If K = 1 ,  are the empires 
of Theorem (6. 1 2. 1 8) inevitable in this case? 

11. Let X be a discrete-time Markov chain with state space S = { I ,  2}, and transition matrix 

( I - a a ) p = f3 I - f3 ' 

Classify the states of the chain. Suppose that af3 > 0 and af3 =I=- 1 .  Find the n-step transition 
probabilities and show directly that they converge to the unique stationary distribution as n --+ 00. 
For what values of a and f3 is the chain reversible in equilibrium? 

12. Another diffusion model. N black balls and N white balls are placed in two urns so that each 
contains N balls. After each unit of time one ball is selected at random from each urn, and the two 
balls thus selected are interchanged. Let the number of black balls in the first urn denote the state 
of the system. Write down the transition matrix of this Markov chain and find the unique stationary 
distribution. Is the chain reversible in equilibrium? 

13. Consider a Markov chain on the set S = {O, 1 ,  2, . . .  } with transition probabilities Pi, i+ I = ai ,  
Pi,O = 1 - ai , i :::: 0 ,  where (ai : i :::: 0) is a sequence of constants which satisfy 0 < ai < 1 for all i . 
Let bo = 1 ,  bi = aOal . . . ai - l for i :::: 1 .  Show that the chain is 
(a) persistent if and only if bi --+ 0 as i --+ 00, 

(b) non-null persistent if and only if Li bi < 00, 

and write down the stationary distribution if the latter condition holds. 
Let A and f3 be positive constants and suppose that ai = 1 - Ai -f3 for all large i .  Show that the 

chain is 
(c) transient if f3 > 1 ,  
(d) non-null persistent if f3 < 1 .  
Finally, if f3 = 1 show that the chain is 
(e) non-null persistent if A > 1 ,  
(f) null persistent if A ::; 1 . 

14. Let X be a continuous-time Markov chain with countable state space S and standard semigroup 
{Pd . Show that Pij (t) is a continuous function of t. Let g et)  = - log Pii (t) ;  show that g is a 
continuous function, g (O) = 0, and g (s + t) ::; g (s )  + get) .  We say that g is ' subadditive' ,  and a well 
known theorem gives the result that 

lim 
g et) = J.... 

t.j,o t 
exists and 

g et) J.... = sup -- ::; 00. 
t >O t 

Deduce that gii = limt .j,O t - 1 {Pii (t) - I }  exists, but may be - 00 .  

15. Let X b e  a continuous-time Markov chain with generator G = (gij ) and suppose that the transition 
semigroup Pt satisfies Pt = exp (tG) . Show that X is irreducible if and only if for any pair i, j of 
states there exists a sequence kl ' k2 , . . .  , kn of states such that gi, k j gkj , k2 . . .  gkn , j =I=- O. 
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16. (a) Let X = {X (t) : -00 < t < oo} be a Markov chain with stationary distribution 7C, and 
suppose that X (0) has distribution 7C .  We call X reversible if X and Y have the same joint 
distributions, where y et) = X(-t) .  
(i) I f  X ( t )  has distribution 7C for all t ,  show that Y is a Markov chain with transition probabilities 

P�j (t) = (TCj ITCi )Pj i (t) ,  where the Pj i (t ) are the transition probabilities of the chain X. 
(ii) I f  the transition semigroup {Pt l o f  X i s  standard with generator G ,  show that TCi gij = TCj gj i 

(for all i and j )  is a necessary condition for X to be reversible. 
(iii) If Pt = exp(tG) , show that X (t) has distribution 7r: for all t and that the condition in (ii) is 

sufficient for the chain to be reversible. 
(b) Show that every irreducible chain X with exactly two states is reversible in equilibrium. 
(c) Show that every birth-death process X having a stationary distribution is reversible in equilibrium. 

17. Show that not every discrete-time Markov chain can be imbedded in a continuous-time chain. 
More precisely, let p _ ( a l -a a ) for some 0 < a < 1 - I - a 
be a transition matrix. Show that there exists a uniform semigroup {Pt } of transition probabilities in 
continuous time such that P j = P, if and only if i < a < 1 . In this case show that {P t } is unique and 
calculate it in terms of a .  
18. Consider an immigration-death process X (t ) ,  being a birth-death process with rates An = A, 
P,n = np,. Show that its generating function G (s ,  t) = lE (sx (t ) ) is given by 

where p = Alp, and X (0) = I . Deduce the limiting distribution of X ( t )  as  t -+ 00. 

19. Let N be  a non-homogeneous Poisson process on  lR+ = [0, (0) with intensity function A .  Write 
down the forward and backward equations for N, and solve them. 

Let N (0) = 0, and find the density function of the time T until the first arrival in the process .  If 
A(t) = c/( l  + t) ,  show that lE(T) < 00 if and only if c > l . 
20. Successive offers for my house are independent identically distributed random variables X j , 
X 2 , . . .  , having density function f and distribution function F.  Let Yj = X j ,  let Y2 be the first offer 
exceeding Yj , and generally let Yn+ 1 be the first offer exceeding Yn . Show that Yl , Y2 , . . .  are the times 
of arrivals in a non-homogeneous Poisson process with intensity function A (t) = f(t)/ ( l  - F(t) ) .  
The Yi are called 'record values ' .  

Now let Z 1 be the first offer received which i s  the second largest to date, and let Z2 be the second 
such offer, and so on. Show that the Zi are the arrival times of a non-homogeneous Poisson process 
with intensity function A .  

21 .  Let N be  a Poisson process with constant intensity A, and let YI , Y2 , . . .  be  independent random 
variables with common characteristic function c/J and density function f. The process N* (t) = 
Yl + Y2 + . . . + YN(t) is called a compound Poisson process .  Yn is the change in the value of N* at 
the nth arrival of the Poisson process N. Think of it like this. A 'random alarm clock' rings at the 
arrival times of a Poisson process .  At the nth ring the process N* accumulates an extra quantity Yn . 
Write down a forward equation for N* and hence find the characteristic function of N* (t ) .  Can you 
see directly why it has the form which you have found? 

22. If the intensity function A of a non-homogeneous Poisson process N is itself a random process, 
then N is called a doubly stochastic Poisson process (or Cox process). Consider the case when 
A(t) = A for al l t, and A is a random variable taking either of two values A l  or 1..2 , each being picked 
with equal probability ! . Find the probability generating function of N (t) ,  and deduce its mean and 
variance. 

23. Show that a simple birth process X with parameter A is a doubly stochastic Poisson process with 
intensity function A(t) = AX (t) .  
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24. The Markov chain X = {X (t ) : t � O} is a birth process whose intensities Ak (t) depend also on 
the time t and are given by 

1 + Jlk lP' (X Ct + h) = k + 1 1 X (t ) = k) = --h + o(h ) 
1 + Jlt 

as h + O. Show that the probability generating function G(s ,  t ) = E(sX (t) satisfies 

8G s - 1 { 8G } 
at = 1 + Jlt G + JlS -a; , O < s < 1 . 

Hence find the mean and variance of X (t) when X (O) = I .  

25. (a) Let X be a birth-death process with strictly positive birth rates A D ,  A I ,  . . .  and death rates 
JlI , Jl2 , . . . .  Let l1i be the probability that X (t) ever takes the value 0 starting from X (O) = i .  Show 
that 

j � I ,  

and deduce that l1i = 1 for all i so long as L:f ej = 00 where ej = Jl l  Jl2 . . . Jlj / (A I A2 . . .  Aj ) .  
(b) For the discrete-time chain o n  the non-negative integers with 

p and p . . I = --,.----.,. j , j - j2 + (j + 1 )2 '  

find the probability that the chain ever visits 0, starting from 1 .  

26. Find a good necessary condition and a good sufficient condition for the birth-death process X of 
Problem (6. 1 5 .25a) to be honest. 

27. Let X be a simple symmetric birth-death process with An = Jln = nA , and let T be the time until 
extinction. Show that ( AX ) 1  lP'(T s X 1 X (0) = I )  = 

1 + AX ' 

and deduce that extinction is certain if lP'(X (0) < (0) = 1 .  
Show that lP'(AT / I s X 1 X (0) = I )  --+ e- I /x as I --+ 00. 

28. Immigration-death with disasters. Let X be an immigration-death-disaster process, that is, a 
birth-death process with parameters Ai = A, Jli = i Jl, and with the additional possibility of 'disasters' 
which reduce the population to O. Disasters occur at the times of a Poisson process with intensity 8 ,  
independently of  all previous births and deaths. 
(a) Show that X has a stationary distribution, and find an expression for the generating function of 

this distribution. 
(b) Show that, in equilibrium, the mean of XU) is A/ (8 + Jl) . 
29. With any sufficiently nice (Lebesgue measurable, say) subset B of the real line lR is associated a 
random variable X (B) such that 
(i) X (B) takes values in {O, 1 , 2,  . . .  } ,  

(ii) if  BI , B2 , . . .  , Bn are disjoint then X (BI ) , X (B2) , . . .  , X (Bn )  are independent, and furthermore 
X (BI U B2) = X (B I )  + X (B2) , 

(iii) the distribution of X (B) depends only on B through its Lebesgue measure ( , length ' )  1 B I , and 

Show that X is a Poisson process .  

lP'(X (B) � 1)  --+ 1 lP'(X (B) = 1 )  
a s  I B I --+ O .  
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30. Poisson forest. Let N be  a Poisson process in  lR2 with constant intensity A, and let R( l ) < R(2) < 
. . . be the ordered distances from the origin of the points of the process. 
(a) Show that Rtl ) ' Rt2) ' . . . are the points of a Poisson process on lR+ = [0, 00) with intensity An . 
(b) Show that R(k) has density function 

2n Ar (Anr2)k- 1 e-AJrr2 
f er) = 

(k - I ) ! ' r > o. 

31. Let X be a n -dimensional Poisson process with constant intensity A. Show that the volume of 
the largest (n-dimensional) sphere centred at the origin which contains no point of X is exponentially 
distributed. Deduce the density function of the distance R from the origin to the nearest point of 
X. Show that E(R) = r( l /n )/ {n (Ac) l /n } where c is the volume of the unit ball of lRn and r is the 
gamma function. 

32. A village of N + 1 people suffers an epidemic . Let X (t) be the number of ill people at time t ,  
and suppose that X (0) = 1 and X i s  a birth process with rates Ai = A i  (N + 1 - i ) .  Let T b e  the 
length of time required until every member of the population has succumbed to the illness. Show that 

and deduce that 

1 
N 

1 
E(T) = ;: L -k(-N-+-l---k-) k= l 

E(T) = 2(log N + y) + O(N-2 ) 
A(N + 1 )  

where y i s  Euler's constant. I t  i s  striking that E(T) decreases with N, for large N. 
33. A particle has velocity V et) at  time t ,  where V et) is assumed to  take values in  {n + � : n � O} .  
Transitions during (t , t + h )  are possible as  follows:  { (v + � )h + o(h) 

lP' (V (t + h) = w I V (t ) = v) =  1 - 2vh + o(h ) 

Initially V (0) = � . Let 

(a) Show that 

(v - � )h  + o(h) 

00 
G(s ,  t) = L snlP' (V (t) = n + � ) .  

n=O 

aG  2 aG  at = ( 1  - s) iii - ( 1  - s )G  

and deduce that G (s ,  t )  = { l  + ( l  - s)t }- ' . 

if w = v + l , 
if w = v ,  
if w = v - l . 

(b) Show that the expected length mn (T) of time for which V = n + � during the time interval [0, TJ 
i s  given by 

mn (T) = loT lP' (V (t )  = n + � J dt 

and that, for fixed k, mk (T) - log T ---+ - I:�= , i - I as T ---+ 00.  

(c) What i s  the expected velocity of  the particle a t  time t ? 
34. A random sequence of  non-negative integers {Xn : n � O} begins Xo = 0, Xl 
produced by { Xn + Xn- l Xn+l = 

I Xn - Xn- l l 

with probability � ,  
with probability � .  

1 ,  and is 
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Show that Yn = (Xn- l , Xn ) is a transient Markov chain, and find the probability of ever reaching 
( 1 ,  1 )  from ( 1 ,  2) . 

35. Take a regular hexagon and join opposite comers by straight lines meeting at the point C. A 
particle performs a symmetric random walk on these 7 vertices, starting at A. Find: 
(a) the probability of return to A without hitting C, 
(b) the expected time to return to A, 
(c) the expected nmber of visits to C before returning to A, 
(d) the expected time to return to A, given that there is no prior visit to C. 

36. Diffusion, osmosis. Markov chains are defined by the following procedures at any time n :  
(a) Bernoulli model. Two adjacent containers A and B each contain m particles; m are o f  type I and 

m are of type II. A particle is selected at random in each container. If they are of opposite types 
they are exchanged with probability a if the type I is in A, or with probability {3 if the type I is in 
B. Let X n be the number of type I particles in A at time n .  

(b) Ehrenfest dog-flea model. Two adjacent containers contain m particles i n  all. A particle is 
selected at random. If it is in A it is moved to B with probability a, if it is in B it is moved to A 
with probability {3 .  Let Yn be the number of particles in A at time n .  

I n  each case find the transition matrix and stationary distribution o f  the chain. 

37. Let X be an irreducible continuous-time Markov chain on the state space S with transition prob­
abilities Pjk (t) and unique stationary distribution 7C ,  and write lP'(X (t) = j )  = aj (t) .  If c(x) is a 
concave function, show that d(t) = '2:.j ES nj c(aj (t) /nj ) increases to c ( l )  as t --+ 00.  

38. With the notation of  the preceding problem, let Uk (t) = lP'(X (t ) = k I X (O) = 0) , and suppose 
the chain is reversible in equilibrium (see Problem (6. 1 5 . 1 6» . Show that uo (2t) = '2:.j (nolnj )Uj (t)

2 , 
and deduce that uo (t) decreases to no as t --+ 00. 

39. Perturbing a Poisson process. Let IT be the set of  points in  a Poisson process on �d with 
constant intensity "A. Each point is displaced, where the displacements are independent and identically 
distributed. Show that the resulting point process is a Poisson process with intensity "A .  
40. Perturbations continued. Suppose for convenience in  Problem (6. 1 5 .39) that the displacements 
have a continuous distribution function and finite mean, and that d = 1 .  Suppose also that you are 
at the origin originally, and you move to a in the perturbed process. Let LR be the number of points 
formerly on your left that are now on your right, and RL the number of points formerly on your right 
that are now on your left. Show that E(LR) = E(RL) if and only if a = J-t where J-t is the mean 
displacement of a particle. 

Deduce that if cars enter the start of a long road at the instants of a Poisson process, having 
independent identically distributed velocities, then, if you travel at the average speed, in the long run 
the rate at which you are overtaken by other cars equals the rate at which you overtake other cars . 

41. Ants enter a kitchen at the instants of a Poisson process N of rate "A; they each visit the pantry 
and then the sink, and leave. The r th ant spends time Xr in the pantry and Yr in the sink (and Xr + Yr 
in the kitchen altogether), where the vectors Vr = (Xr , Yr ) and Vs are independent for r #- s .  At 
time t = 0 the kitchen is free of ants . Find the joint distribution of the numbers A (t) of ants in the 
pantry and B(t) of ants in the sink at time t .  Now suppose the ants arrive in pairs at the times of the 
Poisson process, but then separate to behave independently as above. Find the joint distribution of the 
numbers of ants in the two locations . 

42. Let {Xr : r :::: I }  be independent exponential random variables with parameter "A, and set Sn = 
'2:.�= 1 X r · Show that: 
(a) Yk = Sk i Sn , 1 :::: k :::: n - 1 ,  have the same distribution as the order statistics of independent 

variables { Uk : 1 :::: k :::: n - I }  which are uniformly distributed on (0, 1 ) ,  
(b) Zk = Xk lSn ,  1 :::: k :::: n ,  have the same joint distribution as the coordinates of a point 

(U 1 , . . .  , Un ) chosen uniformly at random on the simplex '2:.�= 1 U r = 1 ,  U r :::: 0 for all r .  
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43. Let X be a discrete-time Markov chain with a finite number of states and transition matrix 
P = (Pi} ) where Pi} > 0 for all i, j .  Show that there exists A E (0, I )  such that I Pi} (n) - 7r:} I < An , 
where 7C is the stationary distribution. 

44. Under the conditions of Problem (6. 1 5 .43), let Vi (n) = 2:�;;;J I{Xr=i J  be  the number of  visits of 
the chain to i before time n. Show that 

Show further that, if f is any bounded function on the state space, then 

45. Conditional entropy. Let A and B = (Bo ,  B I , . . .  , Bn ) be a discrete random variable and 
vector, respectively. The conditional entropy of A with respect to B is defined as H (A I B) = 
E (E{- log f (A I B) I B)) where f (a I b) = lP'(A = a I B = b) . Let X be an aperiodic Markov chain 
on a finite state space. Show that 

and that 
H(Xn+ 1 I Xn ) ---+ - L 7r:i L Pi} log Pi} as n ---+ 00, 

} 

if X is aperiodic with a unique stationary distribution 7C .  
46. Coupling. Let X and Y b e  independent persistent birth-death processes with the same parameters 
(and no explosions). It is not assumed that Xo = Yo .  Show that: 
(a) for any A S:::; JR, 1lP'(Xt E A) - lP'(Yt E A) I ---+ 0 as t ---+ 00, 

(b) if lP'(Xo .::; Yo) = I ,  then E[g (Xt ) ]  .::; E[g (Yt ) ]  for any increasing function g. 

47. Resources. The number of birds in a wood at time t is a continuous-time Markov process X. Food 
resources impose the constraint 0 .::; X(t) .::; n .  Competition entails that the transition probabilities 
obey 

Pk ,k+ 1 (h)  = A (n - k)h + o(h) ,  Pk ,k- I (h )  = /-tkh + o (h ) .  

Find E(sX (t ) , together with the mean and variance of X(t) ,  when X(O) = r .  What happens as 
t ---+ oo? 

48. Parrando's paradox. A counter performs an irreducible random walk on the vertices 0, 1 , 2 of 
the triangle in the figure beneath, with transition matrix 

P =  ( � 
P2 

Po qo ) 
o PI 
q2 0 

where Pi + qi = I for all i .  Show that the stationary distribution 7C has 

1 - q2PI  
7r:o = , 

3 - ql PO - q2P I - qOP2 

with corresponding formulae for 7r:1 ,  7r:2 . 
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o 2 
Suppose that you gain one peseta for each clockwise step of the walk, and you lose one peseta 

for each anticlockwise step. Show that, in equilibrium, the mean yield per step is 

Y = � )2Pi _ l )ni = 3 (2pOP I P2 - POP I - P I P2 - P2PO + Po + PI + P2 - 1 ) .  
i 3 - ql PO - q2PI - QOP2 

Consider now three cases of this process: 
A. We have Pi = i - a for each i , where a > O. Show that the mean yield per step satisfies YA < O. 
B. We have that Po = /0 - a, P I  = P2 = � - a, where a > O. Show that YB < 0 for sufficiently 

small a .  
C.  A t  each step the counter i s  equally likely to move according to the transition probabilities of 

case A or case B, the choice being made independently at every step. Show that, in this case, 

Po = ?o - a, P I  = P2 = � - a .  Show that YC > 0 for sufficiently small a . 
The fact that two systematically unfavourable games may be combined to make a favourable game is 
called Parrando's paradox. Such bets are not available in casinos. 

49. Cars arrive at the beginning of a long road in a Poisson stream of rate J.... from time t = 0 onwards. 
A car has a fixed velocity V > 0 which is a random variable. The velocities of cars are independent 
and identically distributed, and independent of the arrival process.  Cars can overtake each other freely. 
Show that the number of cars on the first x miles of the road at time t has the Poisson distribution with 
parameter J....lE[V- 1 rnin {x , Vt} ] .  

50. Events occur a t  the times of  a Poisson process with intensity J.... , and you are offered a bet based 
on the process. Let t > O. You are required to say the word 'now' immediately after the event which 
you think will be the last to occur prior to time t. You win if you succeed, otherwise you lose. If no 
events occur before t you lose. If you have not selected an event before time t you lose. 

Consider the strategy in which you choose the first event to occur after a specified time s ,  where 
0 <  s < t . 
(a) Calculate an expression for the probability that you win using this strategy. 
(b) Which value of s maximizes this probability? 
(c) If At ::::: 1 , show that the probability that you win using this value of s is e- I . 

51. A new Oxbridge professor wishes to buy a house, and can afford to spend up to one million pounds. 
Declining the services of conventional estate agents, she consults her favourite internet property page 
on which houses are announced at the times of a Poisson process with intensity J.... per day. House 
prices may be assumed to be independent random variables which are uniformly distributed over the 
interval (800,000 , 2,000,000) . She decide� to view every affordable property announced during the 
next 30 days.  The time spent viewing any given property is uniformly distributed over the range ( 1 , 2) 
hours . What is the moment generating function of the total time spent viewing houses? 
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Convergence of random variables 

Summary. The many modes of convergence of a sequence of random variables 
are discussed and placed in context, and criteria are developed for proving 
convergence. These include standard inequalities, Skorokhod's theorem, the 
Borel-Cantelli lemmas, and the zero-one law. Laws of large numbers, includ­
ing the strong law, are proved using elementary arguments . Martingales are 
defined, and the martingale convergence theorem proved, with applications. 
The relationship between prediction and conditional expectation is explored, 
and the condition of uniform integrability described. 

7.1 Introduction 

Expressions such as ' in the long run ' and 'on the average' are commonplace in everyday 
usage, and express our faith that the averages of the results of repeated experimentation show 
less and less random fluctuation as they settle down to some limit. 

(1) Example. Buffon's needle (4.5.8). In order to estimate the numerical value of n , Buffon 
devised the fol lowing experiment. Fling a needle a large number n of times onto a ruled 
plane and count the number Sn of times that the needle intersects a line. In accordance with 
the result of Example (4.5 .8 ) ,  the proportion Sn ln of intersections is found to be near to the 
probability 21n . Thus Xn = 2nlSn is a plausible estimate for n ;  this estimate converges as 
n -+ 00, and it seems reasonable to write Xn -+ n as n -+ 00. • 

(2) Example. Decimal expansion. Any number Y satisfying 0 < Y < 1 has a decimal 
expansion 

00 
Y = O ·  Y I Y2 · · · = L Yj l0-j , 

j= l 

where each Yj takes some value in the set {O, 1 , 2 , . . .  , 9 } .  Now think of Yj as the outcome of 
a random variable Yj where {Yj } is a family of independent variables each of which may take 
any value in {O, 1 ,  2, . . .  , 9} with equal probability lo . The quantity 

00 
Y = L Yj lO-j 

j= l 
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is a random variable taking values in [0, 1 ] .  It seems likely that Y is uniformly distributed on 
[0, 1 ] ,  and this turns out to be the case (see Problem (7 . 1 1 .4». More rigorously, this amounts 
to asserting that the sequence {Xn } given by 

n 
Xn = L Yj lO-j 

j= l 

converges in some sense as n -+ 00 to a limit Y ,  and that this limit random variable is 
uniformly distributed on [0, 1 ] .  • 

In both these examples we encountered a sequence {Xn } of random variables together with 
the assertion that 

(3) Xn -+ X as n -+ 00 

for some other random variable X. However, random variables are real-valued functions on 
some sample space, and so (3) is a statement about the convergence of a sequence of functions. 
It is not immediately clear how such convergence is related to our experience of the theory of 
convergence of sequences {xn } of real numbers , and so we digress briefly to discuss sequences 
of functions. 

Suppose for example that it ( - ) , 12 ( - ) ,  . . .  is a sequence of functions mapping [0, 1] into 
R In what manner may they converge to some limit function f? 
(4) Convergence pointwise. If, for all x E [0, 1 ] ,  the sequence Un (x ) } of  real numbers 
satisfies fn (x ) -+ f (x ) as n -+ 00 then we say that fn -+ f pointwise. • 

(5) Norm convergence. Let V be a collection of functions mapping [0, 1 ]  into JR, and assume 
V is endowed with a function II . II : V -+ JR satisfying: 

(a) l I i I I ::: ° for all f E V , 
(b) II f II = ° if and only if f is the zero function (or equivalent to it, in some sense to be 

specified) , 
(c) I l ai l l = l a l . I l i I I for all a E JR, f E V , 
(d) I I f + g i l :::: I l f l l + I l g l l (this is called the triangle inequality). 

The function II . I I is called a norm. If Un } is a sequence of members of V then we say that 
fn -+ f with respect to the norm II . II if 

I l fn - f l l -+ ° as n -+ 00. 

Certain special and important norms are given by  the Lp norm 

( t ) l /P 
I l g l i p = 

10 
I g (x ) I P dx 

for p ::: 1 and any function g satisfying I I g l l p < 00. • 

(6) Convergence in measure. Let E > ° be prescribed, and define the 'di stance' between 
two functions g , h : [0, 1 ]  -+ JR by 
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where E = {u E [0, 1 ]  : Ig (u ) - h (u) 1 > E } .  We say that In -+ I in measure if 

dE (fn , f) -+ 0 as n -+ (Xl for all E > O. 
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• 

The convergence of Un } according to one definition does not necessarily imply its conver­
gence according to another. For example, we shall see later that: 

(a) if In -+ I pointwise then In -+ I in
, 
measure, but the converse is not generally true, 

(b) there exist sequences which converge pointwise but not with respect to I I . I I I ,  and vice 
versa. 

In this chapter we shall see how to adapt these modes of convergence to suit families of 
random variables . Major applications of the ensuing theory include the study of the sequence 

(7) 

of partial sums of an independent identically distributed sequence {X i I ;  the law of large 
numbers of Section 5 . 1 0  will appear as a special case. 

It wil l  be clear, from our discussion and the reader's experience, that probability theory is 
indispensable in descriptions of many processes which occur naturally in the world. Often 
in such cases we are interested in the future values of the process, and thus in the long­
term behaviour within the mathematical model ; this is why we need to prove limit theorems 
for sequences of random variables. Many of these sequences are generated by less tractable 
operations than, say, the partial sums in (7) ,  and general results such as the law of large numbers 
may not be enough. It turns out that many other types of sequence are guaranteed to converge; 
in particular we shall consider later the remarkable theory of 'martingales ' which has important 
applications throughout theoretical and applied probability. This chapter continues in Sections 
7.7 and 7 .8  with a simple account of the convergence theorem for martingales, together with 
some examples of its use; these include the asymptotic behaviour of the branching process 
and provide rigorous derivations of certain earlier remarks (such as (5.4.6». Conditional 
expectation is put on a firm footing in Section 7 .9 .  

All  readers should follow the chapter up to and including Section 7 .4. The subsequent 
material may be omitted at the first reading . 

Exercises for Section 7 . 1 

1. Let r :::: 1 ,  and define I I X l l r  = {E I Xr l } l / r . Show that: 
(a) I I cX l i r  = I c l . I I X l l r  for c E JR, 
(b) I I X + Y I I r  :::: I I X l l r  + I I Y l l r , 
(c) I I X l i r  = 0 if and only if lP'(X = 0) = 1 .  

This amounts to saying that II . I I r  is a norm on the set of equivalence classes of random variables on a 
given probability space with finite rth moment, the equivalence relation being given by X � Y if and 
only if lP'(X = Y) = 1 .  

2. Define (X ,  Y )  = E(XY) for random variables X and Y having finite variance, and define I I X I I  = 
J(X, X) . Show that: 
(a) (aX + bY, Z) = a (X, Z) + b (Y, Z) , 
(b) I I X + Y 1 1 2 + I I X - y f = 2( I I X f + I I Y I I 2) ,  the parallelogram property, 
(c) if (Xi , Xj ) = 0 for all i I=- j then 

I It Xi l 1
2 

= t l l Xi l l 2 . 
, = 1 ,= 1  
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3. Let E > O. Let g, h : [0, 1 ]  ---+ JR, and define dE (g , h) = IE dx where E = {u E [0, 1 ]  
I g (u) - h (u) 1 > d.  Show that dE does not satisfy the triangle inequality. 

4. Levy metric. For two distribution functions F and G, let 

d(F, G) = inf { 8 > 0 :  F (x - 8) - 8 :s  G (x) :s F (x + 8) + 8  for all x E JR} .  

Show that d i s  a metric on the space of distribution functions. 

5. Find random variables X,  Xl , X2 , ' "  such that lE( IXn - X 12) ---+ 0 as n ---+ 00, but lE l Xn I = 00 
for all n .  

7.2 Modes of convergence 

There are four principal ways of interpreting the statement ' Xn ---+ X as n ---+ 00 ' .  Three of 
these are related to (7 . 1 .4), (7 . 1 .5 ) ,  and (7 . 1 .6) ,  and the fourth is already familiar to us. 

(1) Definition. Let X. Xl , X 2, . . • be random variables on some probability space «(2 . :F, JP» .  
We say: 

(a) Xn -+ X ahnost surely, written Xn � X, if {a> E n :  Xn (a» -+ X(W) as n -+ oo} 
is an event whose probability is I, 

(b) Xn -+ X in rth mean, where r 2::. 1 ,  written Xn � X, iflE lX� 1  < 00 for all n and 

lE(IXn - Xn -+ 0 as n -+ 00, 

(c) Xn -+ X in probability, written Xn .!. X, if 

lP(IXn - X I  > E") -+ 0 as n -+ 00 for all E" > 0, 

(d) Xn -+ X in distribution, writtent Xn � X, if 

lP'(Xn � x) -+ lP'(X ::: x) as n -+ 00 

for all points x at which the function Fx(x) = P(X � x) is continuous. 
It is appropriate to make some remarks about the four sections of this potentially bewildering 

definition . 
(a) The natural adaptation of Definition (7 . 1 .4) is to say that Xn -+ X pointwise if the set 

A = {w E n :  Xn (W) -+ X (W) as n -+ oo} satisfies A = n .  Such a condition is of little 
interest to probabilists since it contains no reference to probabilities .  In part (a) of ( 1 )  we do 
not require that A is the whole of n, but rather that its complement A C is a null set. There are 
several notations for this mode of convergence, and we shall use these later. They include 

Xn -+ X almost everywhere, or Xn � X, 
Xn -+ X with probability 1 ,  or  Xn -+ X w.p . 1 .  

t Many authors avoid this notation since convergence in distribution pertains only to the distribution function 
of X and not to the variable X itself. We use it here for the sake of uniformity of notation, but refer the reader 
to note (d) below. 
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(b) It is easy to check by Minkowski 's inequality (4 . 14 .27) that 

I I Y l l r = (lE l yr l ) l / r  = (/ Iy l r dFy) l / r  
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defines a norm on the collection of random variables with finite rth moment, for any value of 
r :::: 1 .  Rewrite Definition (7. 1 .5) with this norm to obtain Definition ( l b) .  Here we shall only 
consider positive integral values of r, though the subsequent theory can be extended without 
difficulty to deal with any real r not smaller than 1 .  Of most use are the values r = 1 and 
r = 2, in which cases we write respectively 

Xn � X, or Xn -+ X in mean, or l . i .m. Xn = X, 

Xn � X, or Xn -+ X in mean square, or Xn � X.  

(c) The functions of  Definition (7. 1 .6) had a common domain [ 0 ,  1 ] ;  the Xn have a common 
domain Q, and the distance function dE is naturally adapted to become 

dE (Y, Z) = lP'( I Y - Z I > E ) =  L dlP' 

where E = {w E Q : I Y (w) - Z(w) 1  > E } .  This notation will be familiar to those readers 
with knowledge of the abstract integral of Section 5 .6 .  

(d) We have seen this already in Section 5 .9 where we discussed the continuity condition. 
Further examples of convergence in distribution are to be found in Chapter 6, where we 
saw, for example, that an irreducible ergodic Markov chain converges in distribution to its 
unique stationary distribution. Convergence in distribution is also termed weak convergence 
or convergence in law. Note that if Xn � X then Xn � X' for any X' which has the same 
distribution as X. 

I t  i s  no surprise to learn that the four modes of convergence are not equivalent to  each 
other. You may guess after some reflection that convergence in distribution is the weakest, 
since it is a condition only on the distribution functions of the Xn ; it contains no reference 
to the sample space Q and no information about, say, the dependence or independence of the 
Xn . The following example is a partial confirmation of this. 

(2) Example. Let X be a Bernoulli variable taking values 0 and 1 with equal probability 
! . Let Xl , X 2 , . . .  be identical random variables given by X n = X for all n. The X n are 

certainly not independent, but Xn � X. Let Y = 1 - X. Clearly Xn � Y also, since X and 
Y have the same distribution. However, Xn cannot converge to Y in any other mode because 
I Xn - Y I  = 1 always. • 

Cauchy convergence. As in the case of sequences of real numbers, it is often convenient to 
work with a definition of convergence which does not make explicit reference to the limit. For 
example, we say that the sequence {Xn : n :::: I }  of random variables on the probability space 
(Q , :F , lP') is almost surely Cauchy convergent if the set of points w of the sample space for 
which the real sequence {Xn (w) : n :::: 1 }  is Cauchy convergent is an event having probability 
1 ,  which is to say that 

lP'( {w E Q : Xm (w) - Xn (w) -+ O as m , n -+ Do}) = 1 .  
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(See Appendix I for a brief discussion of the Cauchy convergence of a sequence of real 
numbers .)  Now, a sequence of reals converges if and only if it is Cauchy convergent. Thus, 
for any w E [2 ,  the real sequence {Xn (w) : n 2: I} converges if and only if it is Cauchy 
convergent, implying that {Xn : n 2: I }  converges almost surely if and only if it is almost 
surely Cauchy convergent. Other modes of Cauchy convergence appear in Exercise (7 .3 . 1 )  
and Problem (7 . 1 1 . 1 1 ) .  

Here i s  the chart o f  implications between the modes o f  convergence. Learn it well. State­
ments such as 

P D 
(Xn � X) => (Xn � X) 

mean that any sequence which converges in probability also converges in distribution to the 
same limit. 

(3) Theorem. The following implications hold: 

(Xn � X) � P D (Xn -+ X) => (Xn -+ X) 
(Xn � X) -J;f 

for any r 2:: 1. Also. if r > s 2:: 1 then 
r is (Xn -+ X) => (X" -+ X). 

No other implicatiotts hold itt getteralt. 
The four basic implications of this theorem are of the general form ' if A holds, then B holds' . 

The converse implications are false in general, but become true if certain extra conditions are 
imposed; such partial converses take the form ' if B holds together with C, then A holds ' .  
These two types of statement are sometimes said to be of the 'Abelian ' and 'Tauberian ' types, 
respectively ; these titles are derived from the celebrated theory of the summability of series . 
Usually, there are many possible choices for appropriate sets C of extra conditions, and it i s  
often difficult to establish attractive 'corrected converses' . 

(4) Theorem. 
(a) If Xn -S c, where c is constant, then XII ..;.. c. 

P r (b) IfXn -+ X and P(lXn I ::: k) = l for aU n and some k, then Xn � X for all r 2:: 1.  
(c) If Pn (E) = P( I X" - X I > E) satisfies Ln PrICE) < 00 far all E > 0, then X" � X. 
You should become well acquainted with Theorems (3) and (4) . The proofs follow as a 

series of lemmas . These lemmas contain some other relevant and useful results . 
Consider briefly the first and principal part of Theorem (3 ) .  We may already anticipate 

some way of showing that convergence in probability implies convergence in distribution, since 
both modes involve probabilities of the form P(Y :'S y) for some random variable Y and real 
y . The other two implications require intermediate steps. Specifically, the relation between 
convergence in rth mean and convergence in probability requires a link between expectations 
and distributions .  We have to move very carefully in this context; even apparently 'natural' 

tBut see ( 14). 
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statements may be false. For example, if Xn � X (and therefore Xn � X also) then it 
does not necessarily follow that EXn -+ EX (see (9) for an instance of this) ;  this matter is 
explored fully in Section 7. 10 .  The proof of the appropriate stage of Theorem (3 ) requires 
Markov's inequality (7) .  

(5) Lemma. If Xn � X then Xn � X. The converse assertionfails in generalt. 

Proof. Suppose Xn � X and write 

Fn (x)  = JP'(Xn ::s x ) ,  F (x )  = JP'(X ::s x ) ,  

for the distribution functions o f  Xn and X respectively. If E > 0, 

Fn (x ) = JP'(Xn ::s x) = JP'(Xn ::s x ,  X ::s x + E ) + JP'(Xn ::s x ,  X >  x + E ) 
::s F(x + E ) + JP'( I Xn - X I > E ) .  

Similarly, 

F(x - E ) = JP'(X ::s x - E ) = JP'(X ::s x - E , Xn ::s x) + JP'(X ::s x - E , Xn > x )  
::s Fn (x )  + JP'( I Xn - X I > E) .  

Thus 

F(x - E ) - JP'( I Xn - X I > E ) ::s Fn (x )  ::s F(x + E ) + JP'( IXn - X I > E ) .  

Let n -+ 00 to obtain 

F(x - E ) ::S lim inf Fn (x ) ::s lim sup Fn (x ) ::s F(x + E ) n---+oo n---+oo 

for all E > O. If F is continuous at x then 

F(x - E ) t F(x)  and F(x + E ) t F(x )  as  E t 0, 

and the result is proved. Example (2) shows that the converse is false. 

(6) Lemma. 
(a) Ifr > s � 1 and Xn � X then Xn � X. 

I P 
(b) If Xn -+ X then Xn -+ X. 

The converse assertions fail in general. 

• 

This includes the fact that convergence in rth mean implies convergence in probability. 
Here is a useful inequality which we shall use in the proof of this lemma. 

(7) Lemma. Markov's inequality. If X is any random variable with finite mean then 

tBut see ( 14) .  

lP( IX I  � a) ::s lElX j  for any a > O. 
a 
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Proof. Let A = { I X I  :::: a } .  Then I X I  :::: a lA where IA is the indicator function of A. Take 
expectations to obtain the result. • 

Proof of Lemma (6). 
(a) By the result of Problem (4 . 14.28) ,  

[E( I Xn - X n ] l /S :'S [E( I Xn - X nf /r 

and the result follows immediately. To see that the converse fails, define an independent 
sequence {Xn }  by 

(8) 
with probability n - � (r+s) , 

with probability 1 - n - � (r+s) . 

It is an easy exercise to check that 

E I X� I = n � (s -r) -+ 0, E I X� I = n � (r-s) -+ 00 .  

(b) By Markov's inequality (7), 

E I X  - X I 
lP' ( IXn - X I > E) :'S n 

for all E > 0 
E 

and the result follows immediately. To see that the converse fails, define an independent 
sequence {Xn }  by 

(9) 
{ n3 with probability n-2 , 

X -n -
0 with probability 1 - n-2 . 

Then lP'( I X I  > E )  = n-2 for all large n , and so Xn � O. However, E IXn l  = n -+ 00. • 

(10) Lemma. Let An (E) = { I Xn - X I  > E }  and Bm (E) = Un:::m An (E) .  Then : 
(a) Xn � X if and only if lP'(Bm (E» -+ 0 as m -+ 00, for all E > 0, 

(b) Xn � X if Ln lP'(An (E» < 00 for all E > 0, 

(c) if Xn � X then Xn � X, but the converse fails in general. 
Proof. 

(a) Let C = {w E Q : Xn (w) -+ X (w) as n -+ oo} and let 

00 
A (E) = {w E Q : w E An (E) for infinitely many values of n } = n U An (E) .  

m n=m 

Now Xn (w) -+ X (w) if and only if w ¢. A (E) for all E > O. Hence lP'(C) = 1 implies 
lP'(A (E» = 0 for all E > O. On the other hand, if lP'(A (E» = 0 for all E > 0, then 

lP'(CC ) = lP'( U A (E») = lP'( U A (m - 1 ») since A (E )  <;: A (E/) if E :::: E/ 

E >O m=l 
00 

:'S L lP'(A (m - 1 » = O.  
m= l 
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It follows that lP'(e) = 1 if and only if lP'(A (E» = 0 for all E > O. 
In addition, {Bm (E ) : m :::: I } is a decreasing sequence of events with limit A (E) (see 

Problem ( 1 .8 . 1 6», and therefore lP'(A (E» = 0 if and only if lP'(Bm (E» -+ 0 as m -+ 00 . 
(b) From the definition of Bm (E) ,  

00 
lP'(Bm (E» :s L lP'(An (E» 

n=m 

and so lP'(Bm (E» -+ 0 as m -+ 00 whenever Ln lP'(An (E» < 00. 

(c) We have that An (E ) � Bn (E) ,  and therefore lP'( I Xn - X I  > E)  = lP'(An (E» -+ 0 
whenever lP'(Bn (E» -+ O. To see that the converse fails, define an independent sequence {Xn }  
by 

(11) { I with probability n - 1 , X -n -
0 with probability 1 - n - 1 . 

Clearly Xn � O. However, if 0 < E < 1 ,  

lP'(Bm (E» = 1 - lim lP'(Xn = 0 for all n such that m :s n :s r) by Lemma ( 1 . 3 .5) r---+oo 

= 1 - ( I - � ) ( I - m � I ) ' " by independence 

. (m - 1 m m + 1 M ) = 1 - J�oo --;;;- m + 1 m + 2 
. . .  M + 1 

m - 1  = 1 - lim -- = 1 
M---+oo M + 1 for all m, 

and so {Xn } does not converge almost surely. 

(12) Lemma. There exist sequences which : 
(a) converge almost surely but not in mean, 
(b) converge in mean but not almost surely. 

Proof. 
(a) Consider Example (9) . Use ( l Ob) to show that Xn � O. 
(b) Consider Example ( 1 1 ) . 

This completes the proof of Theorem (3 ) , and we move to Theorem (4) . 

Proof of Theorem (4). 
(a) We have that 

lP'( I Xn - c l > E) = lP'(Xn < c - E) + lP'(Xn > c + E) -+ 0 if 

(b) If Xn � X and lP'( I Xn I :s k) = 1 then lP'( I X I  :s k) = 1 also, since 

lP'( I X I  :s k + E) = lim lP'( I Xn l :s k + E) = 1 n---+oo 

D 
Xn -+ c . 

• 

• 



3 14 7.2 Convergence of random variables 

for all E > O. Now, let An (E ) = { I Xn - X I > E } ,  with complement An (E) c .  Then 

with probability 1 .  Take expectations to obtain 

Let E {- 0 to obtain that Xn � X. 
(c) This is just ( l Ob). • 

Note that any sequence {Xn }  which satisfies Xn � X necessarily contains a subsequence 
{Xn, : 1 :s i < oo} which converges almost surely. 

(13) Theorem. If Xn � X, there exists a non-random increasing sequence of integers 
h h X a.s .  X . n l , n2 , · · · SUC t at n, ---+ aS I -+ OO. 

Proof. Since Xn � X, we have that 

JP'( I Xn - X I > E) -+ 0 as n -+ 00 ,  for all E > O. 

Pick an increasing sequence n l , n2 , . . .  of positive integers such that 

For any E > 0, 

and the result follows from ( l Ob) . • 

We have seen that convergence in distribution is the weakest mode of convergence since 
it involves distribution functions only and makes no reference to an underlying probability 
space (see Theorem (5 .9 .4) for an equivalent formulation of convergence in distribution which 

involves distribution functions alone). However, assertions of the form ' Xn -e. X' (or equiva­
lently ' Fn -+ F' , where Fn and F are the distribution functions of Xn and X) have important 
and useful representations in terms of almost sure convergence. 

(14) Skorokhod's representation theorem. If {Xn }  and X, with distribution functions {Fn }  
and F, are such that 

Xn -e. X (or, equivalently, Fn -+ F) as n -+ 00 

then there exists a probability space (Q' , :F' , JP" )  and random variables {Yn }  and Y, mapping 
Q' into JR, such that: 

(a) {Yn }  and Y have distribution functions {Fn }  and F, 
(b) Yn � Y as n -+ 00. 
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Therefore, although Xn may fail to converge to X in any mode other than in distribution, 
there exists a sequence {Yn } such that Yn is distributed identically to Xn for every n, which 
converges almost surely to a copy of X. The proof is elementary. 

Proof. Let Q' = (0, 1 ) ,  let F' be the Borel a-field generated by the intervals of Q' (see the 
discussion at the end of Section 4. 1 ) , and let p' be the probability measure induced on F' by 
the requirement that, for any interval l = (a , b) � Q', P' (I) = (b - a) ;  P' is called Lebesgue 
measure. For w E  Q', define 

Yn (w) = inf{x : w :'S Fn (x ) } ,  
Y ew) = inf{x : w :'S F(x ) } .  

Note that Yn and Y are essentially the inverse functions o f  Fn and F since 

(15) 
w :'S  Fn (x ) {} Yn (w) :'S x ,  
w :'S F(x) {} Y ew) :'S x .  

It follows immediately that Yn and Y satisfy ( 1 4a) since, for example, from ( 15 )  

P' (Y :'S y) = lP" ( (0, F(y)]) = F(y) . 

To show ( 14b), proceed as follows. Given E > 0 and w E Q', pick a point x of continuity of 
F such that 

Y (W) - E < X < Y (W) . 

We have by ( 1 5 )  that F(x) < w. However, Fn (x ) � F(x) as n � (Xl and so Fn (x ) < w for 
all large n ,  giving that 

Y ew) - E < X < Yn (w) for all large n ;  

now let n � (Xl and E ,(, 0 to obtain 

(16) lim inf Yn (w) ::: Y (w) for all w. n---+oo 

Finally, if w < w' < 1 ,  pick a point x of continuity of F such that 

y ew') < x < y ew') + E .  

We have by ( 1 5 ) that w < w' :'S F(x ) ,  and so  w < Fn (x ) for all large n ,  giving that 

Yn (w) :'S x < y ew') + E for all large n ;  

now let n � (Xl and E ,(, 0 to obtain 

(17) lim sup Yn (w) :'S Y ew') whenever w < w' . 
n---+oo 

Combine this with ( 1 6) to see that Yn (w) � Y (w) for all points w of continuity of Y .  However, 
Y is monotone non-decreasing and so that set D of discontinuities of Y is countable ; thus 
P' (D) = 0 and the proof is complete. • 
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We complete this section with two elementary applications of the representation theorem 
( 14) .  The results in question are standard, but the usual classical proofs are tedious .  

(18) Theorem. If xn � X and g : IR � IR is continuous then g (Xn ) � g(X). 

Proof. Let {Yn } and Y be given as in ( 1 4) .  By the continuity of g, 

{w : g (Yn (w» � g (Y (w» } ::2 {w : Yn (w) � Y (w) } ,  

and s o  g (Yn )  � g (Y ) as n � 00. Therefore g (Yn )  � g (Y ) ;  however, g(Yn )  and g (Y) 
have the same distributions as g (Xn ) and g (X) . • 

(19) Theorem. The following three statements are equivalent. 
o (a) Xn � X. 

(b) E(g(Xn» � E(g (X» for all bounded continuous functions g. 
(c) E(g(Xn» � E(g (X» for all functions g of the form g (x) = f (x ) I[a ,b] (X ) where f is 

continuous on [a , b] and a and b are points of continuity of the distribution function of 
the random variable X. 

Condition (b) is usually taken as the definition of what is called weak convergence. It is 
not important in (c) that g be continuous on the closed interval [a , b] .  The same proof is valid 
if g in part (c) is of the form g (x ) = f (x) I(a , b) (x ) where f is bounded and continuous on the 
open interval (a , b) .  

Proof. First w e  prove that (a) implies (b). Suppose that Xn � X and g i s  bounded and 
continuous. By the Skorokhod representation theorem ( 14) ,  there exist random variables 
Y, Yl , Y2 , . . .  having the same distributions as X, X l , X2 , . . .  and such that Yn � Y .  
Therefore g(Yn )  � g (Y ) by the continuity of  g , and furthermore the g(Yn )  are uniformly 
bounded random variables . We apply the bounded convergence theorem (5.6. 1 2) to deduce that 
E(g (Yn»  � E(g (Y» ,  and (b) follows since E(g (Yn»  = E(g (Xn»  and E(g (Y» = E(g (X» . 

We write C for the set of points of continuity of Fx . Now Fx is monotone and has therefore 
at most countably many points of discontinuity ; hence CC is countable. 

Suppose now that (b) holds . For (c), it suffices to prove that E(h (Xn» � E(h (X» for 
all functions h of the form h (x) = f (x ) I(-oo,b] (X ) ,  where f is bounded and continuous, 
and b E C; the general result follows by an exactly analogous argument. Suppose then that 
h (x) = f (x ) I(-oo , b] (X ) as prescribed. The idea is to approximate to h by a continuous 
function .  For 8 > 0, define the continuous functions hi and hI! by { h (x ) 

hi (x ) = ( b - X )  
1 + -

8
- h (b) 

I ( X  - b ) 
1 + -8

- h (b) 

h" (x ) � � , +
b � X ) h (b) 

if x ¢. (b , b + 8) ,  

i f  x E (b , b + 8) ,  

i f  x E (b - 8 ,  b) , 

i f  x E [b , b + 8) ,  

otherwise. 
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It may be helpful to draw a picture. Now 

I lE(h (X) - h'(X») 1 :::: I lE(h" (X)) I 

so that 

I lE(h (Xn ) ) - lE(h (X)) I :::: I lE(h" (Xn )) I + I lE(h" (X)) I + I lE(h' (Xn ) ) - lE(h' (X)) I 
-+ 2 IlE(h" (X)) I as n -+ 00 

by assumption (b) . We now observe that 

I lE(h"(X)) I :::: I h (b) IlP'(b - 8 < X < b + 8) -+ 0 as 8 {- 0, 

by the assumption that lP'(X = b) = O. Hence (c) holds. 

3 1 7  

Suppose finally that (c) holds, and that b is such that lP'(X = b) = O .  B y  considering the 
function f (x ) = J for all x ,  we have that, if a E C, 

(20) lP'(Xn :::: b) :::: lP'(a :::: Xn :::: b) -+ lP'(a :::: X :::: b) as n -+ 00 
-+ lP'(X :::: b) as a -+ -00 through C . 

A similar argument, but taking the limit i n  the other direction, yields for b' E C 

(21) lP'(Xn :::: b') :::: lP'(b' :::: Xn :::: c) 
-+ lP'(b' :::: X :::: c) 
-+ lP'(X :::: b') 

if c :::: b' 
as n -+ 00, if C E C 
as C -+ 00 through C. 

I t  follows from (20) and (2 1 ) that, i f  b, b' E C and b < b' , then for any E > 0 there exists 
N such that 

lP'(X :::: b) - E :::: lP'(Xn :::: b) :::: lP'(Xn < b') :::: lP'(X < b') + E 

for all n :::: N. Take the limits as n -+ 00 and E {- 0, and b' {- b through C, in that order, to 
obtain that lP'(X n :::: b) -+ lP'(X :::: b) as n -+ 00 if b E C, the required result. • 

Exercises for Section 7 .2  

1 .  (a) Suppose Xn --'+ X where r 2: 1 .  Show that lE I X� I -+ lE l Xr I .  
I 

(b) Suppose Xn -+ X. Show that lE(Xn ) -+ lE(X).  Is the converse true? 
2 

(c) Suppose Xn -+ X. Show that var(Xn ) -+ var(X) .  

2.  Dominated convergence. Suppose I Xn I s Z for all n, where lE(Z) < 00. Prove that if Xn � X I 
then Xn -+ X. 

3. Give a rigorous proof that lE(X Y) = lE(X)lE(Y) for any pair X, Y of independent non-negative 
random variables on (Q , T, JP') with finite means. [Hint: For k 2: 0, n 2: 1 ,  define Xn = kin if 
kin S X < (k + I ) /n ,  and similarly for Yn . Show that Xn and Yn are independent, and Xn S X, 
and Yn S Y.  Deduce that lEXn -+ lEX and lEYn -+ lEY, and also lE(Xn Yn )  -+ lE(X Y) . ]  
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4. Show that convergence in distribution is equivalent to convergence with respect to the Levy metric 
of Exercise (7 . 1 .4). 

5. (a) Suppose that Xn � X and Yn � c, where c is a constant. Show that Xn Yn � cX, and that 

Xn / Yn � X/c if c # O. 
(b) Suppose that Xn � 0 and Yn � Y, and let g : lR2 --+ lR be such that g (x , y ) is a continuous 

p 
function of y for all x ,  and g (x , y) is continuous at x = 0 for all y .  Show that g(Xn , Yn ) --+ 
g(O, Y) .  

[These results are sometimes referred to  as  'Slutsky's  theorem(s) ' . ]  

6.  Let Xl , X2 , . . .  be random variables on  the probability space (Q , :F, JP') . Show that the set 
A = {w E Q : the sequence Xn (w) converges } is an event (that is, lies in :1'), and that there exists a 
random variable X (that is, an T-measurable function X : Q --+ lR) such that Xn (w) --+ X (w) for 
w E  A.  

7. Let {X n } be a sequence of random variables, and let {c n } be a sequence of reals converging to the 
limit c. For convergence almost surely, in r th mean, in probability, and in distribution, show that the 
convergence of Xn to X entails the convergence of cn Xn to cX . 

8. Let {X n } be a sequence of independent random variables which converges in probability to the 
limit X. Show that X is almost surely constant. 

9. Convergence in total variation. The sequence of discrete random variables Xn , with mass 
functions fn , is said to converge in total variation to X with mass function f if 

L I fn (x) - f(x) 1 --+ 0 as n --+ 00.  
x 

Suppose Xn --+ X in total variation, and u : lR --+ lR is bounded. Show that E(u (Xn» --+ E(u (X» . 

10. Let {X r : r :::: I }  be independent Poisson variables with respective parameters {A.r : r :::: I } .  Show 
that L�l Xr converges or diverges almost surely according as L�l Ar converges or diverges. 

7.3 Some ancillary results 

Next we shall develop some refinements of the methods of the last section; these will prove 
to be of great value later. There are two areas of interest. The first deals with inequalities and 
generalizes Markov 's inequality, Lemma (7 .2 .7) .  The second deals with infinite families of 
events and the Borel-Cantelli lemmas ; it is related to the result of Theorem (7.2 .4c) . 

Markov's inequality is easily generalized. 

(1) Theorem. Let h : IR --+ [0, (0) be a non-negativefunction. Then 

lP(h (X) :::: a) :::; JE(h (X» for all a >  O. a 

Proof. Denote by A the event {h eX) :::: a } , so that h eX) :::: a lA . Take expectations to obtain 
the result. • 

We note some special cases of this .  

(2) Example. Markov's inequality. Set h (x ) = Ix I . • 
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(3) Examplet. Chebyshov's inequality. Set h (x) = x2 to obtain 

lE(X2) 
lP'( I X I  ::::: a) ::: --2- if a >  0. a 

This inequality was also discovered by Bienayme and others . 
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• 

(4) Example. More generally, let g : [0, 00) ---+ [0, 00) be a strictly increasing non-negative 
function ,  and set h (x) = g ( lx l )  to obtain 

lP'( IX I  ::::: a) ::: 
lE(���

I )) if a >  0. • 

Theorem ( 1 )  provides an upper bound for the probability lP'(h (X) ::::: a) . Lower bounds are 
harder to find in general, but pose no difficulty in the case when h is a uniformly bounded 
function. 

(5) Theorem. If h : IR ---+ [0, M] is a non-negative function taking values bounded by some 
number M, then 

lP'(h (X) ::::: a) ::::: lE(h�X� 
a
- a whenever 0 ::: a < M. 

Proof. Let A = {h (X) ::::: a } as before and note that h (X) ::: MIA + a lAe . • 

The reader is left to apply this result to the special cases (2), (3) ,  and (4) . This is an 
appropriate moment to note three other important inequalities. Let X and Y be random 
variables . I � "  
(6) Theorem. HOlder's inequality. If p , q > 1 and p- l + q- l then 

(7) Theorem. Minkowski's inequality. If p ::::: 1 then 

Proof of (6) and (7). You did these for Problem (4. 14.27) . 

(8) Theorem. lE( IX + Y I P ) ::: Cp [lE IXP I  + lE I Y P I ]  where p > ° and 

{ 1 
C -P - 2P- 1 

ij O  < p ::: 1 ,  
ij p > l . 

• 

tOur transliteration of '1e6hIIIIeB (Chebyshov) is at odds with common practice, but dispenses with the 
need for clairvoyance in pronunciation. 
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Proof. It is not difficult to show that Ix + y i P ::: Cp [ lx l P + l y l P ]  for all x ,  y E lR and p > o. 
Now complete the details .  • 

Inequalities (6) and (7) assert that 

I I XY I I 1 ::: I I X l l p l I Y l l q 
I I X + Y I I p ::: I I X l i p + I I Y l l p 

where I I · l i p is the Lp norm I I X l i p = (E IXP I ) I /p . 

if p- I + q - I = 1 , 
if p 2: 1 ,  

Here is an application of these inequalities . It is related to the fact that if Xn -+ x and 
Yn -+ Y then Xn + Yn -+ X + y .  

(9) Theorem. 
(a) If Xn � X and Yn � Y then Xn + Yn � X + Y. 
(b) If Xn � X and Yn � Y then Xn + Yn � X + Y. 

p p p (c) IfXn -+ X and Yn -+ Y then Xn + Yn -+ X + Y. 

(d) It is not in general true that Xn + Yn � X + Y whenever Xn � X and Yn � Y. 

Proof. You do it. You will need either (7) or (8) to prove part (b). • 

Theorem (7.2 .4) contains a criterion for a sequence to converge almost surely. It is a 
special case of two very useful results called the 'Borel-Cantelli lemmas ' . Let A J ,  A2 , . . .  
be an infinite sequence of events from some probability space (Q , F ,  lJD) . We shall often 
be interested in finding out how many of the An occur. Recall (Problem ( 1 . 8 . 1 6)) that the 
event that infinitely many of the An occur, sometimes written {An infinitely often} or {An i .o . } ,  
satisfies 00 

{An i .o . }  = lim sup An = n U Am . 
n---+oo n m=n 

(10) Theorem. Borel-Cantelli lemmas. Let A = nn U�=n Am be the event that infinitely 
many of the An occur. Then : 

(a) lJD(A) = 0 if Ln lJD(An )  < 00, 
(b) lJD(A) = 1 if Ln lJD(An )  = 00 and A I , A2 , . . .  are independent events. 
It is easy to see that statement (b) is false if the assumption of independence is dropped. 

Just consider some event E with 0 < lJD(E) < 1 and define An = E for all n . Then A = E 
and lJD(A) = lJD(E) . 

Proof. 
(a) We have that A � U�=n Am for all n , and so 

00 
lJD(A) ::: L lJD(Am ) -+ 0 as n -+ 00, 

m=n 

whenever Ln lJD(An )  < 00. 
(b) I t  i s  an easy exercise in  set theory to check that 

00 

n m=n 
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However, 

by Lemma ( 1 .3 .5) 

00 
by independence 

m=n 
00 

since I - x ::: e-x if x :::: 0 
m=n 

whenever Ln JP'(An )  = 00. Thus 

giving JP'(A ) = 1 as required. • 

(11) Example. Markov chains. Let {Xn }  be a Markov chain with Xo = i for some state i .  
Let An = {Xn = i } be the event that the chain returns to i after n steps. State i i s  persistent 
if and only if JP'(An i .o .) = 1 .  By the first Borel-Cantelli lemma, 

JP'(An i .o .) = 0 if L JP'(An )  < 00 
n 

and it follows that i is transient if Ln Pii (n) < 00, which is part of an earlier result, Corollary 
(6.2.4). We cannot establish the converse by this method since the An are not independent. • 

If the events A I , A2 , . . .  of Theorem ( 1 0) are independent then JP'(A) equals either 0 or I 
depending on whether or not L JP'(An ) converges. This is an example of a general theorem 
called a 'zero-one law' . There are many such results , of which the following is a simple 
example. 

(12) Theorem. Zer(H)ne law. Let A I , A2 , . " be a collection of events, and let A, be the 
smallest a-field of subsets of Q which contains all of them. If A E A, is an event which is 
independent of the finite collection A I , A2 , . . .  , An for each value ofn, then 

either JP'(A) = 0 or JP'(A) = 1 .  

Proof. Roughly speaking, the assertion that A belongs to A, means that A is definable in terms 
of A I , A2 , . . . .  Examples of such events include BI , B2 , and B3 defined by 

00 
BI = A7 \ A9 ,  B2 = A3 U A6 U A9 U · · · , B3 = u n Am . 

n m=n 
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A standard result of measure theory asserts that if A E A then there exists a sequence of events 
{en } such that 

(13) 

where An is the smallest a -field which contains the finite collection A I ,  A2 , . . .  , An . But A 
is assumed independent of this collection, and so is independent of en for all n . From ( 1 3) ,  

(14) lJD(A n en ) -+ lJD(A) . 

However, b y  independence, 

which may be combined with ( 1 4) to give lJD(A) = lJD(Af, and so lJD(A) is 0 or 1 .  • 

Read on for another zero-one law. Let X I , X 2 , . . .  be a collection of random variables on 
the probability space (Q , F, lJD) . For any subcollection {Xi : i E I } ,  write a (Xi : i E 1) for 
the smallest a -field with respect to which each of the variables Xi (i E 1) is measurable. This 
a -field exists by the argument of Section 1 .6 .  It contains events which are 'defined in terms 
of {Xi : i E I } ' .  Let Rn = a (Xn+l , Xn+2 , . . .  ) .  Then Rn ;2 Rn+l ;2 . . .  ; write 

Roo = n Rn . 
n 

Roo is called the tail a -field of the Xn and contains events such as 

{Xn > 0 i .o . } ,  { lim sup Xn = oo } , n-+oo 
{ L Xn converges } , 
n 

the definitions of which need never refer to any finite subcollection {X 1 , X2 , . . .  , Xn } .  Events 
in Roo are called tail events . 
(15) Theorem. Kolmogorov's zero-one law. If X I ,  X2 , . . . are independent variables then 
all events H E Roo satisfy either lJD(H) = 0 or lJD(H) = 1 .  

Such a a -field Roo i s  called trivial since i t  contains only null events and their complements . 
You may try to prove this theorem using the techniques in the proof of ( 1 2) ;  it is not difficult. 

(16) Example. Let Xl , X2 , . . .  be independent random variables and let 

HI = {W E Q :  L Xn (w) converges} , 
n 

H2 = {W E Q : lim sup Xn (w) = Do } . n-+oo 

Each Hi has either probability 0 or probability 1 .  • 

We can associate many other random variables with the sequence X I ,  X 2 , . . .  ; these include 

YI = i (X3 + X6) , Y2 = lim sup Xn , Y3 = YI + Y2 · n-+oo 
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We call such a variable Y a tail function if it is Roo-measurable, where Roo is the tail a­

field of the Xn . Roughly speaking, Y is a tail function if its definition includes no essential 
reference to any finite subsequence XI , X 2 , . . .  , Xn . The random variables Yl and Y3 are not 
tail functions; can you see why Y2 is a tail function? More rigorously (see the discussion after 
Definition (2. 1 .3» Y is a tail function if and only if 

{w E Q : Y ew) .:::: y} E Roo for all y E lR. 

Thus, if Roo is trivial then the distribution function Fy (y) = JP'(Y .:::: y) takes the values 0 
and 1 only. Such a function is the distribution function of a random variable which is constant 
(see Example (2. 1 .7»,  and we have shown the following useful result. 

(17) Theorem. Let Y be a tail function of the independent sequence XI , X 2 , . .  " There exists 
k satisfying -00 .:::: k .:::: 00 such that JP'(Y = k) = 1 .  

Proof. Let k = inf{y : JP' (Y .:::: y) = I } , with the convention that the infimum of an empty set 
is +00. Then { 0 if y < k , JP'(Y .:::: y) =  

1 if y ::: k . 
• 

(18) Example. Let X I ,  X2 , . . .  be independent variables with partial sums Sn = I:7=1  Xi . 
Then 

1 ZI = lim inf - Sn ,  n-+oo n 
. 1 Z2 = hm sup - Sn 
n-+oo n 

are almost surely constant (but possibly infinite). To see this, note that if m .:::: n then 

1 1 m 1 n 

- Sn = - L Xi + - L Xi = Sn ( 1 ) + Sn (2) , say . n n n i=1  i=m+1  

However, Sn ( 1 ) --+ 0 pointwise as n --+ 00, and so ZI and Z2 depend in no way upon the 
values of XI , X2 , . . .  , Xm . It follows that the event 

{ � Sn converges } = {ZI = Z2} 

has either probability 1 or probability O. That is, n - 1 Sn converges either almost everywhere 
or almost nowhere; this was, of course, deducible from ( 1 5) since {ZI = Z2} E Roo. • 

Exercises for Section 7 . 3  

1 .  (a) Suppose that Xn � X.  Show that {Xn } i s  Cauchy convergent in probability i n  that, for all 
E > 0, JP'( l Xn - Xm I > E) ---+ 0 as n , m ---+ 00. In what sense is the converse true? 

(b) Let {Xn }  and { Yn }  be sequences of random variables such that the pairs (Xi , Xj ) and (Yi ,  Yj ) 

have the same distributions for all i ,  j .  If Xn � X, show that Yn converges in probability to 
some limit Y having the same distribution as X.  

2. Show that the probability that infinitely many of the events {An : n 2': I }  occur satisfies 
lP'(An i.o.) 2': lim sUPn-+ oo lP'(An ) · 
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3. Let { Sn : n 2: O} be a simple random walk which moves to the right with probability p at each 
step, and suppose that So = O. Write Xn = Sn - Sn- I . 
(a) Show that { Sn = 0 i .o. } is not a tail event of the sequence {Xn } .  
(b) Show that lP'(Sn = 0 i .o.) = 0 i f  p # i .  
(c) Let Tn = Sn /.,;n, and show that 

{ lim inf Tn ':::: -x }  n { lim sup Tn 2: x }  n----+oo n----+oo 

is a tail event of the sequence {Xn } ,  for all x > 0, and deduce directly that lP'(Sn = 0 i .o.) = I if 
_ I p - 2 ·  

4. Hewitt-Savage zero-one law. Let Xl . X2 , . . .  be independent identically distributed random 
variables . The event A, defined in terms of the Xn , is called exchangeable if A is invariant un­
der finite permutations of the coordinates, which is to say that its indicator function fA satisfies 
fA (XI , X2 , . . .  , Xn , . . .  ) = fA (Xil , Xi2 , . . .  , Xin , Xn+I , . . .  ) for all n 2: 1 and all permutations 
(i i ,  i2 , . . .  , in ) of ( 1 ,  2, . . .  , n ) .  Show that all exchangeable events A are such that either lP'(A) = 0 
or lP'(A) = 1 .  

5. Returning to the simple random walk S of Exercise (3) , show that { Sn = 0 i .o . }  i s  an exchangeable 
event with respect to the steps of the walk, and deduce from the Hewitt-Savage zero-one law that it 
has probability either 0 or 1 .  

6. Weierstrass's approximation theorem. Let f : [0, 1 ]  --+ lR be a continuous function, and let 
Sn be a random variable having the binomial distribution with parameters n and x. Using the formula 
E(Z) = E(ZfA ) + E(ZfAc ) with Z = f (x) - f (n- 1 Sn ) and A = { I n- 1 Sn - x l > 8 } ,  show that 

lim sup ! f (X) - t f(k/n) (
n
) xk ( l _ x)n-k ! = O. n---?oo o< < 1  k _X _ k=O 

You have proved Weierstrass 's  approximation theorem, which states that every continuous function 
on [0, 1 ]  may be approximated by a polynomial uniformly over the interval. 

7. Complete convergence. A sequence X I ,  X2 , . . .  of random variables is said to be completely 
convergent to X if 

L lP'( I Xn - X I > E) < 00 for all E > O. 
n 

Show that, for sequences of independent variables, complete convergence is equivalent to a.s. conver­
gence. Find a sequence of (dependent) random variables which converges a.s .  but not completely. 

8. Let X I , X 2 ,  . . .  be independent identically distributed random variables with common mean JL 
and finite variance. Show that 

as n --+ 00.  

9. Let {Xn : n 2: I }  be independent and exponentially distributed with parameter 1 .  Show that 

( . Xn ) lP' hm sup -- = 1 = 1 .  n---?oo log n 

10. Let {Xn : n 2: I }  be independent N(O, 1 )  random variables.  Show that: 

(a) lP' (lim sup � = ../2) = 1 ,  
n---?oo v log n 
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{ 0 if 2:n lP'(XI > an )  < 00, 
(b) lP'(Xn > an i .o . ) = 

I if 2:n lP'(X 1 > an )  = 00. 
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11. Construct an example to show that the convergence in distribution of Xn to X does not imply the 
convergence of the unique medians of the sequence X n . 

12. (i) Let {Xr : r :::: I }  be independent, non-negative and identically distributed with infinite mean. 
Show that lim sUPr---> 00 Xr /r = 00 almost surely. 
(ii) Let {Xr } be a stationary Markov chain on the positive integers with transition probabilities 

{ 
j 

j + 2  
Pjk = 

_
2 _ 

j + 2 

if k = j + l , 

if k = 1 .  

(a) Find the stationary distribution of the chain, and show that it has infinite mean. 
(b) Show that lim sUPr---> 00 Xr /r S 1 almost surely. 

13. Let {Xr : 1 S r S n } be independent and identically distributed with mean fl- and finite variance 
2 - - I n a . Let X = n 2:r=1 Xr . Show that 

t (Xr - fl-) / t (Xr - X)2 
r= 1 r= l 

converges in distribution to the N(O, 1 )  distribution as n ---+ 00. 

7.4 Laws of large numbers 

Let {Xn } be a sequence of random variables with partial sums Sn = I:7=1 Xi . We are 
interested in the asymptotic behaviour of Sn as n -+ 00;  this long-term behaviour depends 
crucially upon the sequence {Xi } .  The general problem may be described as follows. Under 
what conditions does the following convergence occur? 

(1) 
Sn - - an -+ S  as n -+ oo  bn 

where a = {an } and b = {bn } are sequences of real numbers , S is a random variable, and the 
convergence takes place in some mode to be specified. 

(2) Example. Let Xl , X 2 , . . .  be independent identically distributed variables with mean fl­
and variance a2 . By Theorems (5 . 1 0.2) and (5 . 1 0.4), we have that 

Sn D 
- -+ fl- and 
n 

� - fl-"fo � N(O, 1 ) .  
a "fo a 

There may not be a unique collection a , b , S such that ( 1 )  occurs . • 

The convergence problem ( 1 )  can often be simplified by setting an = 0 for all n ,  whenever 
the Xi have finite means. Just rewrite the problem in terms of X; = Xi - lEXi and S� = 
Sn - lESn . 
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The general theory of relations such as ( I )  is well established and extensive. We shall restrict 
our attention here to a small but significant part of the theory when the Xi are independent and 
identically distributed random variables. Suppose for the moment that this is true. We saw in 
Example (2) that (at least) two types of convergence may be established for such sequences, 
so long as they have finite second moments . The law of large numbers admits stronger forms 
than that given in (2). For example, notice that n- I Sn converges in distribution to a constant 
limit, and use Theorem (7 .2 .4) to see that n- I Sn converges in probability also. Perhaps we 
can strengthen this further to include convergence in rth mean, for some r, or almost sure 
convergence. Indeed, this turns out to be possible when suitable conditions are imposed on 
the common distribution of the Xi . We shall not use the method of characteristic functions of 
Chapter 5, preferring to approach the problem more directly in the spirit of Section 7 .2 .  

We shall say that the sequence {Xn } obeys the 'weak law of large numbers ' if there exists a 
constant J-i such that n - I Sn � J-i. If the stronger result n -I Sn � J-i holds, then we call it the 
' strong law of large numbers ' .  We seek sufficient, and if possible necessary, conditions on the 
common distribution of the X j for the weak and strong laws to hold. As the title suggests , the 
weak law is implied by the strong law, since convergence in probability is implied by almost 
sure convergence. A sufficient condition for the strong law is given by the following theorem. 

(3) Theorem. Let X I ,  X2 • . . .  he independent identically distributed random variables with 
lE(Xi) < 00 and E(Xl) = JL. Then 

1 n - L Xi � JL almost surely and in mean square. 
n ;=1 

This strong law holds whenever the Xj have finite second moment. The proof of mean 
square convergence is very easy; almost sure convergence is harder to demonstrate (but see 
Problem (7 . 1 1 .6) for an easy proof of almost sure convergence subject to the stronger condition 
that lE(xj ) < (0) .  

Proof. To show mean square convergence, calculate 

1 n 
= 2' L var(X; ) 

n 1 
1 

= - var(XI ) -+ 0 
n 

by independence and Theorem (3 .3 . 1 1 )  

as n -+ 00 ,  

since var(X I ) < 00 by virtue of the assumption that lE(Xr ) < 00.  
Next we show almost sure convergence. We saw in  Theorem (7 .2 . 1 3) that there necessarily 

exists a subsequence n l , n2 , . . .  along which n- I Sn converges to J-i almost surely; we can 
find such a subsequence explicitly. Write nj = i 2 and use Chebyshov 's inequality, Example 
(7 . 3 .3) ,  to find that 

(� . _ . 2 ) < var(Sj2 ) _ var(XI ) 
lP' ' 2 1 S, 2 I J-i l > E - '4 2 - ' 2 2 . I I E I E 
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Sum over i and use Theorem (7 .2Ac) to find that 

(4) 
1 a.s .  
�Sj2 � JL as i -+ 00.  I 
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We need to fill in the gaps in this limit process . Suppose for the moment that the Xi are 
non-negative. Then {Sn } is monotonic non-decreasing, and so 

Divide by n to find that 

I 1 1 
------;:- S·2 < -S < -S( '+ 1 ) 2  i f  i 2 <_ n <_ (i + 1 )2 ., 
(i + 1 )2 I - n 

n - i 2 I 

now let n -+ 00 and use (4) ,  remembering thaU2/ (i + 1 ) 2 -+ 1 as i -+ 00, to deduce that 

(5) 
1 
S a.s .  - n � JL as n -+ oo  

n 

as required, whenever the Xi are non-negative. Finally we lift the non-negativity condition. 
For general Xi , define random variables X;; , X;; by 

X;; (w) = max{Xn (w) , O} , X;; (w) = - min{Xn (w) , OJ ; 

then X;; and X;; are non-negative and 

Furthermore, X;; ':::: I Xn l and X;; .:::: I Xn l , so that lE« Xi )2) < oo and lE« X1)2) < 00. Now 
apply (5) to the sequences {X;; } and {X;; }  to find, by Theorem (7 .3 .9a), that 

1 l ( n n ) 
-;; Sn = -;; L Xi - L Xi 

1 1 

� lE(Xi ) - lE(X1) = lE(X d as n -+ 00.  • 

Is the result of Theorem (3) as sharp as possible? It is not difficult to see that the condition 
lE(Xf ) < 00 is both necessary and sufficient for mean square convergence to hold. For almost 
sure convergence the weaker condition that 

(6) 

will turn out to be necessary and sufficient, but the proof of this is slightly more difficult and 
is deferred until the next section. There exist sequences which satisfy the weak law but not 
the strong law. Indeed, the characteristic function technique (see Section 5 . 1 0) can be used to 
prove the following necessary and sufficient condition for the weak law. We offer no proof, 
but see Laha and Rohatgi ( 1 979, p. 320) , Feller ( 1 97 1 ,  p. 565) ,  and Problem (7 . 1 1 . 1 5) .  
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(7) Theorem. The independent identically distributed sequence {Xn }, with common distri­
bution function F, satisfies 

1 n 
- L Xi � I'-n i= 1 

for some constant 1'-, if and only if one of the following conditions (8 )  or (9) holds: 

(8) nlP'( I Xl l > n) -+ 0 and ( x dF -+ I'- as n -+ 00, 
J[-n , n] 

(9) the characteristic function <p (t) of the Xj is differentiable at t = 0 and <p' (0) = i 1'-. 

Of course, the integral in (8) can be rewritten as 

( x dF = E(XI J I XI I :'S n)lP'( I Xl l :'S n) = E(XI II IX1 I sn } ) . J[-n ,n] 
Thus, a sequence satisfies the weak law but not the strong law whenever (8) holds without 

(6) ; as an example of this ,  suppose the X j are symmetric (in that X 1 and -X 1 have the same 
distribution) but their common distribution function F satisfies 

1 
1 - F(x) '" -- as x -+ 00.  

x log x 

Some distributions fail even to satisfy (8) .  

(10) Example. Let the Xj have the Cauchy distribution with density function 

1 f(x) = 
n ( l  + x2) 

. 

Then the first part of (8) is violated. Indeed, the characteristic function of Un = n- 1 Sn is 

and so Un itself has the Cauchy distribution for all values of n . In particular, ( 1 )  holds with 
bn = n , an = 0, where S is Cauchy, and the convergence is in distribution. • 

Exercises for Section 7 .4 

1 .  Let X 2 , X 3 ,  . . .  be  independent random variables such that 

I JP'(Xn = n) = JP'(Xn = -n) = -- , 
2n log n 

1 JP'(Xn = 0) = 1 - -- . 
n log n 

Show that this sequence obeys the weak law but not the strong law, in the sense that n- 1 'Ll Xi 
converges to 0 in probability but not almost surely. 

2. Construct a sequence {X r : r :::: I }  of independent random variables with zero mean such that 
n-1 'L�=l Xr -+ -00 almost surely, as n -+ 00. 

3. Let N be a spatial Poisson process with constant intensity A in ]Rd , where d :::: 2. Let S be the 
ball of radius r centred at zero. Show that N(S) / I S I  -+ A almost surely as r -+ 00, where l S I  is the 
volume of the ball . 
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7.5 The strong law 

This section i s  devoted to the proof of the strong law of large numbers . 

(1) Theorem. Strong law of large numbers. Let Xl,  X2 , . . .  be independent identically 
distributed random variables. Then 

1 n - LXi -* JL almost surely, as n -* 00, 
n j==l 

for some constant JL, if and only ifEI XI I < 00. In this case JL = EX 1 .  

The traditional proof of this theorem is long and difficult, and proceeds by a generalization 
of Chebyshov 's inequality. We avoid that here, and give a relatively elementary proof which 
is an adaptation of the method used to prove Theorem (7 .4 .3) .  We make use of the technique 
of truncation, used earlier in the proof of the large deviation theorem (5 . 1 1 .4) . 

Proof. Suppose first that the Xi are non-negative random variables with E I X I I  = E( X I ) < 
00, and write J,L = E(X ] ) . We 'truncate' the Xn to obtain a new sequence { Yn } given by 

(2) 

Note that 

n n 
by the result of Problem (4. 14 .3) .  Of course, lP'(Xn :::: n) = lP'(X I :::: n) since the Xi are 
identically distributed. By the first Bore1--Cantelli lemma (7 .3 . 1 0a), 

and so 

(3) 

lP'( X n =1= Yn for infinitely many values of n) = 0, 

1 n 
a.s .  - L (Xi - Yj ) � 0 as n -+ 00; 

n i= 1 

thus it will suffice to show that 

(4) 
1 n " y a.s .  

- � i � J,L n i=] 
as n -+ 00. 

We shall need the following elementary observation. I f  a > 1 and th = L ak J ,  the integer part 
of ak , then there exists A > 0 such that 

(5) 
00 1 A " 

- < - for m :::: 1 .  � R2 - R2 
k=m Pk Pm 
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This holds because, for large m,  the convergent series on the left side is 'nearly' geometric 
with first term f3;;/. Note also that 

(6) 
f3k+ l -- -+ a as k -+ 00.  
f3k 

Write S� = L:7=1 Yi . For a > 1 ,  E > 0, use Chebyshov's inequality to find that 

(7) � ( 1 , , ) 1 � 1 , 
L..., lP' - I Spn - lE(Sp) 1  > E :::: 

E2 L..., 2 var(Sp) 
n=l f3n n= l f3n 

I 00 1 Pn 
= 2" L 2 L var(Yi )  b y  independence 

E n= l f3n i=l 
A 00 1 < - '" -lE(Y.2) - E2 L..., j 2 ! 
i= l 

by changing the order of summation and using (5) . 
Let Bij = {j - 1 :::: Xi < j } , and note that lP'(Bij ) = lP'(Bl j ) .  Now 

(8) 

Combine (7) and (8) and use Theorem (7 .2 .4c) to deduce that 

(9) 

Also, 

1 [ , ' ] a.s .  

f3n 
Spn - lE(Sp) ----+ 0 as n -+ 00.  

lE(Yn ) = lE(Xn I{Xn <n} ) = lE(XI I{xl <n} ) -+ lE(X l ) = JL 

as n -+ 00, by monotone convergence (5 .6 . 1 2) .  Thus 

(remember the hint in the proof of Corollary (6.4.22)), yielding from (9) that 

(10) 
] S' a.s .  

- " ----+ JL as n -+ 00;  
f3n pn 
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this i s  a partial demonstration o f  (4) . I n  order to fill in the gaps, use the fact that the Yi are 
non-negative, implying that the sequence {S� }  is monotonic non-decreasing, to deduce that 

1 1 1 
(11) --SfJ' < -S' < -SfJ' if f3n :::: m :::: f3n+ l .  f3n+ I n - m m - f3n n+1 
Let m -+ 00 in ( 1 1 )  and remember (6) to find that 

(12) 
1 1 

a-I /J. :::: lim inf -S� :::: lim sup -S� :::: a/J. almost surely. m---'>oo m m---'>oo m 
This holds for all a > 1 ;  let a -i- 1 to obtain (4), and deduce by (3) that 

(13) 
1 n 

'""' a.s .  - L..- Xi ----+ /J. as n -+ 00 n i=1 
whenever the Xi are non-negative. Now proceed exactly as in the proof of Theorem (7 .4 .3) 
in order to lift the non-negativity condition. Note that we have proved the main part of the 
theorem without using the full strength of the independence assumption; we have used only 
the fact that the Xi are pairwise independent. 

In order to prove the converse, suppose that n- I I:?=I  Xi � /J..  Then n-I Xn � 0 by 
the theory of  convergent real series, and the second Borel-Cantelli lemma (7 . 3 .  l Ob) gives 

L lP'( I Xn l 2: n) < 00, 
n 

since the divergence of this sum would imply that lP'(n- I I Xn I 2: 1 i .o .) = 1 (only here do we 
use the full assumption of independence) . By Problem (4. 1 4 .3) ,  

00 00 

n= 1 n=1 
and hence lE I X I I < 00, which completes the proof of the theorem. • 

Exercises for Section 7 . 5  

1 .  Entropy. The interval [0, I ]  i s  partitioned into n disjoint sub-intervals with lengths PI , P2 , . . .  , 
Pn ,  and the entropy of this partition i s  defined to be 

n 
h = - L Pi log Pi · 

i= 1  
Let X I , X 2 , . . .  b e  independent random variables having the unifonn distribution o n  [0, I ] , and let 
Zm (i ) be the number of the X I , X2 , . . .  , Xm which lie in the i th interval of the partition above. Show 
that n 

R - IT Zm (i) m - Pi 
i= 1 

satisfies m- I log Rm -+ -h almost surely as  m -+ 00. 

2. Recurrent events. Catastrophes occur at the times TI , T2 , . . . where Ti = X I + X 2 + . . .  + Xi and 
the Xi are independent identically distributed positive random variables. Let N(t) = max {n : Tn :::: t } 
be the number of catastrophes which have occurred by time t .  Prove that if E(X I ) < 00 then 
N(t) -+ 00 and N (t) / t  -+ I /E(XI ) as t -+ 00, almost surely. 

3. Random walk. Let X I , X2 , . . .  be independent identically distributed random variables taking 
values in the integers Z and having a finite mean. Show that the Markov chain S = { Sn } given by 
Sn = �'{ Xi is transient if E(X I )  =f. O. 
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7.6 The law of the iterated logarithm 

Let Sn = X I + X2 + . . .  + Xn be the partial sum of independent identically distributed 
variables, as usual, and suppose further that lEe Xi ) = 0 and var( Xi ) = 1 for al l i .  To date, we 
have two results about the growth rate of {Sn } . 

1 . Law of large numbers: -Sn -+ 0 a.s . and III mean square. n 

Central limit theorem: �Sn � N(O, 1 ) .  

Thus the sequence Un = Sn / .[ii enjoys a random fluctuation which i s  asymptotically regularly 
distributed. Apart from this long-term trend towards the normal di stribution, the sequence 
{Un } may suffer some large but rare fluctuations .  The law of the iterated logarithm is an 
extraordinary result which tells us exactly how large these fluctuations are. First note that, in 
the language of Section 7 . 3 ,  

. Un U = hm sup -;::==.==:== n--->oo J2 log log n 
is a tail function of the sequence of the Xi . The zero-one law, Theorem (7 .3 . 1 7 ) , tells us that 
there exists a number k, possibly infinite, such that lP'(U = k) = 1 .  The next theorem asserts 
that k = 1 .  

(1) Theorem: Law of the iterated logarithm. If X 1 .  X 2 .  . • .  are independent identically 
distributed random variables with mean 0 and variance 1 then 

l!l> (1' Sn ) 
lr un sup = 1 = 1 .  

n--->oo J2n log log n 

The proof is long and difficult and is omitted (but see the discussion in Billingsley ( 1 995) 
or Laha and Rohatgi ( 1 979» . The theorem amounts to the assertion that 

An = { Sn ::: cJ2n log log n }  

occurs for infinitely many values of n if c < I and for only finitely many values of n if c > 1 ,  
with probability 1 .  It i s  an immediate corollary of ( 1 )  that 

lP' (lim inf 
Sn 

= - 1) = l ' n--->oo J2n log log n ' 

just apply ( 1 )  to the sequence -X I , -X2 , . . . .  

Exercise for Section 7 . 6  

1 .  A function cp (x ) i s  said to belong to the 'upper class' if, i n  the notation o f  this section, lP'(Sn > 
cp (n ).jn i .o . )  = O. A consequence of the law of the iterated logarithm is that y"a log log x is in the 
upper class for all a > 2. Use the first Borel-Cantelli lemma to prove the much weaker fact that 
cp (x ) = y" a log x is in the upper class for all a > 2, in the special case when the Xi are independent 
N(O, 1) variables. 



7 .7 Martingales 333 

7.7 Martingales 

Many probabilists specialize in limit theorems, and much of applied probability is devoted to 
finding such results . The accumulated literature is vast and the techniques multifarious .  One 
of the most useful skills for establishing such results is that of martingale divination, because 
the convergence of martingales is guaranteed. 

(1) Example. It is appropriate to discuss an example of the use of the word 'martingale ' which 
pertains to gambling, a favourite source of probabilistic illustrations. We are all familiar with 
the following gambling strategy. A gambler has a large fortune. He wagers £ 1  on an evens 
bet. If he loses then he wagers £2 on the next play. If he loses on the nth play then he wagers 
£2n on the next. Each sum is calculated so that his inevitable ultimate win will cover his lost 
stakes and profit him by £ 1 .  This strategy is called a 'martingale ' .  Nowadays casinos do 
not allow its use, and croupiers have instructions to refuse the bets of those who are seen to 
practise it. Thackeray 's advice was to avoid its use at all costs, and his reasoning may have 
had something to do with the following calculation. Suppose the gambler wins for the first 
time at the Nth play. N is a random variable with mass function 

and so JJ!'(N < 00) = 1 ;  the gambler is almost surely guaranteed a win in the long run. 
However, by this time he will have lost an amount £ L with mean value 

00 
JE(L) = L(i)n ( 1 + 2 + . . .  + 2n-2) = 00. 

n= l 

He must be prepared to lose a lot of money ! And so, of course, must the proprietor of the 
casino. 

The perils of playing the martingale are illustrated by the following two excerpts from the 
memoirs of G. Casanova recalling his stay in Venice in 1 754 (Casanova 1 922, Chapter 7) .  

Playing the martingale, continually doubling my stake, I won every day during the rest 
of the carnival. I was fortunate enough never to lose the sixth card, and if I had lost 
it, I should have been without money to play, for I had 2000 sequins on that card. I 
congratulated myself on having increased the fortune of my dear mistress. 

However, some days later: 
I still played the martingale, but with such bad luck that I was soon left without a sequin. 
As I shared my property with my mistress, I was obliged to tell her of my losses, and 
at her request sold all her diamonds, losing what I got for them; she had now only 500 
sequins. There was no more talk of her escaping from the convent, for we had nothing 
to live on. 

Shortly after these events, Casanova was imprisoned by the authorities, until he escaped to 
organize a lottery for the benefit of both himself and the French treasury in Paris. Before it 
became merely a spangle, the sequin was an Italian gold coin . • 

In the spirit of this diversion, suppose a gambler wagers repeatedly with an initial capital So , 
and let Sn be his capital after n plays. We shall think of So , Sl , . . .  as a sequence of dependent 
random variables. Before his (n + l )th wager the gambler knows the numerical values of 
So , Sl , . . .  , Sn , but can only guess at the future Sn+ l , . . . .  If the game is fair then, conditional 
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upon the past information, he will expect no change in his present capital on average. That is 
to sayt ,  

(2) 

Most casinos need to pay at least their overheads, and will find a way of changing this equation 
to 

The gambler is fortunate indeed if this inequality is reversed. Sequences satisfying (2) are 
called 'martingales ' ,  and they have very special and well-studied properties of convergence. 
They may be discovered within many probabilistic models, and their general theory may be 
used to establish limit theorems. We shall now abandon the gambling example, and refer 
disappointed readers to How to gamble if you must by L. Dubins and L. Savage, where they 
may find an account of the gamblers' ruin theorem. 

(3) Definition. A sequence {Sn : n ;::: I} is a martingale with respect to the sequence 
{Xu :  n ;::: I }  if, for all n ;::: 1 :  

(a) lE IS» I < 00, 
(b) lE(Sn+l I Xl >  X2, . . .  , Xu) = Su' 

Equation (2) shows that the sequence of gambler's fortunes is a martingale with respect to 
itself. The extra generality, introduced by the sequence {Xn } in (3) , is useful for martingales 
which arise in the following way. A specified sequence {Xn } of random variables, such as 
a Markov chain, may itself not be a martingale. However, it is often possible to find some 
function <p such that {Sn = <p (Xn ) : n ::: I }  is a martingale. In this case, the martingale 
property (2) becomes the assertion that, given the values of X I , X2 , . . .  , Xn , the mean value 
of Sn+1  = <p (Xn+ l ) is just Sn = <p (Xn ) ;  that is, 

(4) 

Of course, this condition is without meaning unless Sn is some function, saY <Pn , of X I , . . .  , Xn 
(that is, Sn = <Pn (X I ,  . . .  , Xn» since the conditional expectation in (4) is itself a function of 
X I , . . .  , Xn . We shall often omit reference to the underlying sequence {Xn } ,  asserting merely 
that {Sn } is a martingale. 

(5) Example. Branching processes, two martingales. Let Zn be the size of the nth gen­
eration of a branching process, with Zo = 1 . Recall that the probability TJ that the process 
ultimately becomes extinct is the smallest non-negative root of the equation s = G (s) ,  where 
G is the probability generating function of Z I . There are (at least) two martingales associated 
with the process . First, conditional on Zn = Zn , Zn+1  is the sum of Zn independent family 
sizes, and so 

tSuch conditional expectations appear often in this section. Make sure you understand their meanings . This 
one is the mean value of Sn+ l ,  calculated as though So , . . .  , Sn were already known. Clearly this mean value 
depends on So ,  . . .  , Sn ; so it is afuuction of So , . . .  , Sn . Assertion (2) is that it has the value Sn . Any detailed 
account of conditional expectations would probe into the guts of measure theory. We shall avoid that here, but 
describe some important properties at the end of this section and in Section 7.9.  
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where j,L = G'( 1 )  is the mean family size. Thus, by the Markov property, 

Now define Wn = Zn/E(Zn ) and remember that E(Zn ) = j,Ln to obtain 

and so {Wn } is a martingale (with respect to {ZnD . It is not the only martingale which 
arises from the branching process . Let Vn = 'f/Zn where 'f/ is the probability of ultimate 
extinction. Surprisingly perhaps, { Vn } is a martingale also, as the following indicates. Write 
Zn+l = X 1 +  X2 + . . .  + XZn in terms of the family sizes of the members of the nth generation 
to obtain 

Zn 
= n E('f/x, I Zl , . . .  , Zn) by independence 
i= l 
Zn Zn 

= n E('f/x, )  = n G('f/) = 'f/Zn = Vn , 
i=l i= l 

since 'f/ = G('f/) . These facts are very significant in the study of the long-term behaviour of 
the branching process. • 

(6) Example. Let Xl , X2 , . . .  be independent variables with zero means. We claim that the 
sequence of partial sums Sn = Xl + X2 + . . .  + Xn is a martingale (with respect to {XnD . 
For, 

E(Sn+1 I X j , . . .  , Xn ) = E(Sn + Xn+l I Xl , . . .  , Xn ) 
= E(Sn I Xl , . . .  , Xn ) + E(Xn+1 I X l , . · . , Xn ) 
= Sn + 0, by independence. • 

(7) Example. Markov chains. Let Xo , X l , . . .  be a discrete-time Markov chain taking 
values in some countable state space S with transition matrix P. Suppose that 1/f : S --+ R is 
a bounded function which satisfies 

(8) L Pij 1/f(j) = 1/f(i ) for all i E S. 
j ES 

We claim that Sn = 1/f(Xn ) constitutes a martingale (with respect to {XnD . For, 

E(Sn+ l I X j , . . .  , Xn ) = E(1/f (Xn+I ) I X j , . . .  , Xn ) 
= E(1/f (Xn+l ) I Xn ) by the Markov property 

= L PXn , j 1/f (j ) 
j ES 

= 1/f (Xn ) = Sn by (8) .  • 
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(9) Example. Let X I , X2 , . . .  be independent variables with zero means, finite variances, 
and partial sums Sn = L:7=1 Xi . Define 

Then 

E(Tn+1 I XI , . . .  , Xn ) = E(S; + 2SnXn+l + X;+l I XI , . . .  , Xn } 
= Tn + 2E(Xn+I )E(Sn I Xl , . . . , Xn ) + E(X;+ I ) 

by independence 

Thus { Tn } is not a martingale, since it only satisfies (4) with :::: in place of =; it is called a 
' submartingale' , and has properties similar to those of a martingale . • 

These examples show that martingales are all around us. They are extremely useful because, 
subject to a condition on their moments, they always converge; this is 'Doob's convergence 
theorem' and is the main result of the next section. Martingales are explored in considerable 
detail in Chapter 1 2 . 

Finally, here are some properties of conditional expectation . You need not read them now, 
but may refer back to them when necessary. Recall that the conditional expectation of X given 
Y is defined by 

E(X I Y) = 1jI(Y) where ljI (y) = E(X I Y = y) 
is the mean of the conditional distribution of X given that Y = y . Most of the conditional 
expectations in this chapter take the form E(X I V) , the mean value of X conditional on the 
values of the variables in the random vector Y = (Yl , Y2 , . . .  , Yn ) .  We stress that E(X I Y) 
is a function of Y alone. Expressions such as 'E(X I Y) = Z' should sometimes be qualified 
by 'almost surely ' ; we generally omit this qualification. 

(10) Lemma. 
(a) E(X I + X2 I Y) = E(XI I Y) + E(X2 I V). 
(b) E(Xg (Y) I Y) = g (Y)E(X I Y) for (measurable)functions g :  Rn -+ JR. 
(c) E(X I h (Y)) = E(X I Y) ifh : Rn -+ JRn is one-one. 

Sketch proof. 
(a) This depends on the linearity of expectation only. 
(b) E(Xg (Y) I Y = y) = g (y)E(X I Y = y) .  
(c) Roughly speaking, knowledge of Y i s  interchangeable with knowledge of h (Y) , in that 

Y(w) = y if and only if h (Y(w) ) = h (y) ,  for any W E  Q . • 

(11) Lemma. Tower property. E[E(X I Yl , Y2) I Y I ] = E(X I YI ) .  

Proof. Just write down these expectations as integrals involving conditional distributions to 
see that the result holds. It is a more general version of Problem (4. 14.29) . • 
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Sometimes we consider the mean value E(X I A) of a random variable X conditional upon 
the occurrence of some event A having strictly positive probability. This is just the mean of 
the corresponding distribution function FX IA (x ) = lJD(X :s x I A) .  We can think of E(X I A) 
as a constant random variable with domain A � Q ;  it is undefined at points W E AC • The 
following result is an application of Lemma ( 1 .4 .4) . 
(12) Lemma. If {Ri : 1 :s i :s n}  is a partition of A then 

n 
E(X I A )lP(A ) = L E(X I Bi )lP(Ri ) . 

i= l 

You may like the following proof: 

E(XIA ) = E (X L IB. ) = L E(XIB. ) .  
I I 

Sometimes we consider mixtures of these two types of conditional expectation. These are 
of the form E(X I Y, A) where X, Yl , . . . , Yn are random variables and A is an event. Such 
quantities are defined in the obvious way and have the usual properties. For example, ( 1 1 ) 
becomes 

(13) E(X I A) = E[E(X I Y, A) I AJ . 
We shall make some use of the following fact soon. If, in ( 1 3 ) ,  A is an event which is defined 
in terms of the Yi (such as A = {Yl :s I }  or A = { I Y2 Y3 - Y4 1 > 2}) then it is not difficult to 
see that 

(14) E[E(X I Y) I A] = E[E(X I Y, A) I A] ; 
just note that evaluating the random variable E(X I Y, A) at a point W E Q yields 

E(X I Y, A) (w) { � E(X I Y) (w) if w E  A 
IS undefined if w ¢. A . 

The sequences {Sn } of  this section satisfy 

(15) 

(16) Lemma. If {Sn } satisfies ( 1 5) then: 
(a) E(Sm+n I X l , . . .  , Xm) = Sm for all m , n :::: 1, 
(b) E(Sn ) = E(Sl ) for all n. 

Proof. 
(a) Use ( 1 1 ) with X = Sm+n , YI = (XI , . . .  , Xm ) ,  and Y2 = (Xm+l , . . . , Xm+n-d to 

obtain 

E(Sm+n I Xl , . . .  , Xm )  = E[E(Sm+n I Xl , . . . , Xm+n-d I Xl , . . . , Xm ] 
= E(Sm+n- l I Xl , . . .  , Xm) 

and iterate to obtain the result. 
(b) E(Sn ) = E(E(Sn I Xl )) = E(S] ) by (a) . • 
For a more satisfactory account of conditional expectation, see Section 7 .9 . 
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Exercises for Section 7 . 7  

1. Let X I , X2 , . . .  b e  random variables such that the partial sums Sn = X I + X2 + . . . + Xn 
determine a martingale. Show that E(Xi Xj ) = 0 if i =1= j .  
2. Let Zn be the size of the nth generation of a branching process with immigration, in which the 
family sizes have mean JL (=1= 1 )  and the mean number of immigrants in each generation is m.  Suppose 
that E(Zo) < 00, and show that 

is a martingale with respect to a suitable sequence of random variables. 

3. Let Xo , X I , X2 , . . .  be a sequence of random variables with finite means and satisfying E(Xn+1 I 
Xo , XI ,  . . .  , Xn ) = aXn + bXn_ 1 for n 2: 1 ,  where 0 < a ,  b < 1 and a + b = 1 .  Find a value of a 
for which Sn = aXn + Xn- I , n 2: 1 ,  defines a martingale with respect to the sequence X. 
4. Let Xn be the net profit to the gambler of betting a unit stake on the nth play in a casino; the 
Xn may be dependent, but the game is fair in the sense that E(Xn+ 1  I X I , X2 , . . . , Xn ) = 0 for all 
n . The gambler stakes Y on the first play, and thereafter stakes fn (X I , X2 , . . . , Xn ) on the (n + l ) th 
play, where II ,  h ,  . . .  are given functions . Show that her profit after n plays is 

n 
Sn = L Xi li- I (X I , X2 , · · · , Xi- I ) ,  

;= 1 
where fo = Y. Show further that the sequence S = {Sn } satisfies the martingale condition E(Sn+ 1 I 
X I , X2 , . . . , Xn ) = Sn , n 2: 1 ,  if Y is assumed to be known throughout. 

7.8 Martingale convergence theorem 

This section is devoted to the proof and subsequent applications of the following theorem. It 
receives a section to itself by virtue of its wealth of applications. 

(1) Theorem. If {Sn }  is a martingale with IE(S;,) < M < oofor some M and all n, then there 
exists a random variable S such that Sn converges to S almost surely and in mean square. 

This result has a more general version which, amongst other things, 
(i) deals with submartingales, 
(ii) imposes weaker moment conditions, 

(iii) explores convergence in mean also, 
but the proof of this is more difficult. On the other hand, the proof of ( 1 ) is within our 
grasp, and is only slightly more difficult than the proof of the strong law for independent 
sequences, Theorem (7 .5 . 1 ) ; it mimics the traditional proof of the strong law and begins with 
a generalization of Chebyshov ' s inequality. We return to the theory of martingales in much 
greater generality in Chapter 12 . 
(2) Theorem. Doob-Kolmogorov inequality. If {Sn } is a martingale with respect to {Xn } 
then 

lP'( m� I S; ! 2: E) ::::: �E(S�) whenever E > o. I � l�n E 



7 . 8  Martingale convergence theorem 339 

Proof of (2). Let Ao = Q, Ak = { l Si I < E for all i :-::: k} ,  and let Bk = Ak- l n { I Sk l :::: E } be 
the event that l Si I :::: E for the first time when i = k. Then 

Therefore 

(3) 

However, 

n n 
lE(S;) = L lE(S;IB. ) + lE(S;IAn ) :::: L lE(S; IB, ) . 

i= 1  i= 1 

lE(S; IB, ) = lE( Sn - Si + Sd2 IB, ) 
= lE( Sn - Si ) 2 IB, ) + 2lE( Sn - SdS; lB, ) + lE(S; IB. ) 
= a + fJ + y , say. 

Note that a :::: 0 and y :::: E2lP'(Bi ) ,  because l Si I :::: E if Bi occurs . To deal with fJ, note that 

lE( (Sn - Si ) S; lB, )  = lE[ S; lB, lE(Sn - Si I X 1 , · · ·  , Xd] by Lemma (7 .7 .  lOb) 
= 0 by Lemma (7.7 . 1 6a) , 

since Bi concerns XI , . . .  , Xi only, by the discussion after (7 .7 .4) . Thus (3) becomes 

and the result is shown. • 

Proof of (1). First note that Sm and (Sm+n - Sm) are uncorrelated whenever m ,  n :::: 1 ,  since 

by Lemma (7 .7 . 1 6) .  Thus 

(4) 

It follows that {lE(S;) } is a non-decreasing sequence, which is bounded above, by the assump­
tion in ( 1 ) ;  hence we may suppose that the constant M is chosen such that 

We shall show that the sequence {Sn (w) : n :::: I }  is almost-surely Cauchy convergent 
(see the notes on Cauchy convergence after Example (7 .2 .2)) . Let C = {w E Q : {Sn (w) } 
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is Cauchy convergent} . For W E C, the sequence Sn (w) converges as n --+ 00 to some limit 
S(w) , and we shall show that lP'(C) = 1 . Note that 

C = {YE > 0, 3m such that I Sm+i - Sm+j l < E for all i ,  j ::::: I } . 
By the triangle inequality 

so that 

C = {YE > 0, 3m such that I Sm+i - Sm l < E for all i ::::: I } 
= n U { I Sm+i - Sm l < E for all i ::::: 1 } . 

E>O  m 

The complement of C may be expressed as 

E >O m E>O  m 

where Am (E) = { I Sm+i - Sm l ::::: E for some i ::::: I } .  Now Am (E) S; Am (E/) if E ::::: E/ , so that 

In order to prove that lP'(CC) = 0 as required, it suffices to show that lP'(Am (E» --+ 0 as 
m --+ 00 for all E > O. To this end we shall use the Doob-Kolmogorov inequality. 

For a given choice of m, define the sequence Y = { Yn : n ::::: I }  by Yn = Sm+n - Sm . It 
may be checked that Y is a martingale with respect to itself: 

lE(Yn+l I Yl , . . . , Yn ) = lE[lE(Yn+l I Xl , . . .  , Xm+n ) I Yl ,  . . . , Yn ]  
= lE(Yn I Yl , . . . , Yn ) = Yn 

by Lemma (7 .7 . 1 1 ) and the martingale property. We apply the Doob-Kolmogorov inequality 
(2) to this martingale to find that 

Letting n --+ 00 and using (4) we obtain 

and hence lP'(Am (E» --+ 0 as m --+ 00 as required for almost-sure convergence. We have 
proved that there exists a random variable S such that Sn � S. 
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It remains only to prove convergence of Sn to S in mean square . For this we need Fatou 's 
lemma (5 .6 . 1 3) .  It is the case that 

and the proof is finished. 

= M - JE(S'; ) --+ 0 as n --+ 00,  

Here are some applications o f  the martingale convergence theorem. 

(5) Example. Branching processes. Recall Example (7 .7 .5) .  By Lemma (5 .4 .2) , Wn 
Zn /JE(Zn ) has second moment 

• 

where 0'2 = var(Z d .  Thus, if J,L =I 1 ,  there exists a random variable W such that Wn � W, 
and so Wn � W also; their characteristic functions satisfy ¢wn ( t )  --+ ¢w(t ) by Theorem 
(5 .9 .5) . This makes the discussion at the end of Section 5 .4 fully rigorous, and we can rewrite 
equation (5.4.6) as 

• 

(6) Example. Markov chains. Suppose that the chain Xo , Xl , . . .  of Example (7 .7 .7) is 
irreducible and persistent, and let 1jI be a bounded function mapping S into lR which satisfies 
equation (7 .7 .8) .  Then the sequence {Sn } ,  given by Sn = 1jI(Xn ) ,  is a martingale and satisfies 
the condition JE(S� ) ::s M for some M, by the boundedness of 1jI. For any state i ,  the event 
{Xn = i }  occurs for infinitely many values of n with probability 1 .  However, { Sn = 1jI( i ) }  ;2 
{Xn = i }  and so 

Sn � 1jI(i )  for all i ,  

which is clearly impossible unless 1jI (i )  is the same for all i .  We have shown that any bounded 
solution of equation (7 .7 .8)  is constant. • 

(7) Example. Genetic model. Recall Example (6. 1 . 1 1 ) ,  which dealt with gene frequencies 
in the evolution of a population. We encountered there a Markov chain Xo , Xl , . . .  taking 
values in {O, 1 , . . .  , N} with transition probabilities given by 

(8) 

Then 

(N) ( . ) } ( . )N-) 
Pi} = lP'(Xn+ l = j I Xn = i )  = 

j 
� 1 - � 

JE(Xn+l I Xo , . . .  , Xn ) = JE(Xn+l I Xn) 
= L jpxn , }  = Xn 

} 

by the Markov property 
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by (8) .  Thus XO , X l , . . .  is a martingale. Also, let Yn be defined by Yn = Xn (N - Xn ) , and 
suppose that N > 1 .  Then 

and 

by (8) .  Thus 

(9) 

E(Yn+ I I Xo , . . .  , Xn ) = E(Yn+ I I Xn ) by the Markov property 

E(Yn+ I I Xn = i ) = L j (N - j ) Pij = i (N - i ) ( l - N- 1 ) 
j 

and we see that { Yn } is not itself a martingale. However, set Sn = Yn /( l - N- 1 )n to obtain 
from (9) that 

E(Sn+ 1  I Xo , . . .  , Xn ) = Sn ; 

we deduce that { Sn }  is a martingale. 
The martingale { Xn } has uniformly bounded second moments , and so there exists an X 

such that Xn � X .  Unlike the previous example, this chain is not irreducible. In fact, 0 and 
N are absorbing states, and X takes these values only. Can you find the probability lJD(X = 0) 
that the chain is ultimately absorbed at O? The results of the next section will help you with 
this . 

Finally, what happens when we apply the convergence theorem to { Sn } ?  • 

Exercises for Section 7 . 8  

1 .  Ko)mogorov's inequality. Let Xl , X2 , . . .  be independent random variables with zero means 
and finite variances, and let Sn = X l + X2 + . . .  + Xn . Use the Dooh-Kolmogorov inequality to 
show that 

for E > O. 

2. Let X l , X2 , . . .  be independent random variables such that 2:n n-2 var(Xn ) < 00. Use Kol­
mogorov's inequality to prove that 

as n ---+ 00, 

for some finite random variable Y, and deduce that 

as n ---+ 00.  

(You may find Kronecker's lemma to b e  useful: i f  (an ) and (bn )  are real sequences with bn t 00 and 
2:i ai /bi < 00, then b;; ! 2:7=1 ai ---+ 0 as n ---+ 00. ) 
3. Let S be a martingale with respect to X, such that lE(S�) < K < 00 for some K E JR. Suppose 
that var(Sn ) ---+ 0 as n ---+ 00, and prove that S = limn--+ oo Sn exists and is constant almost surely. 
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7.9 Prediction and conditional expectation 
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Probability theory is not merely an intellectual pursuit, but provides also a framework for 
estimation and prediction. Practical men and women often need to make decisions based on 
quantities which are not easily measurable, either because they lie in the future or because of 
some intrinsic inaccessibility ; in doing so they usually make use of some current or feasible 
observation. Economic examples are commonplace (business trends , inflation rates, and so 
on) ; other examples include weather prediction, the climate in prehistoric times, the state of 
the core of a nuclear reactor, the cause of a disease in an individual or a population, or the 
paths of celestial bodies. This last problem has the distinction of being amongst the first to be 
tackled by mathematicians using a modern approach to probability. 

At its least complicated, a question of prediction or estimation involves an unknown or 
unobserved random variable Y ,  about which we are provided with the value of some (observ­
able) random variable X. The problem is to deduce information about the value of Y from a 
knowledge of the value of X. Thus we seek a function h eX) which is (in some sense) close 
to Y; we write Y = h eX) and call Y an 'estimator' of Y. As we saw in Section 7 . 1 ,  there are 
many different ways in which two random variables may be said to be close to one another­
pointwise, in rth mean, in probability, and so on. A particular way of especial convenience is 
to work with the norm given by 

(1) 

so that the distance between two random variables U and V is 

(2) 

The norm II . 1 1 2 is often called the L2 norm, and the corresponding notion of convergence is 
of course convergence in mean square: 

(3) I I Un - U I I 2 --+ 0 if and only if Un � U. 
This norm is a special case of the ' Lp norm' given by I I X l i p = {JE I XP l l l /p where p � 1 . 

(4) 

We recall that II . 1 1 2 satisfies the triangle inequality: 

I I U + V I I 2 .::: I I U I I 2 + 1 1 V 1 1 2 . 

With this notation, we make the following definition. 

(5) Definition. Let X and Y be random variables on (Q ,  :F, JP') such that JE(y2) < 00. The 
minimum mean-squared-error predictor (or best predictor) of Y given X is the function 
Y = h eX) of X for which I I Y - YI 1 2 is a minimum. 

We shall commonly use the term 'best predictor' in this context; the word 'best' is only 
shorthand, and should not be interpreted literally. 

Let H be the set of all functions of X having finite second moment: 

(6) H = {h (X) : h maps lR to R JE(h (X)2) < oo} .  

The best (or minimum mean-squared-error) predictor of Y is (if it exists) a random variable 
Y belonging to H such that JE« Y - y)2) .::: JE« Y - Z)2) for all Z E H. Does there exist 
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such a Y? The answer is yes, and furthermore there is (essentially) a unique such Y in H. In 
proving this we shall make use of two properties of H, that it is a linear space, and that it is 
closed (with respect to the norm I I . 1 1 2 ) ; that is to say, for Z 1 , Z2 , . . .  E H and a I , a2 , . . .  E R 

(7) a 1 Z1 + a2Z2 + . . .  + anZn E H, and 

(8) if I I Zm - Zn 1 1 2 -+ 0 as m , n -+ 00, there exists Z E H such that Zn � Z. 
(See Exercise (7 .9 .6a) .) More generally, we call a set H of random variables a closed linear 
space (with respect to II . 1 1 2 ) if II X 1 1 2 < 00 for all X E H, and H satisfies (7) and (8) .  

(9) Theorem. Let H be a closed linear space (with respect to 1 1 · 1 1 2) of random variables. Let 
Y be a random variable on (Q , :F ,  JP') withfinite variance. There exists a random variable Y 
in H such that 

(10) I I Y - YI I 2 ::s I I Y - Z I I 2 for all Z E H, 

and which is unique in the sense that JP'(Y = Y) = lforanyl' E Hwith l l Y -l'l I 2 = I I Y -YI I 2 . 

Proof. Let d = inf{ I I Y - Z I I 2 : Z E H} , and find a sequence Zl , Z2 , . . .  in H such that 
limn--+oo I I Y - Zn l l 2 = d. Now, for any A ,  B E  H , the 'parallelogram rule ' holdst :  

to show this , just expand the right side. Note that ! (A + B) E H since H i s  a linear space. 
Setting A = Zn , B = Zm , we obtain using the definition of d that 

I I Zm - Zn l l � ::S 2 ( I I Y - Zm l l � - 2d + I I Y - Zn l l �) -+ 0 as m, n  -+ 00. 

Therefore I I Zm - Zn l l 2 -+ 0, so that there exists Y E H such that Zn � Y; it is here that 
we use the fact (8) that H is closed. It follows by the triangle inequality (4) that 

so that Y satisfies ( 1 0) . 
Finally, suppose that l' E H satisfies I I Y - l' I I 2 = d. Apply ( 1 1 ) with A = l',  B = Y, to 

obtain 
I ll' - YI I � = 4[d2 - Ii Y - ! (l' + Y) Ii � ] ::s 4(d2 - d2) = O. 

Hence E«l' - y)2) = 0 and so JP'(Y = l') = 1 .  • 

(12) Example. Let Y have mean /1 and variance a2 . With no information about Y , it is 
appropriate to ask for the real number h which minimizes I I Y - h 1 l 2 . Now I I Y - h l l � = 
E«Y - h )2) = a2 + (/1 - h)2 , so that /1 is the best predictor of Y . The set H of possible 
estimators is the real line lR. • 
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(13) Example. Let X l , X2 , . . .  be uncorrelated random variables with zero means and unit 
variances. It is desired to find the best predictor of Y amongst the class of linear combinations 
of the Xi . Clearly 

E ((Y - �aiXir) = E(y2) - 2 � aiE(Xi Y) + � al 
I I I 

= E(y2) + �]ai - E(Xi y)] 2 - L E(Xi y)2 . i i 
This is a minimum when ai = E(Xi Y) for all i ,  so that f = Li XiE(Xi Y ) .  (Exercise : Prove 
that E(YZ) < 00.) This is seen best in the following light. Thinking of the Xi as orthogonal 
(that is, uncorrelated) unit vectors in the space H of linear combinations of the Xi , we have 
found that f is the weighted average of the Xi , weighted in proportion to the magnitudes of 
their 'projections ' onto Y . The geometry of this example is relevant to Theorem ( 14). • 

(14) Projection theorem. Let H be a closed linear space (with respect to II . 1 1 2 ) of random 
variables, and let Y satisfy E(y2) < 00. Let M E H. The following two statements are 
equivalent: 

(15) 

(16) 

E( Y - M)Z) = 0 for all Z E H, 
I I Y - M I I 2 ::s I I Y - Z I I 2 for all Z E H. 

Here is the geometrical intuition. Let L2 (Q , F, JP') be the set of random variables on 
(Q , F, JP') having finite second moment. Now H is a linear subspace of L2 (Q , F ,  JP') ; think 
of H as a hyperplane in a vector space of very large dimension . If Y � H then the shortest 
route from Y to H is along the perpendicular from Y onto H.  Writing f for the foot of 
this perpendicular, we have that Y - f is perpendicular to any vector in the hyperplane H.  
Translatin1 this geometrical remark back into the language o f  random variables, we  conclude 
that (Y - Y, Z) = o for all Z E H,  where (U, V) is the scalar product in L2 (Q , F, JP') defined 
by (U, V) = E( U V) .  These remarks do not of course constitute a proof of the theorem. 

Proof. Suppose first that M E  H satisfies ( 1 5) .  Then, for M' E H,  

E( Y - M')2) = E( Y - M + M - M?) 

= E( Y - M)2) + E( M - M?) 

by ( 1 5) ,  since M - M' E H; therefore I I Y - M I I 2 ::s I I Y - M' 1 I 2 for all M' E H.  
Conversely, suppose that M satisfies ( 1 6) ,  but that there exists Z E H such that 

E ( (Y - M)Z) = d > O.  

We may assume without loss of generality that E(Z2) = 1 ;  otherwise replace Z by Z / JE(Z2) ,  
noting that E(Z2) i= 0 since JP'(Z = 0 ) i= 1 .  Writing M'  = M + dZ, we  have that 

E( Y - M?) = E( Y  - M + M - M')2) 

= E( (Y - M)2) - 2dE( (Y - M)Z) + d2E(Z2) 

= E( Y - M)2) - d2 , 

in contradiction of the minimality of E« Y - M)2 ) .  • 
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It is only a tiny step from the projection theorem ( 14) to the observation, well known to 
statisticians, that the best predictor of Y given X is just the conditional expectation E(Y I X) . 
This fact, easily proved directly (exercise), follows immediately from the projection theorem. 

(17) Theorem. Let X and Y be random variables, and suppose that E(y2) < 00. The best 
predictor of Y given X is the conditional expectation E(Y I X) .  

Proof. Let H be the closed linear space of functions of X having finite second moment. 
Define 1/t (x) = E(Y I X = x ) . Certainly 1/t (X) belongs to H,  since 

where we have used the Cauchy-Schwarz inequality. On the other hand, for Z = h (X) E H, 

E ( [Y  - 1/t (X) ]Z) = E(Yh (X» - E (E(Y I X)h (X» ) 
= E(Yh (X» - E (E(Yh (X) I X» ) 
= E(Yh (X» - E (Yh (X» ) = 0, 

using the elementary fact that E(Yh (X) I X) = h (X)E(Y I X) .  Applying the projection 
theorem, we find that M = 1/t(X) (= E(Y I X» minimizes I I Y - M I I 2 for M E  H,  which is 
the claim of the theorem. • 

Here is an important step . We may take the conclusion of ( 1 7) as a definition of the 
conditional expectation E(Y I X) : if E(y2) < 00, the conditional expectation E(Y I X) of Y 
given X is defined to be the best predictor of Y given X .  

There are two major advantages of  defining conditional expectation in  this way. First, i t  is 
a definition which is valid for all pairs X, Y such that E(y2) < 00, regardless of their types 
(discrete, continuous, and so on) . Secondly, it provides a route to a much more general notion 
of conditional expectation which turns out to be particularly relevant to the martingale theory 
of Chapter 12 .  

(18) Example. Let X = {Xi : i E l } be a family of  random variables, and let H be the 
space of all functions of the Xi with finite second moments . If E(y2) < 00, the conditional 
expectation E(Y I Xi , i E I) of Y given the Xi is defined to be the function M = 1/t(X) E H 
which minimizes the mean squared error II Y - M I I 2 over all M in H.  Note that 1/t (X) satisfies 

(19) E ( [Y  - 1/t (X) ]Z) = 0 for all Z E H,  

and 1/t (X) i s  unique in the sense that J.P'(1/t(X) = N)  = 1 if I I Y - 1/t (X) 1 I 2 = I I Y - N I I 2 for any 
N E H.  We note here that, strictly speaking, conditional expectations are not actually unique; 
this causes no difficulty, and we shall therefore continue to speak in terms of the conditional 
expectation. • 

We move on to an important generalization of the idea of conditional expectation, involving 
'conditioning on a a-field ' . Let Y be a random variable on (Q , F ,  J.P') having finite second 
moment, and let g. be a sub-a-field of F.  Let H be the space of random variables which 
are g.-measurable and have finite second moment. That is to say, H contains those random 
variables Z such that E(Z2) < 00 and {Z ::s z } E g. for all Z E R. It is not difficult to see that 
H is a closed linear space with respect to II . 1 1 2 . We have from (9) that there exists an element 
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M of H such that II Y - M 1 1 2 .::::: II Y - Z 1 1 2 for all Z E H, and furthermore M is unique (in the 
usual way) with this property. We call M the 'conditional expectation of Y given the a-field 
g, ' ,  written lE(Y I g,) . 

This is a more general definition of conditional expectation than that obtained by condi­
tioning on a family of random variables (as in the previous example). To see this, take g, to 
be the smallest a-field with respect to which every member of the family X = {Xi : i E I } 
is measurable. It is clear that lE(Y I g,) = lE(Y I Xi , i E / ) , in the sense that they are equal 
with probability 1 .  

We arrive at the following definition by use of the projection theorem ( 1 4) .  

(20) Definition. Let (Q , F,  JP') be a probability space, and let Y be a random variable sat­
isfying lE(y2) < 00. If g, is a sub-a-field of F, the conditional expectation lE(Y I g,) is a 
g,-measurable random variable satisfying 

(21) lE ( [Y - lE(Y I g,) ]Z) = 0 for all Z E H, 

where H i s the collection of all g,-measurable random variables with finite second moment. 

There are certain members of H with particularly simple form, being the indicator functions 
of events in g,. It may be shown without great difficulty that condition (2 1 )  may be replaced 
by 

(22) lE ( [Y - lE(Y I g,) ] IG )  = 0 for all G E g, . 

Setting G = Q, we deduce the important fact that 

(23) lE (lE(Y I g,» ) = lE(Y) . 

(24) Example. Doob's martingale. (Though some ascribe this to Levy. ) Let Y have finite 
second moment, and let X I ,  X 2 , . . .  be a sequence of random variables. Define 

Yn = lE(Y I XI , X2 , · · ·  , Xn ) .  

Then { Yn } i s  a martingale with respect to {X n } . To show this it i s  necessary to prove that 
lE l Yn l  < oo and lE(Yn+ 1 I XI , X2 , . . .  , Xn )  = Yn . Certainly lE l Yn l < oo, since lE(Y; ) < 00. 
For the other part, let Hn be the space of functions of X I ,  X2 , . . .  , Xn having finite second 
moment. We have by ( 1 9) that, for Z E Hn , 

0 =  lE ( (Y - Yn )Z) = lE ( (Y - Yn+1 + Yn+1 - Yn )Z) 
= lE ( Yn+1 - Yn )Z) since Z E Hn <;: Hn+ l . 

Therefore Yn = lE(Yn+1 I XI , X2 , . . .  , Xn ) · 
Here is a more general formulation. Let Y be a random variable on (Q , F, JP') with lE(y2) < 

00, and let {g,n : n :::: I }  be a sequence of a-fields contained in F and satisfying g,n <;: g,n+1 
for all n . Such a sequence {g,n } is called afiltration ; in the context of the previous paragraph 
we might take g,n to be the smallest a-field with respect to which X I ,  X2 , . . .  , Xn are each 
measurable. We define Yn = lE(Y I g,n ) .  As before { Yn }  satisfies lE l Yn l  < 00 and lE(Yn+1 I 
g,n ) = Yn ; such a sequence is called a 'martingale with respect to the filtration {g,n } '  . • 
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This new type of conditional expectation has many useful properties. We single out one 
of these, namely the pull-through property, thus named since it involves a random variable 
being pulled through a paranthesis. 

(25) Theorem. Let Y have finite second moment and let fj, be a sub-a -field of the a -field F. 
Then JE(XY I fj,) = XJE(Y I fj,) for all fj,-measurable random variables X with finite second 
moments. 

Proof. Let X be fj,-measurable with finite second moment. Clearly 

Z = JE(XY I fj,) - XJE(Y I fj,) 

is fj,-measurable and satisfies 

Z = X [Y - JE(Y I fj,) ] - [XY - JE(XY I fj,) ] 

so that, for G E fj" 

JE(ZIG )  = JE([Y - JE(Y I fj,) ]X  IG ) - JE( [XY - JE(XY I fj,) ] /G) = 0, 

the first term being zero by the fact that X IG is fj,-measurable with finite second moment, and 
the second by the definition of JE(XY I fj,) . Any fj,-measurable random variable Z satisfying 
JE(ZIG) = 0 for all G E fj, is such that lP'(Z = 0) = 1 Gust set Gl = {Z > OJ , G2 = {Z < O} 
in tum) , and the result follows. • 

In all our calculations so far, we have used the norm II . 1 1 2 , leading to a definition of 
JE(Y I fj,) for random variables Y with JE(y2) < 00. This condition of finite second moment is 
of course too strong in general , and needs to be replaced by the natural weaker condition that 
JE I Y I  < 00. One way of doing this would be to rework the previous arguments using instead 
the norm II . 1 1 1 . An easier route is to use the technique of 'truncation' as in the following 
proof. 

(26) Theorem. Let Y be a random variable on (Q , :F , lP') with JE I Y I  < 00, and let fj, be a 
sub-a-field of :F. There exists a random variable Z such that : 
(a) Z i s fj,-measurable, 
(b) JE IZ I  < 00, 
(c) JE« Y - Z) /G )  = Of or all G E fj,. 

Z is unique in the sense that,forany Z' satisfying (a), (b), and (c), we have that lP'(Z = Z') = 1 . 

The random variable Z i n the theorem i s called the 'conditional expectation of Y given fj, ' , 
and is written JE(Y I fj,) . It is an exercise to prove that 

(27) JE(XY I fj,) = XJE(Y I fj,) 

for all fj,-measurable X, whenever both sides exist, and also that this definition coincides 
(almost surely) with the previous one when Y has finite second moment. A meaningful value 
can be assigned to JE(Y I fj,) under the weaker assumption on Y that either JE(Y+) < 00 or 
JE(Y- ) < 00. 



7 .9  Prediction and conditional expectation 349 

Proof. Suppose first that Y ::::: 0 and IE I Y I < 00. Let Yn = min {Y, n } ,  so that Yn t Y as 
n -+ 00. Certainly lE(Y; ) < 00, and hence we may use (20) to find the conditional expectation 
IE(Yn I g,) , a g,-measurable random variable satisfying 

(28) 1E([Yn - IE(Yn I g,) ] IG ) = 0 for all G E g,.  

Now Yn < Yn+ l , and so we may take IE(Yn I g,) :'S IE(Yn+ l I g,) ; see Exercise (7 .9.4iii) . 
Hence limn---+oo IE(Yn I g,) exists , and we write IE(Y I g,) for this limit, a g,-measurable random 
variable. By monotone convergence (5 .6 . 1 2) and (23), IE(Yn IG )  t IE(Y IG ) ,  and 

1E[IE(Yn I g,) /G ] t IE[IE(Y I g,) IG ] = IE[IE(Y IG I g,) ] = IE(Y IG ) ,  

so that, by (28), IE([Y - IE (Y  I g,) ] IG )  = 0 for all G E g,. 
Next we lift in the usual way the restriction that Y be non-negative . We express Y as 

Y = y+ - Y- where y+ = max{Y, O} and Y- = - min{Y, O} are non-negative ; we define 
IE(Y I g,) = IE(Y+ I g,) - IE(Y- I g,) . It is easy to check that IE(Y I g,) satisfies (a) , (b) , and 
(c) . To see the uniqueness, suppose that there exist two g,-measurable random variables ZI 
and Z2 satisfying (c) . Then IE((Z I - Z2) IG )  = IE((Y - Y) IG) = 0 for all G E g,.  Setting 
G = {ZI > Z2} and G = {ZI  < Z2} in tum, we find that JP'(Z1 = Z2) = 1 as required. • 

Having defined IE(Y I g,) , we can of course define conditional probabilities also : if A E :F,  
we define JP'(A I g,)  = IE(lA I g,) . I t  may be checked that JP'(0 I g,)  = 0 ,  JP'(Q I g,)  = 1 a. s . ,  
and JP'(U Ai I g,) = Li JP'(Ai  I g,) a .s .  for any sequence {A i : i ::::: I }  of disjoint events in  :F. 

It looks as though there should be a way of defining JP'(. I g,) so that it is a probability 
measure on (Q , :F) .  This turns out to be impossible in general, but the details are beyond the 
scope of this book. 

Exercises for Section 7 . 9  

1 .  Let Y b e  uniformly distributed o n  [- 1 ,  1 ]  and let X = y2 . 
(a) Find the best predictor of X given Y, and of Y given X. 
(b) Find the best linear predictor of X given Y, and of Y given X. 
2. Let the pair (X, Y) have a general bivariate normal distribution. Find JE(Y I X) . 
3. Let X j ,  X2, . . .  , Xn be random variables with zero means and covariance matrix V = (vij ) ,  and 
let Y have finite second moment. Find the linear function h of the Xi which minimizes the mean 
squared error JE{ (Y - h (X1 , " . ' Xn»2 } .  
4 .  Verify the following properties o f  conditional expectation. You may assume that the relevant 
expectations exist. 
(i) JE{JE(Y I fl.) ) = JE(Y) .  

(ii) JE(aY + {3Z I fl.) = aJE(Y I fl.) + {3JE(Z I fl.) for a, {3 E JR.  
(iii) JE(Y I fl.) :::: 0 i f  Y :::: O. 
(iv) JE(Y I fl.) = JE{JE(Y I Jt) I fl. } if fI. � R. 
(v) JE(Y I fl.) = JE(Y) if Y is independent of IG for every G E fl. . 

(vi) Jensen's inequality. g{JE(Y I fl.) } :'S JE{g(Y) I fl. }  for all convex functions g .  
(vii) I f  Yn � Y and I Yn I :'S Z a . s .  where JE(Z) < 00, then JE (Yn I fl.) � JE(Y I fl.) .  
(Statements (ii)-(vi) are o f  course to be interpreted 'almost surely' .) 

5. Let X and Y have joint mass function f (x , y) = {x (x + 1 ) )  - 1 for x = y = 1 ,  2, . .  " Show that 
JE(Y I X) < 00 while JE(Y) = 00. 
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6. Let (Q , :F., JP') be a probability space and let fJ, be a sub-a -field of :F. Let H be the space of 
fJ,-measurable random variables with finite second moment. 
(a) Show that H is closed with respect to the norm II . 1 1 2 . 
(b) Let Y be a random variable satisfying JB:(y2) < 00, and show the equivalence of the following 

two statements for any M E H :  
(i) JB:{(Y - M) Z}  = 0 for all Z E H ,  

(ii) JB:{(Y - M)/G }  = 0 for all G E fJ, .  

7.10 Uniform integrability 

Suppose that we are presented with a sequence {Xn : n ::: 1 }  of random variables, and we are 

able to prove that Xn � X.  Convergence in probability tells us little about the behaviour of 
lE(Xn ) , as the trite example 

{ n with probability n- i , Yn = 
o otherwise , 

shows;  in this special case , Yn � 0 but lE(Yn ) = 1 for all n .  Should we wish to prove that 

lE(Xn ) -+ lE(X) , or further that Xn � X (which is to say that lE lXn - X I  -+ 0) , then an 
additional condition is required. 

We encountered in an earlier Exercise (7 .2 .2) an argument of the kind required. If Xn � X 
and I X  n I :s Y for some Y such that lE I Y I < 00, then X n � X. This extra condition, that 
{Xn } be dominated uniformly, is often too strong an assumption in cases of interest. A weaker 
condition is provided by the following definition. As usual fA denotes the indicator function 
of the event A .  

( 1 )  Definition. A sequence Xl , X2 , ' " of random variables is said to be uniformly inte­
grable if 

(2) sup lE ( IXn l fI l Xn l 2:a } ) -+ 0 as a -+ 00. n 

Let us investigate this condition briefly. A random variable Y is called ' integrable ' if 
lEI Y I < 00, which is to say that 

tends to 0 as a -+ 00 (see Exercise (5 .6 .5» . Therefore, a family {Xn : n ::: l }  is ' integrable ' 
if 

lE( IXn l f\Xn 2:a} ) -+ 0 as a -+ 00 
for all n ,  and is 'uniformly integrable ' if the convergence is uniform in n . Roughly speaking, the 
condition of integrability restricts the amount of probability in the tails of the distribution, and 
uniform integrability restricts such quantities uniformly over the family of random variables 
in question. 
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The principal use of uniform integrability is demonstrated by the following theorem. 

(3) Theorem. Suppose that Xl , X 2 , . . .  is a sequence of random variables satisfying X n � 
X. The following three statements are equivalent to one another. 

(a) Thefamily {Xn : n 2: l } is uniformly integrable. 
1 

(b) lE lXn l  < 00 for all n, lE l X I  < 00, and Xn � X. 
(c) lE lXn I < 00 for all n, and lE lXn I � lE l X I  < 00. 

In advance of proving this, we note some sufficient conditions for uniform integrability. 

(4) Example. Suppose l Xn l :'S Y for all n , where lE l Y I  < 00. Then 

so that 
sup lE( IXn I I{ l Xn I ::::a j ) :'S lE( 1 Y I I{ I Y I ::::a j ) n 

which tends to zero as a � 00, since lE I  Y I  < 00. • 

(5) Example. Suppose that there exist 0 > 0 and K < 00 such that lE( I Xn I 1 +8 ) :'S K for all 
n . Then 

as a � 00, so that the family is uniformly integrable. • 

Turning to the proof of Theorem (3) ,  we note first a preliminary lemma which is of value 
in its own right. 

(6) Lemma. Afamily {Xn : n 2: l }  is uniformly integrable ifand only ifboth ofthefollowing 
hold: 

(a) supn lE lXn l  < 00, 
(b) for all E > 0, there exists 0 > 0 such that, for all n, lE( I Xn I IA ) < E for any event A 

such that IP'(A ) < o.  

The equivalent statement for a single random variable X is the assertion that lE I  X I < 00 if 
and only if 

(7) 

see Exercise (5 .6 .5) .  

sup lE ( IX I IA ) � 0 as 0 � 0; 
A :ll'(A) <8 

Proof of (6). Suppose first that {Xn } is uniformly integrable. For any a > 0, 
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and therefore 
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sup lE l Xn l  :s a + sup lE( IXn I I{Xn 2::a } ) . 
n n 

We use uniform integrability to find that sUPn lE l Xn l  < 00. Next, 

(8) 

where Bn (a) = { I Xn l  ::: a } .  Now 

and 
lE ( IXn I IAnBn (a)c ) :s alE(IA) = alP'(A) . 

Let E > 0 and pick a such that lE( I Xn I IBn (a) < 1E for all n .  We have from (8) that 

lE( I Xn I IA ) :s 1E + alP'(A) , which is smaller than E whenever IP'(A) < E/ (2a ) .  
Secondly, suppose that (a) and (b) hold; let E > 0 and pick 8 according to (b) . We have 

that 
lE lXn l  ::: lE( I Xn I IBn (a) ::: alP'(Bn (a» 

(this is Markov 's inequality) so that 

1 
sup lP'(Bn (a» :s - sup lE l Xn l  < 00. 
n a n 

Pick a such that a - I sUPn lE l Xn I < 8 ,  implying that IP'(Bn (a» < 8 for all n .  It follows from 
(b) that lE ( IXn I IBn (a) < E for all n , and hence {Xn }  is uniformly integrable. • 

Proof of Theorem (3). The main part is the statement that (a) implies (b) , and we prove this 
first. Suppose that the family is uniformly integrable . Certainly each member is integrable, 

so that lE lXn l  < 00 for all n. Since Xn � X, there exists a subsequence {Xnk : k ::: 1 }  such 

that Xnk � X (see Theorem (7 .2 . 1 3» .  By Fatou ' s lemma (5 .6 . 1 3) ,  

(9) lE l X I  = lE (lim inf I Xnk I ) :s lim inf lE lXnk I :s sup lE lXn I ,  
k---+oo k---+oo n 

which is finite as a consequence of Lemma (6) . 
To prove convergence in mean, we write, for E > 0, 

(10) lE l Xn - X I  = lE ( I Xn - X I Iuxn -X I <E } + I Xn - X I I{ I Xn -X I 2::E }) 
:s E + lE( IXn I IAn ) + lE( I X I IAn ) 

where An = { I Xn - X I  > E } .  Now IP'(An ) -+ 0 in the limit as n -+ 00, and hence 
lE ( IXn I IAn ) -+ 0 as n -+ 00, by Lemma (6) . Similarly lE ( IX I  IAn )  -+ 0 as n -+ 00, by (7) ,  so 

that lim suPn---+oo lE l Xn - X I :s E . Let E (- O to obtain that Xn � X.  
That (b) implies (c) i s  immediate from the observation that 
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and i t  remains to prove that (c) implies (a) . Suppose then that (c) holds. Clearly 

(11) 

where u (x)  = I x I IC-a ,a) (x ) .  Now u is a continuous bounded function on (-a , a) and Xn � 
X;  hence 

E(u (Xn ) )  -+ E(u (X) ) = E( I X I II I X I <a } ) 

if a and -a are points of continuity of the distribution function Fx of X (see Theorem 
(7 .2 . 1 9) and the comment thereafter) .  The function Fx is monotone, and therefore the set � 
of discontinuities of Fx is at most countable. It follows from ( 1 1 )  that 

(12) 

if a fj. � .  For any E > 0, on the one hand there exists b fj. � such that E( I X I II I X I ::::b } ) < E ;  
with this choice of b ,  there exists by ( 1 2) an integer N such that E ( IXn I II I Xn l :::: b } ) < 2E for all 
n :::: N. On the other hand, there exists c such that E ( IXk I II I Xk l ::::c} ) < 2E for all k < N, since 
only finitely many terms are involved. If a > max{b,  C} ,  we have that E ( IXn I Il lXn I ::::a } ) < 2E 
for all n ,  and we have proved that {Xn }  is uniformly integrable. • 

The concept of uniform integrability will be of particular value when we return in Chapter 
1 2  to the theory of martingales. The following example may be seen as an illustration of this . 

(13) Example. Let Y be a random variable on (Q , F, IP') with E I  Y I < 00, and let {fi,n : n :::: l }  
be a filtration, which is to say that fi,n is a sub-a -field of F ,  and furthermore fi,n � fi,n+ 1 for 
all n .  Let Xn = E(Y I fi,n ) .  The sequence {Xn : n :::: l }  is uniformly integrable, as may be 
seen in the following way. 

It is a consequence of Jensen 's inequality, Exercise (7 .9 .4vi) , that 

almost surely, so that E( I Xn I II I Xn l ::::a } ) :s E(Zn I{Zn ::::a } ) where Zn = E ( I Y I I fi,n ) . By the 
definition of conditional expectation, E { ( I  Y I  - Zn ) /{Zn ::::a j } = 0, so that 

(14) 

We now repeat an argument used before. By Markov 's inequality, 

and therefore IP'(Zn :::: a ) -+ 0 as a -+ 00, uniformly in n. Using (7) ,  we deduce that 
E( I Y I I{Zn ::::a } ) -+ 0 as a -+ 00, uniformly in n, implying that the sequence {Xn } is uniformly 
integrable. • 

We finish this section with an application . 

(15) Example. Convergence of moments. Suppose that X l , X 2 , . . . is a seq uence satisfying 
o 

Xn -+ X, and furthermore sUPn E ( IXn l a ) < 00 for some a > 1 .  It follows that 

(16) 
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for any integer f3 satisfying 1 ::s f3 < ex. This may be proved either directly or via Theorem 
(3) .  First, if f3 is an integer satisfying 1 ::s f3 < ex ,  then {X� : n 2: I }  is uniformly integrable 

by (5) ,  and furthermore X� � XfJ (easy exercise, or use Theorem (7 .2 . 1 8)) .  If it were the 

case that X� � XfJ then Theorem (3) would imply the result. In any case, by the Skorokhod 
representation theorem (7 .2 . 14) ,  there exist random variables Y, Yl , Y2 , . . .  having the same 

distributions as X, X I , X2 , . . .  such that Y! � yfJ . Thus IE(Y!) --+ IE(yfJ ) by Theorem (3) .  

However, IE(Y!) = IE(X� ) and IE(yfJ ) = IE(XfJ ) ,  and the proof is complete. • 

Exercises for Section 7 . 1 0  

1 .  Show that the sum {Xn + Yn } of two uniformly integrable sequences {Xn }  and { Yn }  gives a 
uniformly integrable sequence. 

2. (a) Suppose that Xn � X where r 2: 1 .  Show that { I Xn l r : n 2: I }  is uniformly integrable, and 
deduce that E(X� ) --+ E(Xr ) if r is an integer. 

(b) Conversely, suppose that { I Xn l r : n 2: I }  is uniformly integrable where r 2: 1 ,  and show that 

Xn � X if Xn � X. 
3. Let g : [0, (0) --+ [0, (0) be an increasing function satisfying g (x)/x --+ 00 as x --+ 00. Show 
that the sequence {Xn : n 2: I }  is uniformly integrable if sUPn E{g ( IXn I ) }  < 00. 

4. Let { Zn : n 2: O} be the generation sizes of a branching process with Zo = I ,  E(Z I ) = 1 ,  
var(Zj ) =f. O .  Show that {Zn : n 2: O }  i s  not uniformly integrable. 

p p p 5. Pratt's lemma. Suppose that Xn S Yn S Zn where Xn --+ X, Yn --+ Y, and Zn --+ Z. If 
E(Xn ) --+ E(X) and E(Zn )  --+ E(Z) ,  show that E(Yn )  --+ E(Y) . 

6. Let {Xn : n 2: l } be a sequence of variables satisfying E(suPn I Xn I )  < 00. Show that {Xn }  is 
uniformly integrable. 

1. Let Xn have density function 

7.11  Problems 

n 2: 1 .  

With respect to which modes of convergence does Xn converge as n --+ oo? 

2. (i) Suppose that Xn � X and Yn � Y, and show that Xn + Yn � X + Y. Show that the 
corresponding result holds for convergence in rth mean and in probability, but not in distribution. 

(ii) Show that if Xn � X and Yn � Y then Xn Yn � XY.  Does the corresponding result hold 
for the other modes of convergence? 

3. Let g : IR --+ IR be continuous .  Show that g (Xn ) � g (X) if Xn � X. 
4. Let Yj , Y2 , . " be independent identically distributed variables, each of which can take any value 
in {O, 1 ,  . . .  , 9} with equal probability /0 ' Let Xn = 2:;=1 Yi 1 0-; . Show by the use of characteristic 

functions that Xn converges in distribution to the uniform distribution on [0, 1 ] .  Deduce that Xn � Y 
for some Y which is uniformly distributed on [0, 1 ] .  
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5. Let N (t) be a Poisson process with constant intensity on R 
(a) Find the covariance of N(s) and N(t) . 
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(b) Show that N is continuous in mean square, which is to say that E ( {N (t + h) - N (t) }2 ) -+ 0 as 
h -+ o. 

(c) Prove that N is continuous in probability, which is to say that lI" ( IN (t + h )  - N (t) 1 > E ) -+ 0 as 
h -+ 0, for all E > O. 

(d) Show that N is differentiable in probability but not in mean square. 

6. Prove that n- I L:i=l Xi � 0 whenever the Xi are independent identically distributed variables 
with zero means and such that E(Xi ) < 00. 

7. Show that Xn � X whenever L:n E( IXn - X n  < 00 for some r > O. 

8. Show that if Xn � X then aXn + b � aX + b for any real a and b. 
9. If X has zero mean and variance a2 , show that 

a2 
lI"(X � t) � -2--2 for t > O. 

a + t  

10. Show that Xn � 0 if and only if 

11. The sequence {Xn } is said to be mean-square Cauchy convergent if E{ (Xn - Xm)2 } -+ 0 as 
m , n -+ 00. Show that {Xn } converges in mean square to some limit X if and only if it is mean-square 
Cauchy convergent. Does the corresponding result hold for the other modes of convergence? 
12. Suppose that {Xn } is a sequence of uncorrelated variables with zero means and uniformly bounded 

. Sh th - I ",n X m.s. 0 vanances .  ow at n L.. i= l i � . 

13. Let Xl , X 2 , . . .  be independent identically distributed random variables with the common dis-
tribution function F, and suppose that F (x) < 1 for all x. Let Mn = max{XJ , X2 , . . .  , Xn } and 
suppose that there exists a strictly increasing unbounded positive sequence ai , a2 , . . .  such that 
11" (Mn / an � x) -+ H (x) for some distribution function H. Let us assume that H is continuous 
with 0 < H ( l )  < 1 ;  substantially weaker conditions suffice but introduce extra difficulties . 
(a) Show that n[l - F(anx) ]  -+ - log H (x) as n -+ 00 and deduce that 

1 - F (anx) log H (x) 
-+ --=_C-.-

1 - F(an ) log H( 1 )  
i f  x >  O. 

(b) Deduce that if x > 0 
1 - F(tx) log H (x) 

-+ ---=--- as t -+ 00. 
1 - F(t) log H( l )  

(c) Set x = X , X2 and make the substitution 

log H (eX ) g (x ) = 
log H( 1 )  

t o  find that g (x + y) = g (x)g(y) ,  and deduce that 

H (x) = { �xp(-ax-.B ) if x � 0, 
if x < 0, 
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for some non-negative constants a and {3 .  
You have shown that H i s  the distribution function of  y- 1 , where Y has a Weibull distribution. 
14. Let Xl , X2 , . . .  , Xn be independent and identically distributed random variables with the Cauchy 
distribution. Show that Mn = max{X 1 , X2 , . . . , Xn }  is such that Jl" Mn /n converges in distribution, 
the limiting distribution function being given by H (x) = e- 1 /x if x :::: O. 
15. Let Xl , X2 , . . .  be independent and identically distributed random variables whose common 
characteristic function cp satisfies cp' (0) = i {.t .  Show that n- 1 2:.)=1 Xj � {.t . 
16. Total variation distance. The total variation distance dTV (X , Y) between two random variables 
X and Y is defined by 

dTV (X, y) = sup IlE(u (X» - lE(u (Y» 1 
u : l l u l loo= l 

where the supremum is over all (measurable) functions u : lR -+ lR such that I l u l loo = sUPx l u (x ) 1 
satisfies I I  u 1 1 00 = 1 .  
(a) If X and Y are discrete with respective masses fn and gn at the points xn , show that 

dTV (X, y) = L I fn - gn l = 2 sup 1lP'(X E A) - lP'(Y E A) I · 
n AS;:IR 

(b) If X and Y are continuous with respective density functions f and g , show that 

dTV (X, Y) = 100 
I f (x) - g (x) l dx = 2 sup 1lP'(X E A) - lP'(Y E A) I . 

-00 AS;:IR 

(c) Show that dTV (Xn , X) -+ 0 implies that Xn -+ X in distribution, but that the converse is false. 
(d) Maximal coupling. Show that lP'(X =1= Y) :::: idTV (X, y) ,  and that there exists a pair X', y' 

having the same marginals for which equality holds . 
(e) If Xi , Yj are independent random variables, show that 

17. Let g : lR -+ lR be bounded and continuous. Show that 

00 (nA)k 
L g (k/n) -- e-nA -+ g (A) as n -+ 00. 
k=O k !  

18. Let Xn and Y m be independent random variables having the Poisson distribution with parameters 
n and m ,  respectively. Show that 

(Xn - n) - (Ym - m) D ---+ N(O, 1 )  a s  m ,  n -+ 00. 
-';Xn + Ym 

19. (a) Suppose that X 1 , X2 , . . .  is a sequence of random variables, each having a normal distribution, 
and such that Xn ..s. X. Show that X has a normal distribution, possibly degenerate. 

(b) For each n :::: 1 ,  let (X n ,  Yn ) be a pair of random variables having a bivariate normal distribution. 
Suppose that Xn � X and Yn � Y, and show that the pair (X, Y) has a bivariate normal 
distribution. 
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20. Let X I , X2 , . . .  be random variables satisfying var(Xn ) < c for all n and some constant c. Show 
that the sequence obeys the weak law, in the sense that n - 1 Ll (X i - lEX i ) converges in probability 
to 0, if the correlation coefficients satisfy either of the following: 
(i) P (Xi , Xj ) ::; 0 for all i =I- j ,  

(ii) P (Xi , Xj ) -+ 0 as I i - j l -+ 00 .  

21. Let X I , X 2 , . . .  be independent random variables with common density function 

f (x) = { O 
c 

x2 10g Ix l 

if Ix l ::; 2, 
if I x l > 2, 

where c is a constant. Show that the Xi have no mean, but n- 1 Ll=l Xi � 0 as n -+ 00. Show that 
convergence does not take place almost surely. 

22. Let Xn be the Euclidean distance between two points chosen independently and uniformly from 
the n-dimensional unit cube. Show that lE(Xn ) I In -+ 1 /.J6 as n -+ 00. 

23. Let Xl , X 2 , . . .  be independent random variables having the uniform distribution on [- 1 ,  1 ] .  
Show that 

24. Let Xl , X2 , . . .  be independent random variables, each Xk having mass function given by 

1 
lP'(Xk = k) = lP'(Xk = -k) = 

2k2 ' 

lP'(Xk = 1 )  = lP'(Xk = - 1)  = � ( 1 - k
l
2 ) if k > 1 .  

Show that Un = Ll Xi satisfies Un l In � N (O, 1) but var(Un l  In) -+ 2 as n -+ 00. 

25. Let Xl , X2 , ' " be random variables, and let N1 , N2 , ' " be random variables taking values in 

the positive integers such that Nk � 00 as k -+ 00. Show that: 

(i) if Xn � X and the Xn are independent of the Nk , then XNk � X as k -+ 00, 

(ii) if  Xn � X then XNk � X as k -+ 00. 

26. Stirling's formula. 
(a) Let a (k , n) = nk I (k - l ) ! for 1 ::; k ::; n + 1 .  Use the fact that I - x ::; e-x if x :::: O to show that 

a (n - k, n) 
::; e-k2/ (2n) 

a (n + l , n) 
if k :::: O. 

(b) Let X ] ,  X2 , . . .  be independent Poisson variables with parameter 1, and let Sn = Xl + . . .  + Xn . 
Define the function g : lR -+ lR by 

{ -x 
g (x ) = 

0 

if O :::: x :::: - M, 

otherwise, 

where M is large and positive. Show that, for large n, 

( { S n }) e-n 
lE g 

n;n = In {a (n + l , n) - a (n - k , n) } 
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where k 
formula: 
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LMn 1 /2 J . Now use the central limit theorem and (a) above, to deduce Stirling's 

n ! en 
1 ---+ 1 

nn+ 2 £ 
as n ---+ 00. 

27. A bag contains red and green balls. A ball i s  drawn from the bag, its colour noted, and then it 
is returned to the bag together with a new ball of the same colour. Initially the bag contained one 
ball of each colour. If Rn denotes the number of red balls in the bag after n additions, show that 
Sn = Rn / (n + 2) is a martingale. Deduce that the ratio of red to green balls converges almost surely 
to some limit as n ---+ 00. 

28. Anscombe's theorem. Let {Xi : i :::: I }  be independent identical ly distributed random variables 
with zero mean and finite positive variance 0-2 , and let Sn = �'i Xi .  Suppose that the integer-valued 
random process M (t) satisfies t - I M (t) � () as t ---+ 00, where () is a positive constant. Show that 

SM(t) � N(O, 1 )  and 
o-$t 

SM(t) � N(O, 1 )  o-v'M(t) 
You should not assume that the process M is independent of the Xi .  

as t ---+ 00. 

29. Kolmogorov's inequality. Let XI , X2 , . . .  be independent random variables with zero means, 
and Sn = XI + X2 + . . .  + Xn .  Let Mn = max I.sk.sn I Sk l and show that E(S�IAk ) > c2lP'(Ak ) where 
Ak = {Mk- I ::: c < Mk } and c > O. Deduce Kolmogorov's inequality : 

c > O. 

30. Let X I ,  X 2 , . . .  be independent random variables with zero means, and let Sn = XI + X 2 + 
. . .  + Xn . Using Kolmogorov 's inequality or the martingale convergence theorem, show that: 
(i) �� I Xi converges almost surely if ��I E(Xt ) < 00, 

(ii) if there exists an increasing real sequence (bn ) such that bn ---+ 00, and sati sfying the inequality 
��I E(Xt ) /bt < 00, then b; 1 �� I Xk � 0 as n ---+ 00. 

31 .  Estimating the transition matrix. The Markov chain Xo ,  X ] , . . . , Xn has initial distribution 
fi = lP'(XO = i )  and transition matrix P. The log-likelihood function ),, (P) is defined as ),, (P) 
log (fxo PXO ,X t PX1 , X2 ' "  PXn- l , Xn ) . Show that: 
(a) ),, (P) = log fxo + � i , j Nij log Pij where Nij is the number of transitions from i to j ,  
(b) viewed as a function o f  the Pij , ),, (P) i s  maximal when Pij = Pij where Pij = Nij /�k Nik , 
(c) if X is irreducible and ergodic then Pij � Pij as n ---+ 00. 

32. Ergodic theorem in discrete time. Let X be an irreducible discrete-time Markov chain, and let 
JLi be the mean recurrence time of state i . Let Vi (n) = ��;::;J I[Xr=i l  be the number of visits to i up 
to n - 1 ,  and let f be any bounded function on S. Show that: 

) - I V ( ) a.s . - 1 (a n i n ---+ JLi as n ---+ 00, 

(b) if JLi < 00 for all i ,  then 

1 n- I 
- L f (Xr ) ---+ L f (i ) /JLi as n ---+ 00. n r=O i ES  

33. Ergodic theorem in continuous time. Let X be an irreducible persistent continuous-time Markov 
chain with generator G and finite mean recurrence times JLj . 

) Sh th 1 lot d a.s . 1 (a ow at - I[X (s )=j ) s ---+ -- as t ---+ 00; t 0 JLj gj 
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(b) deduce that the stationary distribution Jl' satisfies trj = l / (fl-j gj ) ;  
(c) show that, if f i s  a bounded function o n  S, 

1 lot 
- f (X (s» ds � L, 7ri f (i )  t o . I 

as t ---+ 00.  
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34. Tail equivalence. Suppose that the sequences {X n : n 2: I }  and { Yn : n 2: I }  are tail equivalent, 
which is to say that L:�] JP'(Xn I=- Yn ) < 00. Show that: 
(a) L:�] Xn and L:�] Yn converge or diverge together, 
(b) L:�l (Xn - Yn ) converges almost surely, 

(c) if there exist a random variable X and a sequence an such that an t 00 and a;; 1 L:�= 1 X r � X, 
then 

1 n 
- L, Yr � X. 
an r= ] 

35. Three series theorem. Let {Xn : n 2: l } be independent random variables. Show that L:�] Xn 
converges a.s .  if, for some a > 0, the following three series all converge: 
(a) L:n JP'( lXn I > a) ,  
(b) L:n var(Xn II I Xn l sa l ) ,  
(c) L:n E(Xn II I Xn l sa l ) · 
[The converse holds also, but is harder to prove.]  

36. Let {Xn : n 2: I }  be independent random variables with continuous common distribution function 
F. We call Xk a record value for the sequence if Xk > Xr for 1 ::; r < k, and we write h for the 
indicator function of the event that X k is a record value. 
(a) Show that the random variables h are independent. 

(b) Show that Rm = L:k=l Ir satisfies Rm /log m � 1 as m ---+ 00. 

37. Random harmonic series. Let {Xn : n 2: I }  be  a sequence of  independent random variables 
with JP'(Xn = 1) = JP'(Xn = - 1 )  = i .  Does the series L:�=l Xr /r converge a.s .  as n ---+ oo? 



8 
Random processes 

Summary. This brief introduction to random processes includes elementary 
previews of stationary processes, renewal processes, queueing processes , and 
the Wiener process (Brownian motion) . It ends with a discussion of the Kol­
mogorov consistency conditions. 

8.1 Introduction 

Recall that a 'random process '  X is a family {Xt : t E T} of random variables which 
map the sample space Q into some set S. There are many possible choices for the index 
set T and the state space S, and the characteristics of the process depend strongly upon 
these choices .  For example, in Chapter 6 we studied discrete-time (T = {O, 1 , 2 , . . .  }) and 
continuous-time (T = [0, 00» Markov chains which take values in some countable set S. 
Other possible choices for T include lRn and 7/.,n , whilst S might be an uncountable set such 
as lR. The mathematical analysis of a random process varies greatly depending on whether 
S and T are countable or uncountable, just as discrete random variables are distinguishable 
from continuous variables. The main differences are indicated by those cases in which 

(a) T = {O, 1 , 2 , . . .  } or T = [0, 00) ,  
(b) S = 7/., or S = lR. 
There are two levels at which we can observe the evolution of a random process X. 

(a) Each Xt is a function which maps Q into S. For any fixed W E Q,  there is a corresponding 
collection {Xt (w) : t E T }  of members of S; this is called the realization or sample 
path of X at w. We can study properties of sample paths. 

(b) The Xt are not independent in general. If S � lR and t = (t1 , t2 , . . .  , tn )  is a vector 
of members of T ,  then the vector (Xtl ' Xt2 ' . . . , Xtn ) has joint distribution function 
Ft : lRn � [0, 1 ]  given by Ft (x) = lP'(Xtl .:::: X l , . . .  , Xtn .:::: Xn ) .  The collection 
{ Ft l ,  as t ranges over all vectors of members of T of any finite length, is called the 
collection of finite-dimensional distributions (abbreviated to fdds) of X, and it contains 
all the information which is available about X from the distributions of its component 
variables Xt . We can study the distributional properties of X by using its fdds. 

These two approaches do not generally yield the same information about the process in 
question, since knowledge of the fdds does not yield complete information about the properties 
of the sample paths. We shall see an example of this in the final section of this chapter. 
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We are not concerned here with the general theory of random processes, but prefer to 
study certain specific collections of processes which are characterized by one or more special 
properties .  This is not a new approach for us. In Chapter 6 we devoted our attention to 
processes which satisfy the Markov property, whilst large parts of Chapter 7 were devoted to 
sequences {Sn }  which were either martingales or the partial sums of independent sequences .  In 
this short chapter we introduce certain other types of process and their characteristic properties .  
These can be divided broadly under four headings, covering ' stationary processes ' , 'renewal 
processes ' ,  ' queues ' ,  and 'diffusions ' ;  their detailed analysis is left for Chapters 9, 10 ,  1 1 ,  and 
13 respectively. 

We shall only be concerned with the cases when T is one of the sets Z, {a,  1 ,  2, . . .  }, R, or 
[0, 00) . If T is an uncountable subset of R, representing continuous time say, then we shall 
usually write X (t) rather than Xt for ease of notation. Evaluation of X (t) at some w E Q 
yields a point in S, which we shall denote by X (t ; w) . 

8.2 Stationary processes 

Many important processes have the property that their finite-dimensional distributions are 
invariant under time shifts (or space shifts if T is a subset of some Euclidean space Rn , say) . 

(1) Definition. The process X = {X (t) ; t ?:: O}, taking values in lR, is called strongly 
stationary if the families 

{X(ti ) ,  X (tz) ,  . . .  , X (tn) }  and {X(tt -+ h), X (tz -+ h) ,  . • .  , X(tn + h)} 
have the same joint distribution for all t1 , 12, . .  , • tn and h > O. 

Note that, if X is strongly stationary, then X (t ) has the same distribution for all t .  
We saw in Section 3 .6 that the covariance o f  two random variables X and Y contains some 

information, albeit incomplete, about their joint distribution. With this in mind we formulate 
another stationarity property which, for processes with var(X (t » < 00, is weaker than strong 
stationarity. 

(2) Definition. The process X = {X(t) : t ?:: O} is called wealdy (or second-order or 
covariance) stationary if, for all t1 . fz, and h > 0, 

E(X(tl »  = lE(X (tz» and cOV(X(tl) ,  X (tz)} = cOV(X(tl + h) ,  X (t2 + h)} . 

Thus, X is weakly stationary if and only if it has constant means, and its autocovariance 
junction 

(3) 

satisfies 

c(t ,  t + h) = cov (X (t ) ,  X (t + h») 

c(t ,  t + h) = c (O, h) for all t , h :::: 0. 

We emphasize that the autocovariance function c (s , t) of a weakly stationary process is a 
function of t - s only. 
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Definitions similar to ( 1 )  and (2) hold for processes with T = R and for discrete-time 
processes X = {Xn : n ::: OJ ; the autocovariance function of a weakly stationary discrete­
time process X is just a sequence {c (O, m) : m ::: O} of real numbers . 

Weak stationarity interests us more than strong stationarity for two reasons. First, the 
condition of strong stationarity is often too restrictive for certain applications; secondly, many 
substantial and useful properties of stationary processes are derivable from weak stationarity 
alone. Thus, the assertion that X is stationary should be interpreted to mean that X is weakly 
stationary. Of course, there exist processes which are stationary but not strongly stationary 
(see Example (5» , and conversely processes without finite second moments may be strongly 
stationary but not weakly stationary. 

(4) Example. Markov chains. Let X = {X (t) : t ::: O} be an irreducible Markov chain 
taking values in some countable subset S of R and with a unique stationary distribution 7r .  
Then (see Theorem (6.9 .2 1 »  

IP'(X (t) = j I X (O) = i ) -+ lrj as t -+ 00 

for all i ,  j E S. The fdds of X depend on the initial distribution JL(O) of X (O) , and it is not 
generally true that X is stationary. Suppose, however, that JL (0) = 7r .  Then the distribution 
JL(t ) of X (t) satisfies JL(t) = 7rPt = 7r from equation (6.9 . 1 9) ,  where {Pd is the transition 
semigroup of the chain . Thus X (t) has distribution 7r for all t .  Furthermore, if 0 < s < s + t 
and h > 0, the pairs (X (s) , X es + t» and (X (s + h) , X es + t + h» have the same joint 
distribution since: 

(a) X (s ) and X (s + h) are identically distributed, 
(b) the distribution of X (s + h) (respectively X (s + t + h » depends only on the distribution 

of X (s) (respectively X (s + t » and on the transition matrix Ph . 
A similar argument holds for collections of the X (u ) which contain more than two elements, 

and we have shown that X is strongly stationary. • 

(5) Example. Let A and B be uncorrelated (but not necessarily independent) random vari­
ables, each of which has mean 0 and variance 1 .  Fix a number ).. E [0, lr] and define 

(6) Xn = A cos()..n) + B sin ()..n) . 

Then lEXn = 0 for all n and X = {Xn } has autocovariance function 

c (m ,  m + n) = lE(XmXm+n ) 

= lE( [ A cos()..m) + B sin ()..m) ] [  A cos{).. (m + n) } + B sin{).. (m + n) } J) 
= lE(A2 cos ()..m) cos{).. (m + n) } + B2 sin ()..m)  sin {).. (m + n) }) 
= cos()..n) 

since lE (AB ) = O. Thus c (m ,  m + n) depends on n alone and so X is stationary. In general 
X is not strongly stationary unless extra conditions are imposed on the joint distribution of A 
and B ;  to see this for the case ).. = 1lr , simply calculate that 

{XO , Xl , X2 , X3 , . . .  } = {A , B ,  -A ,  -B , . . .  } 
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which is strongly stationary if and only if the pairs (A , B), (B, -A) ,  and (-A ,  - B)  have the 
same joint distributions. It can be shown that X is strongly stationary for any A. if A and B 
are N(O, 1 )  variables . The reason for this lies in Example (4 .5 .9) , where we saw that normal 
variables are independent whenever they are uncorrelated. • 

Two major results in the theory of stationary processes are the ' spectral theorem' and the 
'ergodic theorem' ; we close this section with a short discussion of these. First, recall from 
the theory of Fourier analysis that any function f : R -+ R which 

(a) is periodic with period 2][ (that is, f(x + 2Jr) = f (x) for all x) , 
(b) i s  continuous, and 
(c) has bounded variation, 

has a unique Fourier expansion 

00 
f (x) = iao + I]an cos(nx ) + bn sin (nx ) ] 

n= l  

which expresses f as  the sum of varying proportions of  regular oscillations . In  some sense to 
be specified, a stationary process X is similar to a periodic function since its autocovariances 
are invariant under time shifts . The spectral theorem asserts that, subject to certain conditions, 
stationary processes can be decomposed in terms of regular underlying oscillations whose 
magnitudes are random variables; the set of frequencies of oscillations which contribute to 
this combination is called the ' spectrum' of the process. For example, the process X in (5) 
is specified precisely in these terms by (6) . In spectral theory it is convenient to allow the 
processes in question to take values in the complex plane. In this case (6) can be rewritten as 

(7) 

here C is a complex-valued random variable and i = .J=T. The sequence Y = { Yn } is 
stationary also whenever E(C) = 0 and E(CC) < 00, where C is the complex conjugate of 
C (but see Definition (9. 1 . 1 )) .  

The ergodic theorem deals with the partial sums ofa stationary sequence X = {Xn : n :::: OJ . 
Consider first the following two extreme examples of  stationarity. 

(8) Example. Independent sequences. Let X = {Xn : n :::: O} be a sequence of independent 
identically distributed variables with zero means and unit variances. Certainly X is stationary, 
and its autocovariance function is given by 

{ ]  if n = 0, 
c(m , m + n) = E(XmXm+n ) = . o If n i= O. 

The strong law of large numbers asserts that n- 1 "LJ=l Xi � O. • 

(9) Example. Identical sequences. Let Y be a random variable with zero mean and unit 
variance, and let X = {Xn : n :::: O} be the stationary sequence given by Xn = Y for all n . 
Then X has autocovariance function c (m , m + n) = E(XmXm+n ) = 1 for all n . It is clear 

that n- 1 "LJ=l Xi � Y since each term in the sum is Y itself. • 

These two examples are, in some sense, extreme examples of stationarity since the first deals 
with independent variables and the second deals with identical variables. In both examples, 
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however, the averages n- 1 LJ=l Xj converge as n -+ 00. In the first case the limit is constant, 
whilst in the second the limit is a random variable with a non-trivial distribution. This indicates 
a shared property of 'nice ' stationary processes, and we shall see that any stationary sequence 
X = {Xn : n 2: O} with finite means satisfies 

I 
n 

- " X · � Y n � ] 
j=l 

for some random variable Y .  This result is called the ergodic theorem for stationary sequences. 
A similar result holds for continuous-time stationary processes. 

The theory of stationary processes is important and useful in statistics .  Many sequences 
{xn : 0 ::s n ::s N} of observations, indexed by the time at which they were taken, are suitably 
modelled by random processes, and statistical problems such as the estimation of unknown 
parameters and the prediction of the future values of the sequence are often studied in this 
context. Such sequences are called 'time series '  and they include many examples which are 
well known to us ah"eady, such as the successive values of the Financial Times Share Index, 
or the frequencies of sunspots in successive years. Statisticians and politicians often seek to 
find some underlying structure in such sequences, and to this end they may study 'moving 
average '  processes Y ,  which are smoothed versions of a stationary sequence X, 

r 
Yn = L aiXn-i , 

i=O 

where ao , ai , . . .  , ar are constants . Alternatively, they may try to fit a model to their ob­
servations, and may typically consider 'autoregressive schemes' Y, being sequences which 
satisfy r 

Yn = L ai Yn- i + Zn 
i= l 

where {Zn } is a sequence of uncorrelated variables with zero means and constant finite vari­
ance . 

An introduction to the theory of stationary processes is given in Chapter 9 .  

Exercises for Section 8 .2  

1 .  Flip-flop. Let {Xn } be  a Markov chain on  the state space S = to ,  I }  with transition matrix 

where Ol + f3 > O. Find: 

( 1 - Ol p =  
f3 

(a) the correlation p (Xm , Xm+n ) ,  and its limit as m -+ 00 with n remaining fixed, 
(b) limn---+ oo n- 1 ��=I lP'(Xr = 1 ) .  
Under what condition i s  the process strongly stationary? 

2. Random telegraph. Let { N (t)  : t :::: O} be a Poisson process of intensity A, and let To be 
an independent random variable such that lP'(To = ± 1 )  = i .  Define T(t) = To (_ l )N(t ) . Show 
that { T (t ) : t :::: O} is stationary and find: (a) p (T (s ) ,  T (s + t ) ) ,  (b) the mean and variance of 
X (t )  = fJ T (s ) ds . 
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3. Korolyuk-Khinchin theorem. An integer-valued counting process {N(t) : t 2: O} with N(O) = 
o is called crudely stationary if Pk (S , t) = P(N(s + t) - N(s )  = k) depends only on the length t and 
not on the location s .  It is called simple if, almost surely, it has jump discontinuities of size 1 only. 
Show that, for a simple crudely stationary process N, limq .o t- 1 p(N(t) > 0) = JE(N( l » . 

8.3 Renewal processes 

We are often interested in the successive occurrences of events such as the emission of ra­
dioactive particles, the failures of light bulbs, or the incidences of earthquakes. 

(1) Example. Light bulb failures. This is the archetype of renewal processes . A room is 
lit by a single light bulb. When this bulb fails it is replaced immediately by an apparently 
identical copy. Let Xi be the (random) lifetime of the i th bulb, and suppose that the first bulb 
is installed at time t = O. Then Tn = XI + X2 + . . .  + Xn is the time until the nth failure 
(where, by convention, we set To = 0), and 

N(t)  = max{n : Tn :::; t }  

i s  the number of  bulbs which have failed by  time t .  I t  i s  natural to assume that the Xi are 
independent and identically distributed random variables. • 

(2) Example. Markov chains. Let {Yn : n 2: O} be a Markov chain, and choose some 
state i .  We are interested in the time epochs at which the chain is in the state i .  The times 
o < TI < T2 < . . .  of successive visits to i are given by 

TI = min{n 2: 1 : Yn = i } , 
Tm+ 1 = min{n > Tm : Yn = i } for m 2: 1 ;  

they may be defective unless the chain is irreducible and persistent. Let {Xm : m 2: I }  be 
given by 

Xm = Tm - Tm- I for m 2: 1 ,  

where we set To 0 by convention . It is clear that the Xm are independent, and that 
X2 , X3 , . . .  are identically distributed since each is the elapsed time between two successive 
visits to i .  On the other hand, X I does not have this shared distribution in general , unless the 
chain began in the state Yo = i . The number of visits to i which have occurred by time t is 
given by N(t) = max{n : Tn :::; t } .  • 

Both examples above contain a continuous-time random process N = {N(t) : t 2: O} ,  
where N(t) represents the number of occurrences of some event in the time interval [0, t) . 
Such a process N is called a 'renewal' or 'counting' process for obvious reasons ;  the Poisson 
process of Section 6 .8  provides another example of a renewal process . 

(3) Definition. A renewal process N = {N(t) : t 2: O} is a process for which 

N(t) = max{n : Tn 5 t} 

where ' 
To = 0, Tn = Xl + X2 + . . .  + Xn for n ?:: 1 ,  

and the Xm are independent identically distributed non�negative random variables. 
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Figure 8 . 1 .  Excess, current, and total lifetimes at time s .  

This definition describes N i n  terms of  an  underlying sequence {Xn } .  In  the absence of 
knowledge about this sequence we can construct it from N; just define 

(4) Tn = inf {t : N(t) = n } ,  Xn = Tn - Tn- I . 

Note that the finite-dimensional distributions of a renewal process N are specified by the 
distribution of the Xm . For example, if the Xm are exponentially distributed then N is a 
Poisson process . We shall try to use the notation of (3) consistently in Chapter 1 0, in the sense 
that {N(t) } ,  {Tn } ,  and {Xn }  will always denote variables satisfying (4) . 

It is sometimes appropriate to allow X 1 to have a different distribution from the shared 
distribution of X2 , X3 , . . .  ; in this case N is called a delayed (or modified) renewal process. 
The process N in (2) is a delayed renewal process whatever the initial Yo ; if Yo = i then N is 
an ordinary renewal process . 

Those readers who paid attention to Claim (6.9 . 1 3) will be able to prove the following little 
result, which relates renewal processes to Markov chains .  

(5) Theorem. Poisson processes are the only renewal processes which are Markov chains. 

If you like, think of renewal processes as a generalization of Poisson processes in which 
we have dropped the condition that interarrival times be exponentially distributed. 

There are two principal areas of interest concerning renewal processes. First, suppose that 
we interrupt a renewal process N at some specified time s . By this time, N(s) occurrences 
have already taken place and we are awaiting the (N(s) + l ) th. That is, s belongs to the 
random interval 

Here are definitions of three random variables of interest. 

(6) The excess (or residual) lifetime of Is : E(s) = TN(s)+ l - s . 
(7) The current lifetime (or age) of Is : C(s) = s - TN(s ) . 
(8) The total lifetime of Is : D (s) = E (s) + C (s) . 
We shall be interested in the distributions of these random variables ; they are illustrated in 
Figure 8 . 1 .  

It will come as no surprise to the reader to learn that the other principal topic concerns the 
asymptotic behaviour of a renewal process N (t) as t -+ 00. Here we turn our attention to the 
renewal function m(t) given by 

(9) m(t) = E(N(t)) . 
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For a Poisson process N with intensity A ,  Theorem (6.8 .2) shows that met) = At . In general, 
m is not a linear function of t; however, it is not too difficult to show that m is asymptotically 
linear, in that 

1 1 -met) -+ - as t -+ 00, where JL = E(XI ) .  t JL 
The 'renewal theorem' is a refinement of this result and asserts that 

h m (t + h) - met) -+ - as t -+ 00 JL 

subject to a certain condition on XI . 
An introduction to the theory of renewal processes is given in Chapter 10 .  

Exercises for Section 8 .3  

1. Let (fn : n :::: 1 ) be  a probability distribution on  the positive integers, and define a sequence 
(un : n :::: 0) by Uo = 1 and Un = ��=l irun-r , n :::: 1 .  Explain why such a sequence is called a 
renewal sequence, and show that u is a renewal sequence if and only if there exists a Markov chain U 
and a state s such that Un = JP'(Un = s I Uo = s ) .  
2 .  Let {Xi : i :::: I }  b e  the inter-event times o f  a discrete renewal process o n  the integers. Show 
that the excess lifetime Bn constitutes a Markov chain. Write down the transition probabilities of the 
sequence {Bn } when reversed in equilibrium. Compare these with the transition probabilities of the 
chain U of your solution to Exercise ( 1 ) .  

3 .  Let (un : n :::: 1 )  satisfy Uo = 1 and Un = ��=l irun-r for n :::: 1 ,  where (fr : r :::: 1 )  is a 
non-negative sequence. Show that: 
(a) Vn = pnun is a renewal sequence if p > 0 and ��l pn in = 1 ,  
(b) as n --+ 00 ,  pnun converges to some constant c .  
4. Events occur at the times of a discrete-time renewal process N (see Example (5 .2 . 15 » . Let Un  be 
the probability of an event at time n, with generating function U(s) ,  and let F (s )  be the probability 
generating function of a typical inter-event time. Show that, if Is I < 1 :  

5. Prove Theorem (8 .3 .5) :  Poisson processes are the only renewal processes that are Markov chains. 

8.4 Queues 

The theory of queues is attractive and popular for two main reasons. First, queueing models 
are easily described and draw strongly from our intuitions about activities such as shopping 
or dialling a telephone operator. Secondly, even the solutions to the simplest models use 
much of the apparatus which we have developed in this book. Queues are, in general , non­
Markovian, non-stationary, and quite difficult to study. Subject to certain conditions, however, 
their analysis uses ideas related to imbedded Markov chains, convergence of sequences of 
random variables, martingales, stationary processes, and renewal processes . We present a 
broad account of their theory in Chapter 1 1 .  
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Customers arrive at a service point or counter at which a number of servers are stationed. 
[For clarity of exposition we have adopted the convention ,  chosen by the flip of a coin, that 
customers are male and servers are female. ]  An arriving customer may have to wait unti l one 
of these servers becomes available. Then he moves to the head of the queue and is served; 
he leaves the system on the completion of his service. We must specify a number of details 
about this queueing system before we are able to model it adequately. For example, 

(a) in what manner do customers enter the system? 
(b) in what order are they served? 
(c) how long are their service times? 

For the moment we shall suppose that the answers to these questions are as follows. 
(a) The number N (t ) of customers who have entered by time t is a renewal process. That 

is, if Tn is the time of arrival of the nth customer (with the convention that To = 0) then 
the interarrival times Xn = Tn - Tn- l are independent and identically distributed. 

(b) Arriving customers join the end of a single line of people who receive attention on a 
'first come, first served' basis. There are a certain number of servers. When a server 
becomes free, she turns her attention to the customer at the head of the waiting line. We 
shall usually suppose that the queue has a single server only. 

(c) Service times are independent identically distributed random variables. That is, if Sn 
is the service time of the nth customer to arrive, then {Sn }  is a sequence of indepen­
dent identically distributed non-negative random variables which do not depend on the 
arriving stream N of customers. 

It requires only a little imagination to think of various other systems. Here are some 
examples. 
(1) Queues with baulking. If the line of waiting customers is long then an arriving customer 
may, with a certain probability, decide not to join it. 
(2) Continental queueing. In the absence of queue discipline, unoccupied servers pick a 
customer at random from the waiting melee. 

(3) Airline check-in. The waiting customers divide into several lines, one for each server. 
The servers themselves enter and leave the system at random, causing the attendant customers 
to change lines as necessary. 
(4) Last come, first served. Arriving documents are placed on the top of an in-tray. An 
available server takes the next document from the top of the pile. 
(5) Group service. Waiting customers are served in batches . This is appropriate for lift queues 
and bus queues . 
(6) Student discipline. Arriving customers jump the queue, joining it near a friend 

We shall consider mostly the single-server queues described by (a) , (b) , and (c) above. 
Such queues are specified by the distribution of a typical interarrival time and the distribution 
of a typical service time; the method of analysis depends partly upon how much information 
we have about these quantities . 

The state of the queue at time t is described by the number Q (t) of waiting customers 
( Q (t) includes customers who are in the process of being served at this time) . It would be 
unfortunate if Q(t) -+ 00 as t -+ 00, and we devote special attention to finding out when 
this occurs . We call a queue stable if the distribution of Q(t) settles down as t -+ 00 in 
some well-behaved way; otherwise we call it unstable . We choose not to define stability more 
precisely at this stage, wishing only to distinguish between such extremes as 

(a) queues which either grow beyond all bounds or enjoy large wild fluctuations in length, 
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(b) queues whose lengths converge in distribution, as t --+ 00, to some 'equilibrium distri­
bution' . 

Let S and X be a typical service time and a typical interarrival time, respectively ;  the ratio 

is called the traffic intensity. 

E(S) p = 
E(X) 

(7) Theorem. Let Q = {Q (t) : t :::: O} be a queue with a single server and traffic intensity p. 
(a) If p < 1 then Q is stable. 
(b) If p > 1 then Q is unstable. 
(c) If p = 1 and at least one of S and X has strictly positive variance then Q is unstable. 

The conclusions of this theorem are intuitively very attractive. Why? 
A more satisfactory account of this theorem is given in Section 1 1 .5 .  

Exercises for Section 8 . 4  

1 .  The two tellers i n  a bank each take a n  exponentially distributed time t o  deal with any customer; 
their parameters are 'A and /-t respectively. You arrive to find exactly two customers present, each 
occupying a teller. 
(a) You take a fancy to a randomly chosen teller, and queue for that teller to be free; no later switching 

is permitted. Assuming any necessary independence, what is the probability p that you are the 
last of the three customers to leave the bank? 

(b) If you choose to be served by the quicker teller, find p. 
(c) Suppose you go to the teller who becomes free first. Find p. 

2. Customers arrive at  a desk according to a Poisson process of intensity 'A .  There is one clerk, and 
the service times are independent and exponentially distributed with parameter /-t. At time 0 there is 
exactly one customer, currently in service. Show that the probability that the next customer arrives 
before time t and finds the clerk busy is 

3. Vehicles pass a crossing at the instants of a Poisson process of intensity 'A; you need a gap of 
length at least a in order to cross . Let T be the first time at which you could succeed in crossing to 
the other side. Show that E(T) = (ea). - 1 ) /'A ,  and find E(eOT ) .  

Suppose there are two lanes to cross, carrying independent Poissonian traffic with respective rates 
).. and /-t. Find the expected time to cross in the two cases when: (a) there is an island or refuge between 
the two lanes, (b) you must cross both in one go. Which is the greater? 

4. Customers arrive at the instants of a Poisson process of intensity 'A, and the single server has 
exponential service times with parameter /-t. An arriving customer who sees n customers present 
(including anyone in service) will join the queue with probability (n + 1 ) / (n + 2), otherwise leaving 
for ever. Under what condition is there a stationary distribution? Find the mean of the time spent in 
the queue (not including service time) by a customer who joins it when the queue is in equilibrium. 
What is the probability that an arrival joins the queue when in equilibrium? 

5. Customers enter a shop at the instants of a Poisson process of rate 2. At the door, two represen­
tatives separately demonstrate a new corkscrew. This typically occupies the time of a customer and 
the representative for a period which is exponentially distributed with parameter 1 ,  independently of 
arrivals and other demonstrators . If both representatives are busy, customers pass directly into the 
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shop . No customer passes a free representative without being stopped, and all customers leave by 
another door. If both representatives are free at time 0, show the probability that both are busy at time 
t is l - l e-2t + ..i.e-5t 

5 3 1 5 ·  

8.5 The Wiener process 

Most of the random processes considered so far are 'discrete' in the sense that they take values 
in the integers or in some other countable set. Perhaps the simplest example is simple random 
walk {Sn } ,  a process which jumps one unit to the left or to the right at each step. This random 
walk { Sn }  has two interesting and basic properties : 

(a) time-homogeneity, in that, for all non-negative m and n ,  Sm and Sm+n - Sn have the 
same distribution (we assume So = 0) ; and 

(b) independent increments, in that the increments Sn, - Sm, (i 2: 1 )  are independent 
whenever the intervals (mi ' ni l are disjoint. 

What is the ' continuous' analogue of this random walk? It is reasonable to require that such a 
'continuous '  random process has the two properties above, and it turns out that, subject to some 
extra assumptions about means and variances, there is essentially only one such process which 
is called the Wiener process . This is a process W = {W (t) : t 2: O} , indexed by continuous 
time and taking values in the real line R, which is time-homogeneous with independent 
increments, and with the vital extra property that W(t) has the normal distribution with mean o and variance a2t for some constant a2 . This process is sometimes called Brownian motion, 
and is a cornerstone of the modem theory of random processes. Think about it as a model for 
a particle which diffuses randomly along a line. There is no difficulty in constructing Wiener 
processes in higher dimensions, leading to models for such processes as the Dow-Jones index 
or the diffusion of a gas molecule in a container. Note that W(O) = 0; the definition of a 
Wiener process may be easily extended to allow more general starting points . 

What are the finite-dimensional distributions of the Wiener process W?  These are easily 
calculated as follows. 

(1) Lemma. The vector of random variables W(tt ) ,  W(tl ) ,  . . .  , W(tn )  has the multivariate 
normal distribution with zero means and covariance matrix (Vij ) where Vij = a2 min{ti ' tj } .  

Proof. By assumption, W(tj )  has the normal distribution with zero mean and variance a2ti . 
It therefore suffices to prove that cov (W(s) , W(t» = a2 minIs ,  t } .  Now, if s < t , then 

E (W(s) W(t» ) = E (W(s)2 + W(s) [W(t) - W(s) ] )  = E(W(s)2) + 0, 

since W has independent increments and E(W (s» = O. Hence 

cov(W(s) , W(t)) = var(W(s» = a2s .  

A Wiener process W i s  called standard i f  W(O) = 0 and a2 

treatment of Wiener processes appears in Chapter 1 3 . 

• 

1 .  A more extended 
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Exercises for Section 8 . 5  

1. For a Wiener process W with W (0) = 0, show that 

lP' (W(s) > 0, W et) > 0) = � + � sin- I  � for s < t .  
4 271: V t 

Calculate lP'(W(s) > 0, W et) > 0, W (u) > 0) when s < t < u . 

37 1 

2. Let W be a Wiener process .  Show that, for s < t < u ,  the conditional distribution of Wet) given 
W(s) and W (u) is nonnal 

( (U - t)W (S ) + (t - S)W (U) (U - t) (t - S» ) 
N , .  

u - s u - s 

Deduce that the conditional correlation between Wet) and W(u) ,  given W(s) and W(v) , where s < 
t < u < v, is 

(v - u ) (t - s) 
(v - t ) (u - s) 

3 .  For what values of  a and b is a WI + b W2 a standard Wiener process, where Wj and W2 are 
independent standard Wiener processes? 

4. Show that a Wiener process W with variance parameter a2 has finite quadratic variation, which 
is to say that 

n- l 
L { W ((j + l ) t ln) - W(jtln) } 2 � a2t as n --+ 00.  

j=o 

5. Let W be a Wiener process. Which of the following define Wiener processes? 
(a) -Wet) , (b) ,JtW(l ) ,  (c) W(2t) - Wet) .  

8.6 Existence of processes 

In our discussions of the properties of random variables, only scanty reference has been made 
to the underlying probability space (Q , F,  lP') ; indeed we have felt some satisfaction and relief 
from this omission. We have often made assumptions about hypothetical random variables 
without even checking that such variables exist. For example, we are in the habit of making 
statements such as ' let X I , X 2 , . . .  be independent variables with common distribution func­
tion F' , but we have made no effort to show that there exists some probability space on which 
such variables can be constructed. The foundations of such statements require examination. 
It is the purpose of this section to indicate that our assumptions are fully justifiable. 

First, suppose that (Q , F, lP') is a probability space and that X = {Xt : t E T} is some 
collection of random variables mapping Q into R We saw in Section 8 . 1  that to any vector 
t = (tl , t2 , . . .  , tn ) containing members of T and of finite length there corresponds a joint 
distribution function Ft ; the collection of such functions Ft , as t ranges over all possible 
vectors of any length, is called the set offinite-dimensional distributions, orfdds , of X . It is 
clear that these distribution functions satisfy the two Kolmogorov consistency conditions : 
(1) F(tl ,  . . .  , tn , tn+1 ) (X I , . . .  ' Xn ' Xn+ ] }  --+ F(tl , . . . , tn ) (X I , . . . , xn ) as Xn+ 1 --+ 00, 
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(2) if n is a permutation of ( 1 ,  2, . . .  , n) and ny denotes the vector ny = (Yrr ( l ) , . . .  , Yrr (n) 
for any n-vector y, then Frrt (nx) = Ft (x) for all x, t, n , and n .  

Condition ( 1 )  i s  just a higher-dimensional form of (2 . I .6a) , and condition (2) says that the 
operation of permuting the X t has the obvious corresponding effect on their joint distributions. 
So fdds always satisfy ( 1 )  and (2) ; furthermore ( 1 )  and (2) characterize fdds .  

(3) Theorem. Let T be any set, and suppose that to each vectort  = (t1 , t2 , . . .  , tn ) containing 
members of T and of finite length, there corresponds a joint distribution function Ft· If the 
collection { Fd satisfies the Kolmogorov consistency conditions, there exists a probability 
space (Q , :F,  JP') and a collection X = {Xt : t E T }  of random variables on this space such 
that { Fd is the set offdds of X. 
The proof of this result lies in the heart of measure theory, as the following sketch indicates. 

Sketch proof. Let Q = R T , the product of T copies of R; the points of Q are collections 

y = {Yt : t E T }  of real numbers . Let :F = :J3 T , the a -field generated by subsets of the form 
DtET Bt for Borel sets Bt all but finitely many of which equal R It is a fundamental result in 
measure theory that there exists a probability measure JP' on (Q , :F) such that 

for all t and x; this follows by an extension of the argument of Section 1 .6 . Then (Q ,  :F ,  JP') is 
the required space. Define Xt : Q --+ R by Xt (y) = Yt to obtain the required family {Xd . • 

We have seen that the fdds are characterized by the consistency conditions ( 1 )  and (2) . But 
how much do they tell us about the sample paths of the corresponding process X? A simple 
example is enough to indicate some of the dangers here. 

(4) Example. Let U be a random variable which is uniformly distributed on [0, 1 ] .  Define 
two processes X = {Xt : 0 ::: t ::: I } and Y = { Yt : 0 ::: t ::: I } by 

Xt = 0 for all t ,  
{ I if U = t , 

Yt = 
o otherwise. 

Clearly X and Y have the same fdds, since JP'(U = t )  = 0 for all t . But X and Y are different 
processes . In particular JP'(Xt = 0 for all t) = I and JP'(Yt = 0 for all t) = o. • 

One may easily construct less trivial examples of different processes having the same fdds ;  
such processes are called versions of one another. This complication should not be overlooked 
with a casual wave of the hand; it is central to any theory which attempts to study properties 
of sample paths, such as first-passage times. As the above example illustrates, such properties 
are not generally specified by the fdds, and their validity may therefore depend on which 
version of the process is under study. 

For the random process {X (t ) : t E T} ,  where T = [0, (0) say, knowledge of the fdds 
amounts to being given a probability space of the form (RT , :J3 T , JP') , as in the sketch proof of 
(3)  above. Many properties of sample paths do not correspond to events in :J3T . For example, 
the subset of Q given by A = {w E Q : X (t )  = 0 for all t E T }  is an uncountable intersection 
of events A = ntET {X ( t )  = OJ , and may not itself be  an event. Such difficulties would be 
avoided if all sample paths of X were continuous, since then A is the intersection of {X (t) = O} 
over all rational t E T ;  this is a countable intersection. 
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(5) Example. Let W be the Wiener process of Section 8 .5 ,  and let T be the time of the first 
passage of W to the point 1 ,  so that S = inf{t : W (t ) = I } .  Then 

{S > t} = n {W (s ) =1= I }  
09:9 

is a set of configurations which does not belong to the Borel a-field 2[0,00) .  If all sample 
paths of W were continuous, one might write 

{S > t }  = n {W (s ) =1= I } ,  
O<s <t 

s rational 

the countable intersection of events. As the construction of Example (4) indicates, there are 
versions of the Wiener process which have discontinuous sample paths. One of the central 
results of Chapter 1 3  is that there exists a version with continuous sample paths, and it is with 
this version that one normally works. • 

It is too restrictive to require continuity of sample paths in general; after all, processes 
such as the Poisson process most definitely do not have continuous sample paths. The most 
which can be required is continuity from either the left or the right. Following a convention, 
we go for the latter here. Under what conditions may one assume that there exists a version 
with right-continuous sample paths? An answer is provided by the next theorem ; see Breiman 
( 1 968, p. 300) for a proof. 

(6) Theorem. Let {X (t) : t � O} be a real-valued random process. Let D be a subset of 
[0, 00) which is dense in [0, 00). If:  

(i) X is continuous in probability from the right, that is, X (t + h) � X (t) as  h t O, for 
aU t, and 

(ii) at any accumulation point a of D, X has finite right and left limits with probability 1 , 
that is limh,l.O X (a + h) and limhtO X (a + h) exist, a.s . , 

then there exists a version Y of X such that : 
(a) the sample paths of Y are right-continuous, 
(b) Y has left limits, in that limhto Y(t + h) exists for all t .  

In other words, if (i) and (ii) hold, there exists a probability space and a process Y defined 
on this space, such that Y has the same fdds as X in addition to properties (a) and (b) .  A 
process which is right-continuous with left limits is called cactlag by some (largely French 
speakers) ,  and a Skorokhod map or R-process by others . 

8.7 Problems 

1. Let {Zn } be a sequence of un correlated real-valued variables with zero means and unit variances, 
and define the 'moving average' 

r 
Yn = L ai Zn-i , 

i=O 
for constants aO , a J , . . .  , ar . Show that Y is stationary and find its autocovariance function. 
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2. Let { Zn }  be a sequence of un correlated real-valued variables with zero means and unit variances. 
Suppose that { Yn }  is an 'autoregressive' stationary sequence in that it satisfies Yn = a Yn- l + Zn , 
-00 < n < 00, for some real a satisfying l a l < 1 .  Show that Y has autocovariance function 
c (m) = a lm l / ( 1  - a2) .  
3 .  Let {Xn } b e  a sequence o f  independent identically distributed Bernoulli variables, each taking 
values 0 and 1 with probabilities 1 - p and p respectively. Find the mass function of the renewal 
process N (t) with interarrival times {Xn } . 

4. Customers arrive in a shop in the manner of a Poisson process with parameter A. There are 
infinitely many servers, and each service time is exponentially distributed with parameter f.L. Show 
that the number Q (t) of waiting customers at time t constitutes a birth-death process. Find its 
stationary distribution. 

S. Let X (t) = Y cos(e t) + z  sin (e t) where Y and Z are independent N(O, 1) random variables, and 
let X (t) = R cos (e t + 111) where R and 111 are independent. Find distributions for R and 111 such that 
the processes X and X have the same fdds. 

6. Bartlett's theorem. Customers arrive at the entrance to a queueing system at the instants of 
an inhomogeneous Poisson process with rate function A (t ) .  Their subsequent service histories are 
independent of each other, and a customer arriving at time s is in state A at time s + t with prob­
ability p es ,  t ) .  Show that the number of customers in state A at time t is Poi sson with parameter 
J�oo A (u) p(u , t - u) du o 
7. In a Prague teashop (U Mysaka), long since bankrupt, customers queue at the entrance for a 
blank bill. In the shop there are separate counters for coffee, sweetcakes, pretzels, milk, drinks, and 
ice cream, and queues form at each of these. At each service point the customers' bills are marked 
appropriately. There is a restricted number N of seats , and departing customers have to queue in order 
to pay their bills .  If interarrival times and service times are exponentially distributed and the process 
is in equilibrium, find how much longer a greedy customer must wait if he insists on sitting down. 
Answers on a postcard to the authors, please. 
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Stationary processes 

Summary. The theory of stationary processes, with discrete or continuous 
parameter, is developed. Autocovariances and spectral distributions are intro­
duced. A theory of stochastic integration is developed for functions integrated 
against a stochastic process, and this theory is used to obtain a representa­
tion of a stationary process known as the spectral theorem. A result of major 
importance is the ergodic theorem, which explains the convergence of suc­
cessive averages of a stationary process. Ergodic theorems are presented for 
weakly and strongly stationary processes. The final section is an introduction 
to Gaussian processes. 

9.1 Introduction 

Recall that a process X is strongly stationary whenever its finite-dimensional distributions 
are invariant under time shifts ; it is (weakly) stationary whenever it has constant means 
and its autocovariance function is invariant under time shifts. Section 8 .2 contains various 
examples of such processes. Next, we shall explore some deeper consequences of stationarity, 
in particular the spectral theorem and the ergodic theorem t . 

A special class of random processes comprises those processes whose joint distributions 
are multivariate normal; these are called 'Gaussian processes ' .  Section 9 .6 contains a brief 
account of some of the properties of such processes. In general, a Gaussian process is not 
stationary, but it is easy to characterize those which are. 

We shall be interested mostly in continuous-time processes X = {X (t) : -00 < t < oo},  
indexed by  the whole real line, and will indicate any necessary variations for processes with 
other index sets, such as discrete-time processes. It is convenient to suppose that X takes 
values in the complex plane C. This entails few extra complications and provides the natural 
setting for the theory. No conceptual difficulty is introduced by this generalization, since 
any complex-valued process X can be decomposed as X = X I + i X2 where Xl and X2 are 
real-valued processes . However, we must take care when discussing the finite-dimensional 
distributions (fdds) of X since the distribution function of a complex-valued random variable 
C = R + i I is no longer a function of a single real variable. Thus, our definition of strong 

tThe word 'ergodic' has several meanings, and probabilists tend to use it rather carelessly. We conform to 
this  custom here. 
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stationarity requires revision; we leave this to the reader. The concept of weak stationarity 
concerns covariances; we must note an important amendment to the real-valued theory in this 
context. As before, the expectation operator lE is defined by lE(R + i I) = lE(R) + ilE(/) . 
(1) Definition. The covariance of two complex-valued random variables C] and C2 is defined 
to be 

cov(C] , C2) = lE( C] - lEC] ) (C2 - lEC2») 
where z denotes the complex conjugate of z .  

This reduces to the usual definition (3 .6 .7) when C] and C2 are real . Note that the operator 
'cov' is not symmetrical in its arguments, since 

COV(C2 , Cd = cov(C] , C2 ) .  

Variances are defined as follows. 

(2) Definition. The variance of a complex-valued random variable C is defined to be 

var(C) = cov(C, C) . 

Decompose C into its real and imaginary parts, C = R + i I , and apply (2) to obtain 
var(C) = var(R) + var(/) . We may write 

var(C) = lE( I C  _ lEQ2) .  
We do not generally speak of complex random variables as being 'uncorrelated' ,  preferring 
to use a word which emphasizes the geometrical properties of the complex plane. 

(3) Definition. Complex-valued random variables C] and C2 are called orthogonal if they 
satisfy cov(C] , C2) = o. 

If X = X] + i X2 is a complex-valued process with real part X] and imaginary part X2 
then X denotes the complex conjugate process of X, that is, X = X] - iX2 . 
(4) Example. Functions of the Poisson process. Let N be a Poisson process with intensity 
A. Let a be a positive number, and define X (t) = N(t + a) - N(t ) ,  for t :::: O. It is easily 
seen (exercise) from the definition of a Poisson process that X is a strongly stationary process 
with mean lE(X (t» = Aa and autocovariance function 

if h :::: a , c (t , t + h) = lE(X (t)X (t + h») - (Aa)2 = { O 
A (a - h) i f  h < a, 

where t , h :::: O. 
Here is a second example based on the Poisson process. Let f3 = e2rr i / m be a complex m th 

root of unity, where m :::: 2, and define Y (t ) = f3Z+N(t) where Z is a random variable that is 
independent of N with mass function lP'(Z = j )  = 1 1m ,  for 1 .::::: j .::::: m .  Once again, it is 
left as an exercise to show that Y is a strictly stationary (complex-valued) process with mean 
lE(Y (t» = O. Its autocovariance function is given by the following calculation: 

lE(Y (t) Y (t + h») = lE(f3N(trlJN(t+h) ) = lE( (f37J)N(t )7JN(t+h)-N(t ) ) 

= lE(7JN(h) since f3f3 = 1 

= exp [Ah (7J - l ) ] for t , h :::: O , 

where we have used elementary properties of the Poisson process . • 
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Exercises for Section 9 . 1 

1. Let . . .  , Z- l '  Zo , ZI , Z2 , . . . be independent real random variables with means 0 and variances 
1 ,  and let 01, f3 E R Show that there exists a (weakly) stationary sequence {Wn } satisfying Wn = 
OI Wn- l + f3Wn-2 + Zn , n = . . .  , - 1 , 0, 1 ,  . . . , if the (possibly complex) zeros of the quadratic 
equation z2 - OIZ - f3 = 0 are smaller than I in absolute value. 

2. Let U be unifonnly distributed on [0, 1] with binary expansion U = L:�1 Xi 2-i . Show that 
the sequence 

00 
Vn = L Xi+n 2-i , 

i= 1  
n :::: 0, 

is strongly stationary, and calculate its autocovariance function. 

3. Let {Xn : n = . . . , - 1 , 0, 1 ,  . . .  } be a stationary real sequence with mean 0 and autocovariance 
function c (m) .  
(i) Show that the infinite series L:�o an Xn converges almost surely, and in  mean square, whenever 

L:�o I an I < 00. 
(ii) Let 

00 
Yn = L akXn-k >  

k=O 
n =  . . .  , - I , O, I ,  . . . 

where L:�o l ak l < 00. Find an expression for the autocovariance function cy of Y, and show 
that 00 

L I cy (m ) 1  < 00. 
m=-oo 

4. Let X = {Xn : n :::: O} be a discrete-time Markov chain with countable state space S and stationary 
distribution lC ,  and suppose that Xo has distribution lC .  Show that the sequence (f (Xn ) : n :::: O} is 
strongly stationary for any function f : S -+ JR. 

9.2 Linear prediction 

Statisticians painstakingly observe and record processes which evolve in time, not merely for 
the benefit of historians but also in the belief that it is an advantage to know the past when 
attempting to predict the future. Most scientific schemes (and many non-scientific schemes) 
for prediction are 'model' based, in that they make some specific assumptions about the 
process, and then use past data to extrapolate into the future. For example, in the statistical 
theory of ' time series ' ,  one often assumes that the process is some combination of general 
trend, periodic fluctuations, and random noise, and it is common to suppose that the noise 
component is a stationary process having an autocovariance function of a certain form. 

Suppose that we are observing a sequence {xn } of numbers, the number Xn being revealed 
to us at time n ,  and that we are prepared to accept that these numbers are the outcomes of a 
stationary sequence {Xn } with known mean lEX" = JL and autocovariance function c (m) = 
cov(Xn , Xn+m) . We may be required to estimate the value of XrH (where k 2: 1 ) , given 
the values Xr , Xr- l , . . .  , Xr-s . We saw in Section 7 .9 that the 'best' (that is, the minimum 
mean-squared-error) predictor of XrH given Xr , Xr- l , . . .  , Xr-s is the conditional mean 
M = lE(XrH I Xr , Xr- l , . . .  , Xr-s ) ;  that is to say, the mean squared error lE((Y - XrH )2 ) 
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is minimized over all choices of functions Y of Xr , Xr- l , . . . , Xr-s by the choice Y = M. 
The calculation of such quantities requires a knowledge of the finite-dimensional distributions 
(fdds) of X which we do not generally possess. For various reasons, it is not realistic to 
attempt to estimate the fdds in order to estimate the conditional mean. The problem becomes 
more tractable, and its solution more elegant, if we restrict our attention to linear predictors 
of Xr+k , which is to say that we seek the best predictor of Xr+k amongst the class of linear 
functions of Xr , Xr- l , . . .  , Xr-s .  
(1) Theorem. Let X be a real stationary sequence with zero mean and autocovariancefunc­
tion c(m) .  Amongst the class of linear functions of the subsequence Xr , Xr- l , . . . , Xr-s , the 
best predictor of Xr+k (where k � 1 )  is 

(2) 
s 

Xr+k = L aiXr-i 
i=O 

where the ai satisfy the equations 

(3) 
s 
L ai c ( l i - j l ) = c (k + j ) for O ::: j ::: s .  
i=O 

Proof. Let H be the closed linear space of linear functions of Xr , Xr- l , . . .  , Xr-s .  We have 
from the projection theorem (7 .9 . 1 4) that the element M of H for which E«Xr+k - Mf) is 
a minimum is the (almost surely) unique M such that 

(4) E( Xr+k - M)Z) = 0 for all Z E H.  

Certainly Xr-j E H for 0 ::: j ::: s .  Writing M = Ef=o ai Xr-i and substituting Z = Xr-j 
in (4), we obtain 

s 
E(Xr+kXr-j ) = E(MXr-j ) = L aiE(Xr-iXr-j ) ,  

i=O 

whence (3) follows by the assumption of zero mean. • 
Therefore, if we know the autocovariance function c, then equation (3) tells us how to find 

the best linear predictor of future values of the stationary sequence X. In practice we may not 
know c, and may instead have to estimate it. Rather than digress further in this direction, the 
reader is referred to the time series literature, for example Chatfield ( 1 989) . 

(5) Example. Autoregressive scheme. Let {Zn }  be a sequence of independent variables with 
zero means and unit variances, and let { Yn } satisfy 

(6) Yn = aYn- l + Zn , -00 < n < 00,  

where a i s  a real number satisfying la l < 1 .  We have from Problem (8 .7 .2) that Y i s  stationary 
with zero mean and autocovariance function c (m) = E(Yn Yn+m) given by 

(7) 
a lm l 

c (m) = -
1
--

2 '  - a -00 < m < 00.  
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Suppose we wish to estimate Yr+k (where k :::: 1) from a knowledge of Yr , Yr- l , . . .  , Yr-s . 
The best linear predictor is Y,.+k = L:f=o ai Yr-i where the ai satisfy equations (3 ) :  

s 
L aia l i-i l  = ak+i , 0 ::: j ::: s .  
i=O 

A solution is ao = ak , ai = 0 for i :::: 1 ,  so that the best linear predictor is Y,.+k = ak Yr . The 
mean squared error of prediction is 

( � 2 k IE: (YrH - YrH) ) = var(YrH - a Yr )  
= var(Yr+k ) - 2akcov(Yr+k , Yr )  + a2k var(Yr ) 

1 - a2k 
= c (O) - 2akc (k) + a2kc (O) = 2 ' by (7) . • I - a 

(8) Example. Let Xn = (_ l )n Xo where Xo is equally likely to take each of the values - 1  
and + 1 .  It is easily checked in this special case that X is stationary with zero mean and 
autocovariance function c (m) = (- l )mIE:(X5 ) = (_ l )m , -00 < m < 00. The best linear 
predictor of XrH (where k :::: 1 )  based on Xr , Xr- l , . . .  , Xr-s is obtained by solving the 
equations 

L ai (- I ) l i-i l = (_ I )k+i , 0 ::: j ::: s .  
i=O 

A solution is ao = (- I )i , ai = 0 for i :::: 1 ,  so that XrH = (- I )k Xr , and the mean squared 
error of prediction is zero . • 

Exercises for Section 9 .2  

1. Let X be  a (weakly) stationary sequence with zero mean and autocovariance function c (m) .  
(i) Find the best linear predictor Xn+ l of  Xn+ 1 given Xn . 
(ii) Find the best linear predictor Xn+ 1 of Xn+ 1 given Xn and Xn- I . 

(iii) Find an expression for D = JE{(Xn+ l  - Xn+ l )2 } - JE{ (Xn+ l  - Xn+ J }2 } ,  and evaluate this 
expression when: 
(a) Xn = cos (n U) where U is uniform on [-IT, IT ] ,  
(b) X i s  an autoregressive scheme with c (k) = a 1k l where la l < 1 .  

2. Suppose l a l < 1 .  Does there exist a (weakly) stationary sequence {Xn : - 00  < n < oo} with 
zero means and autocovariance function 

c (k) = { �  1 + a2 
o 

if k = 0, 
if l k l = l , 
if I k l > 1 . 

Assuming that such a sequence exists , find the best linear predictor Xn of Xn given Xn- l , 
Xn-2 , . . . , and show that the mean squared error of prediction is ( 1  + a2 )- I . Verify that {Xn } is 
(weakly) stationary. 
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9.3 Autocovariances and spectra 

Let X = {X (t) : -00 < t < oo} be a (weakly) stationary process which takes values in the 
complex plane C. It has autocovariance function c given by 

c(s , s + t) = cov (X (s ) ,  X es + t» ) for s ,  t E lR 

where c (s ,  s + t) depends on t alone . We think of c as a complex-valued function of the single 
variable t, and abbreviate it to 

c(t) = c (s ,  s + t) for any s .  

Notice that the variance o f  X (t) i s  constant for all t since 

(1) var(X (t» = cov(X (t) , X (t» ) = c (O) . 

We shall sometimes assume that the mean value JE(X (t» of X equals zero; if this is not true, 
then define X' (t) = X (t) - JE(X (t» to obtain another stationary process with zero means and 
the same autocovariance function. 

Autocovariances have the following properties. 

(2) Theorem. We have that : 
(a) c (  -t) = c (t) ,  
(b) c is a non-negative definite function, which is to say that 

I > (tk - tj )Z/Zk 2: 0 
j , k 

for all real t l , t2 , . . .  , tn and all complex Z l ,  Z2 , · · ·  , Zn . 

Proof. 
(a) c (-t) = cov(X (t) , X (O» = cov(X (O) , X (t» = c (t) . 
(b) This resembles the proof of Theorem (S .7 .3c) .  Just write 

I > (tk - tj )Z/Zk = L cov (Zj X (tj ) ,  Zk X (tk » ) = cov(Z,  Z) 2: 0 
j , k j , k 

• 

Of more interest than the autocovariance function is the 'autocorrelation function' (see 
Definition (3 .6 .7».  

(3) Definition. The autocorrelation function of a weakly stationary process X with autoco­
variance function c(t) is defined by 

( )  cov(X(O), X(t») c(t) p t = -
.Jvar(X (0» var(X (t» - c(O) 

whenever c(O) = var(X (t» > O. 
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Of course, p et) is just the correlation between X es) and x es + t ) , for any s . 
Following the discussion in Section 8 .2, we seek to assess the incidence of certain regular 

oscillations within the random fluctuation of X. For a weakly stationary process this is often 
a matter of studying regular oscillations in its autocorrelation function. 

(4) Theorem. Spectral theorem for autocorrelatiou functions. The autocorrelationfunc­
tion p (t) of a weakly stationary process X with strictly positive variance is the characteristic 
function of some distribution function F whenever p (t) is continuous at t = O. That is to say, 

(5) 

Proof. This follows immediately from the discussion after Theorem (5 .7 .3 ) ,  and is a simple 
application of Bochner's theorem. Following (2), we need only show that p is uniformly 
continuous. Without loss of generality we can suppose that E(X (t )) = 0 for all t . Let e (t) be 
the autocovariance function of X, and use the Cauchy-Schwarz inequality (3 .6 .9) to obtain 

l e (t + h) - e (t ) 1 = I E (X (O) [X (t + h) - X (t) ] ) I 
.:::: E ( I X (O) I I X (t + h) - X (t) l ) 

.:::: JE( I X (O) 1 2)E( I X (t + h) - X (t ) 1 2) 

= Je(O) [2e (O) - e(h ) - e(-h)] . 

Therefore e is uniformly continuous whenever it is continuous at h = O. Thus p et) = 
e (t )le (O) is uniformly continuous as claimed, and the result follows .  • 

Think of equation (5) as follows .  With any real A we may associate a complex-valued 
oscillating function gA which has period 2n I I A I and some non-negative amplitude fA , say : 

in the less general real-valued theory we might consider oscillations of the form g� (t) 
fA COS(tA) (see equations (8 .2 .6) and (8 .2 .7)) . With any collection A I , A2 , . . .  of frequencies 
we can associate a mixture 

(6) gA (t) = L /jeitAj 
j 

of pure oscil lations, where the /j indicate the relative strengths of the various components . As 
the number of component frequencies in (6) grows, the summation may approach an integral 

(7) g et) = i: f (A)eitA dA 

where f is some non-negative function which assigns weights to the A .  The progression from 
(6) to (7) is akin to the construction of the abstract integral (see Section 5 .6) .  We have seen 
many expressions which are similar to (7), but in which f is the density function of some 
continuous random variable. Just as continuous variables are only a special subclass of the 
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larger family of all random variables, so (7 ) is not the most general limiting form for (6) ; the 
general form is 

(8) g (t ) = i: eitJ.. dF(A) 

where F is a function which maps lR into [0, (0) and which is right-continuous, non-decreasing, 
and such that F( -(0) = 0; we omit the details of this, which are very much the same as in 
part B of Section 5 .6 .  It is easy to see that F is a distribution function if and only if g (O) = 1 .  
Theorem (4) asserts that p enjoys a decomposition in the form of (8) , as a mixture of pure 
oscillations. 

There is an alternative view of (5) which differs slightly from this. If A is a random variable 
with distribution function F, then gA (t ) = eitA is a pure oscillation with a random frequency. 
Theorem (4) asserts that p is the mean value of this random oscillation for some special 
distribution F. Of course, by the uniqueness theorem (5 .9 .3) there is a unique distribution 
function F such that (5) holds. 

(9) Definition. If the autocorrelation function p satisfies 

p (t) = 100 em' dF('A) 
- 00  

then F is called the spectral distribution function of the process. The spectral density 
function is the density function which corresponds to the distribution function F whenever 
this density exists. 

For a given autocorrelation function p, we can find the spectral distribution function by the 
inversion techniques of Section 5 .9 .  

In general, there may be certain frequency bands which make no contribution to (5 ) .  For 
example, if the spectral distribution function F satisfies F(A) = 0 for all A :'S 0, then only 
positive frequencies make non-trivial contributions. If the frequency band (A - E, A + E) makes 
a non-trivial contribution to (5) for all E > 0, then we say that A belongs to the ' spectrum' of 
the process. 

(10) Definition. The spectrum of X is the set of all real numbers A with the property that 

F(A + E) - F(A - E ) > 0 for all E > 0 

where F is the spectral distribution function. 

If X is a discrete-time process then the above account is inadequate, since the autocorrelation 
function p now maps Z into C and cannot be a characteristic function unless its domain is 
extended. Theorem (4) remains broadly true, but asserts now that p has a representation 

(11) p (n) = i: einJ.. dF(A) 
for some distribution function F and all integral n. No condition of continuity is appropriate 
here. This representation ( 1 1 )  is not unique because the integrand gJ.. (n) = einJ.. is periodic 
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in  A, which i s  to say that g).+2n (n)  = g). (n)  for all n .  In this case i t  is customary to rewrite 
equation ( 1 1 )  as 

00 
p en) = L 1 ein). dF (A) , 

k=-oo «2k- l )n, (2k+l )n ] 

yielding the usual statement of the spectral theorem for discrete-time processes : 

(12) p en) = 1 ein). dF(A) 
(-n ,n] 

for some appropriate distribution function F obtained from F and satisfying F( -n) = 0 and 
F(n) = 1 .  A further simplification is possible if X is real valued, since then p en) = p (  -n) ,  
so that 

(13) p en) = ! [p (n) + p ( -n)] = r ! (e in). + e-in). ) dF(A) by ( 1 2) 
J(-n,n] 

= r cos(nA) dF(A) . 
J(-n,n ] 

Furthermore cos(nA) = cos( -nA) ,  and it  follows that p may be expressed as 

(14) p en) = r cos(nA) dG(A) 
J[-n,n] 

for some distribution function G of a symmetric distribution on [-n, n ] .  We note that the 
validity of ( 1 4) for some such G is both necessary and sufficient for p to be the autocorrelation 
function of a real-valued stationary sequence. The necessity of ( 14) has been shown. For its 
sufficiency, we shall see at the beginning of Section 9.6 that all symmetric, non-negative 
definite functions p with p (O) = 1 are autocorrelation functions of stationary sequences 
whose fdds are multivariate normal. 

Equations  ( 1 2)-( 14) express p as the Fourier transform of some distribution function. 
Fourier transforms may be inverted in the usual way to obtain an expression for the spectral 
distribution in terms of p . One such expression is the following. 

(15) Theorem. Let p be the autocorrelation function of a stationary sequence. If the function 
F in ( 1 2) is differentiable with derivative f, then 

(16) 
1 00 

f (A) = 
2n L e-in). p en) 

n=-oo 

at every point A at which f is differentiable. 

For real-valued sequences, ( 1 6) may be written as 

(17) 
1 00 

f (A) = - � p en) cos(nA) , n .:s  A .:s n .  
2n L,.; n=-oo 
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As in the discussion after Theorem (5 .9 . 1 )  of characteristic functions, a sufficient (but not 
necessary) condition for the existence of the spectral density function f is 

00 
(18) L I p (n) 1 < 00.  

n=-oo 

(19) Example. Independent sequences. Let X = {Xn : n ::::: O} be a sequence of inde­
pendent variables with zero means and unit variances. In Example (8 .2 .8 ) we found that the 
autocorrelation function is given by 

{ I if n = 0, p en) = 
0 if n =I O. 

In order to find the spectral density function, either use ( 1 5) or recognize that 

p en) = einJ.. . - d"A 111: 1 -
11: 

2li 

to see that the spectral density function is the uniform density function on [-li, li ] .  The 
spectrum of X is the interval [-li , li ] .  Such a sequence X is sometimes called 'discrete white 
noise' . • 

(20) Example. Identical sequences. Let Y be a random variable with zero mean and unit 
variance, and let X = {Xn : n ::::: O} be the stationary sequence given by Xn = Y for all n . 
In Example (8 .2.9) we calculated the autocorrelation function as  p en) = 1 for al l n, and we 
recognize this as the characteristic function of a distribution which is concentrated at O. The 
spectrum of X is the set {OJ . • 

(21) Example. Two-state Markov chains. Let X = {X (t) : t ::::: O} be a Markov chain with 
state space S = { I ,  2} . Suppose, as in Example (6.9 . 1 5) , that the times spent in states 1 and 2 
are exponentially distributed with parameters a and f3 respectively where af3 > O. That is to 
say, X has generator G given by 

( -a a ) G = 
f3 -f3 

. 

In our solution to Example (6 .9 . 1 5 )  we wrote down the Kolmogorov forward equations and 
found that the transition probabilities 

are given by 

Pij (t )  = lP' (X (t) = j I X (O) = i ) ,  l .:s  i , j .:s 2, 

Pl 1 (t ) = 1 - pdt) = _
f3
_ + _

a
_e- t (a+fJ) , 

a + f3  a + f3  

P22 (t) = 1 - P21 (t ) = _

a
_ + _f3 _e- t (a+fJ) , 

a + f3  a + f3 
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in  agreement with Example (6. 1 0. 1 2) .  Let t -+ 00 to find that the chain has a stationary 
distribution 7C given by 

fJ ex 
7CI = 

ex + fJ ' 7C2 = -- . 
ex + fJ  

Suppose now that X (0) has distribution 7C .  As in Example (8 .2.4), X is a strongly stationary 
process. We are going to find its spectral representation. First, find the autocovariance 
function. If t 2: 0, then a short calculation yields 

lE(X (O)X (t )) = L ilE(X (t ) I X (O) = i )ni = L ijpij (t)ni 
i i , j 

and so the autocovariance function c (t ) is given by 

c(t) = lE(X (O)X (t )) - lE(X (O) )lE(X (t ) )  = 
exfJ 

2 e
-t (a+fJl if t 2: O. 

(ex + fJ) 

Hence c (O) = exfJ / (ex + fJ)2 and the autocorrelation function p is given by 

p et ) = 
c(t) 

= e-t (a+fJl if t 2: O. c(O) 

The process X is real valued, and so p is symmetric ; thus 

(22) p (t) = e- 1 t l (a+fJl . 

The spectral theorem asserts that p is the characteristic function of some distribution. We may 
use the inversion theorem (5 .9 .2) to find this distribution; however, this method is long and 
complicated and we prefer to rely on our experience. Compare (22) with the result of Example 
(5 .8 .4), where we saw that if Y is a random variable with the Cauchy density function 

1 f(A) = nO + A2) ' -00 < A < 00, 

then Y has characteristic function </J (t ) = e- 1 t l . Thus p et ) = </J (t (ex + fJ) ) ,  and p is the 
characteristic function of (ex + fJ )Y  (see Theorem (5 .7 .6)) .  By Example (4.7 .2) the density 
function of A = (ex + fJ )Y  is 

-00 < A < 00, 

and this is the spectral density function of X. The spectrum of X is the whole real line lR. • 

(23) Example. Autoregressive scheme. Let {Zn } be uncorrelated random variables with 
zero means and unit variances, and suppose that 

Xn = exXn- l + Zn , -00 < n < 00, 
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where a is real and satisfies l a l  < 1 . We saw in Problem (8 .7 .2) that X has autocorrelation 
function 

p en) = a ln l , -00 < n < 00. 
Use ( 1 6) to find the spectral density function fx of X:  

I 00 
fx (A.) = - '""' e-inAa ln l 2n �  n=-oo 

1 - a2 1 - a2 
- - --�--�------� - 2n l l - aeiA l 2 - 2n ( I - 2a cos A. + a2) ' 

-n .::: A. .::: n . 

More generally, suppose that the process Y satisfies 
r 

Yn = Laj Yn-j + Zn , -00 < n < 00 
j= 1  

where ai , a2 , . . .  , ar are constants . The same techniques can be applied, though with some 
difficulty, to find that Y is stationary if the complex roots el , e2 , . . .  , er of the polynomial 

A (z) = zr - al zr- I  - . . . - ar = 0 

satisfy l ej I < 1 .  If this holds then the spectral density function fy of Y is given by 

1 f
y
(A.) = 

2na2 I A (e-iA ) 1 2 ' 
-n '::: A. .::: n, 

where a2 = var(Yo) . • 

Exercises for Section 9 . 3  

1. Let Xn = A cos (nA.) + B sin(nA.) where A and B are uncorrelated random variables with zero 
means and unit variances. Show that X is stationary with a spectrum containing exactly one point. 

2. Let U be uniformly distributed on ( -n,  n ) ,  and let V be independent of U with distribution func­
tion F. Show that Xn = e i (U - Vn) defines a stationary (complex) sequence with spectral distribution 
function F.  

3 .  Find the autocorrelation function of  the stationary process (X (t) : -00 < t < oo} whose spectral 
density function is :  
(i)  N(O, 1) ,  (ii) f (x) = i e- lX i , - 00  < x < 00. 

4. Let X I , X 2 , . . .  be a real-valued stationary sequence with zero means and autocovariance function 
c(m) .  Show that 

var (� t X .) = c(O) 1 ( sin(nA/2) ) 2 dF (A) 
n j= 1  J (-1T,1T] n sin(A/2) 

where F is the spectral distribution function. Deduce that n- I 'Ll=1 Xj � 0 if and only if 
F(O) - F(O-) = 0, and show that 

1 n- I 
c(O) {F (O) - F(O-) }  = lim - '" c(j ) .  n---+oo n � j=o 
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Let X = {X (t) : -00 < t < oo} be a stationary process which takes values in C, as before. 
In the last section we saw that the autocorrelation function p enjoys the representation 

(1) 

as the characteristic function of some distribution function F whenever p is continuous at 
t = O. This spectral representation is very useful in many contexts, including for example 
statistical analyses of sequences of data, but it is not the full story. Equation ( 1 )  is an analytical 
result with limited probabilistic content; of more interest to us is the process X, and ( 1 )  leads us 
to ask whether X itself enjoys a similar representation. The answer to this is in the affirmative, 
but the statement of the result is complicated and draws deeply from abstract theory. 

Without much loss of generality we can suppose that X (t) has mean 0 and variance 1 for all 
t. With each such stationary process X we can associate another process S called the ' spectral 
process' of X, in much the same way as the spectral distribution function F is associated with 
the autocorrelation function p .  
(2) Spectral theorem. If X is a stationary process with zero mean, unit variance, continuous 
autocorrelation function, and spectral distribution function F, there exists a complex-valued 
process S = {S (J... ) : -00 < J... < oo} such that 

(3) X (t) = i: eiO. dS(J...) .  

Furthermore S has orthogonal increments in the sense that 

lE ( [S(v) - S(u ) ] [S(t) - S(s) J ) = 0 if u :::: v :::: s :::: t ,  

and in addition lE( I S (v) - S(u) 1 2) = F(v) - F(u) ifu  :::: v. 

The discrete-time stationary process X = {Xn : -00 < n < oo} has a spectral represen­
tation also. The only significant difference is that the domain of the spectral process may be 
taken to be (-Jr, Jr ] . 

(4) Spectral theorem. If X is a discrete-time stationary process with zero mean, unit variance, 
and spectral distribution function F, there exists a complex-valued process S = {S (J...) : 
-Jr < J... :::: Jr }  such that 

(5) Xn = 1 einA dS(J...) .  
(-11",11" ] 

Furthermore S has orthogonal increments, and 

(6) lE ( I S (v) - S(u) 1 2) = F(v) - F(u) for u :::: v .  

A proof of  (4) i s  presented later in  this section. The proof of  (2) i s  very similar, Fourier 
sums being replaced by Fourier integrals ;  this proof is therefore omitted. The process S in (3) 
and (5) is called the spectral process of X. 
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Before proving the above spectral representation, we embark upon an exploration of the 
' stochastic integral ' ,  of which (3) and (5) are examples. The theory of stochastic integration 
is of major importance in modern probability theory, particularly in the study of diffusion 
processes. 

As amply exemplified by the material in this book, probabilists are very often concerned 
with partial sums I:7=1 Xi and weighted sums I:7=1 aiXi of sequences of random variables. 
If X is a continuous-time process rather than a discrete-time sequence, the corresponding 
objects are integrals of the form I! a (u) dX (u) ; how should such an integral be defined? It is 
not an easy matter to discuss the ' stochastic integral ' before an audience some of whom have 
seen little or nothing beyond the Riemann integral. There follows such an attempt. 

Let S = { Set )  : t E �} be a complex-valued continuous-time random process on the 
probability space (Q , F ,  lP) , and suppose that S has the following properties : 

(7) 

(8) 

lE( I S(t ) 1 2) < 00 for all t ,  

lE ( I S (t + h) - S(t) 1 2) -+ 0 a s  h (- 0 ,  for all t ,  

(9) the process S has orthogonal increments in that 

lE ([S(v) - S(u ) ] [S(t) - S(s) ]) = 0 whenever u .:::: v .:::: s .:::: t . 

Condition (7) is helpful, since we shall work with random variables with finite second mo­
ments, and with mean-square convergence. Condition (8) is a continuity assumption which 
will be useful for technical reasons. Condition (9) will be of central importance in demon­
strating the existence of limits necessary for the definition of the stochastic integral. 

Let G(t) be defined by 

(10) 
{ lE ( I S (t) - S(0) 1 2) 

G(t) = 
-lE ( I S(t) _ S(0) 1 2) 

if t :::: 0, 

if t < O. 

It  is an elementary calculation that 

(11) lE ( I S (t) - S(s) 1 2) = G(t) - G(s ) ,  for s ,:::: t . 

To see that this holds when 0 .:::: s .:::: t ,  for example, we argue as follows :  

G(t) = lE ( I [S(t) - S(s) ]  + [S(s )  - S(0) ] 1 2) 
= lE ( I S(t )  - S(s) 1 2) + lE ( I S (s ) - S(0) 1 2) 

+ lE ( [S(t) - S(s ) ] [S(s ) - S(O) ] + [Set) - S(s) ] [S(s) - S(O)]) 
= lE ( I S (t) - S(s) 1 2) + G(s )  

by the assumption of  orthogonal increments . I t  follows from ( 1 1 )  that G i s  monotonic non­
decreasing, and is right-continuous in that 

(12) G(t + h) -+ G(t) as h {- O. 

The function G is central to the analysis which follows .  
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Let a l < a2 < . . .  < an , and let C I , C2 , . . .  , Cn- I be complex numbers. Define the step 
function <P on � by 

<p (t) = . 

{ 0 if t < a l or t 2:: an , 
Cj If aj .:s t < aJ+ I , 

and define the integral 1 (<p) of <p with respect to S by 

(13) 100 n- I 
I (<p) = -00 <p (t) dS(t) = � cj [s(aj+ ] ) - S(aj ) ] ; 

this i s  a finite sum, and therefore there i s  no  problem concerning its existence. 
Suppose that <PI and <P2 are step functions of the type given above. We may assume, by a 

suitable 'refinement' argument, that <PI and <P2 are of the form 

<PI (t) = <P2 (t) = 0 

for some a] < a2 < . . .  < an . Then, using the assumption of orthogonal increments, 

E(/ (<pd / (<P2») = L::>jdkE([S(aJ+d - S(aj ) ] [S(ak+] ) - S(ak )J) 
j, k 

= L::>jdjE( I S(aJ+ I ) - S(aj ) 1 2) 
j 

= L::>jdj [G(aJ+ I ) - G(aj ) ] by ( 1 1 ) ,  
j 

which may be written as 

(14) E(/ (<pd / (<P2») = L: <PI (t )<p2 (t) dG(t ) .  
It i s  now immediate by expansion o f  the squares that 

(15) 

which is to say that ' integration is distance preserving' in the sense that 

(16) 

where the first norm is given by 

(17) I I U - V I I 2 = JE( I U  - V 1 2) for random variables U, V , 

and the second by 

(18) I I f - g i l = L: I f (t ) - g (t) 1 2 dG (t ) for suitable f, g : � -+ C . 
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We are ready to take limits . Let 1/1 : � -+ C and let {<Pn } be a sequence of step functions 
such that l I <Pn - 1/1 1 1  -+ 0 as n -+ 00. Then 

whence it follows from ( 1 6) that the sequence { / (<Pn ) } is mean-square Cauchy convergent, 
and hence convergent in mean square (see Problem (7 . 1 1 . 1 1» .  That is, there exi sts a random 

variable 1 (1/1) such that 1 (<Pn ) � 1 (1/1) ;  we call 1 (1/1) the integral of 1/1 with respect to S, 
writing 

(19) 1 (1/1) = i: 1/I(t) dS(t ) . 
Note that the integral i s  not defined uniquely, but only a s  any mean-square limit of  1 (<Pn ) ; any 
two such limits It and h are such that PUI = h) = 1 .  

For which functions 1/1 do there exist approximating sequences {<Pn } of step functions? The 
answer is those (measurable) functions for which 

(20) i: / 1/I (t) / 2 dG(t) < 00. 

To recap, for any given function 1/1 : � -+ C satisfying (20), there exists a random variable 

(21) 1 (1/1) = i: 1/I (t) dS (t ) 

defined as above. Such integrals have many of the usual properties of integrals , for example: 
(a) the integral of the zero function is zero, 
(b) 1 (a 1/11 + f31/12) = a 1 (1/Id + f3 1 (1/12 ) for a, f3 E C, 

and so on. Such statements should be qualified by the phrase 'almost surely ' , since integrals 
are not defined uniquely ; we shall omit this qualification here . 

Integrals may be defined on bounded intervals just as on the whole of the real line. For 
example, if 1/1 : � -+ C and (a , b) is a bounded interval, we define 

1 1/I(t) dS (t ) = 100 
1/Iab (t ) dS (t ) 

(a , b) -00 

where 1/Iab (t) = 1/I (t) /(a , b) (t ) . 
The above exposition is directed at integrals f 1/I (t) dS(t) where 1/1 is a given function 

from � to IC. It is possible to extend this definition to the situation where 1/1 is itself a random 
process. Such an integral may be constructed very much as above, but at the expense of adding 
certain extra assumptions concerning the pair (1/1, S) ; see Section 1 3 . 8 .  

Proof of Theorem (4). Let Hx be the set of  all linear combinations of the Xj , so that Hx i s  
the set of  all random variables of  the form 2:.1=1 aj Xm (j ) for a l , a2 , . . .  , an E C and integers 
n ,  m ( I ) ,  m (2) , . . .  , m (n ) .  The space Hx is a vector space over C with a natural inner product 
given by 

(22) (U ,  V ) z = JE(U V) .  
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The closure H x of  H x is defined to be  the space H x together with all limits of  mean-square 
Cauchy-convergent sequences in Hx . 

Similarly, we let HF be the set of all linear combinations of the functions In : R -+ IC 
defined by In (x) = einx for -00 < x < 00. We impose an inner product on HF by 

(23) ( U ,  v) = 1 U (A) V (A) dF(A) for u ,  v E HF , 
(-n,n]  

and we write H F for the closure of HF, being the space HF together with all Cauchy­
convergent sequences in HF (a sequence {un } is Cauchy convergent if (un - Um , Un - um ) -+ 0 
as m,  n -+ (0). 

The two spaces H x and H F are Hilbert spaces, and we place them in one-one correspon­
dence in the following way. Define the linear mapping /L : HF -+ Hx by /L (I; ) = Xj , so 
that 

/L (t aj l; ) = t aj Xj ; 
j= l j= l 

it is seen easily that /L is one-one, in a formal sense. Furthermore, 

(/L(fn ) ,  /L(fm) ) z = (Xn , Xm )z = 1 ei (n-m)). dF(A) = Un , 1m ) 
(-n,n 1 

by equations (9 .3 . 1 2) and (23) ;  therefore, by linearity, (/L(u ) ,  /L (v) ) z = (u , v) for u ,  v E HF , 
so that /L is 'distance preserving' on HF . The domain of /L may be extended to H F in the 
natural way: if U E H F ,  U = limn---+oo Un where Un E HF, we define /L (u)  = limn---+oo /L (un ) 
where the latter limit is taken in the usual sense for H x . The new mapping /L from H F to H x 
is not quite one-one, since mean-square limits are not defined uniquely, but this difficulty is 
easily avoided (/L is one-one when viewed as a mapping from equivalence classes of functions 
to equivalence classes of random variables) .  Furthermore it may easily be checked that /L is 
distance preserving on H F ,  and linear in that 

for al , a2 , . . . , an E IC, U I , U2 , . . .  , Un E HF .  
The mapping /L is  sometimes called an isometric isomorphism. We now define the process 

S = {SeA) : -lr < A � lr} by 

(24) SeA) = /L(I).) for - lr < A � lr,  

where I). : lR. -+ {O ,  I }  i s  the indicator function of the interval (-lr ,  A] . I t  is a standard result 
of Fourier analysis that I). E H F ,  so that /L(I).)  is well defined. We introduce one more piece 
of notation, defining lafJ to be the indicator function of the interval (a, ,8] ;  thus lafJ = IfJ - la . 

We need to show that X and S are related (almost surely) by (5) .  To this end, we check first 
that S satisfies conditions (7)-(9) . Certainly E( I  SeA) 1 2) < 00 since SeA) E H x. Secondly, 

E ( I S(A + h) - S(A) 1 2) = (S(A + h) - SeA) , SeA + h) - S(A) ) z 

= ( h ,J...+h , h. J...+h ) 
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by linearity and the isometry of J,I,. Now (h ,J..+h ,  h,J..+h )  -+ 0 as h ..j.. 0, and (8) has been 
verified. Thirdly, if u :s v :s s :s t, then 

(S (v) - S (u ) , S (t ) - S (s » ) z = ( Juv , Jst ) = 0 

since Juv (x ) Jst (x ) = 0 for all x .  Thus S has orthogonal increments . Furthermore, by (23), 

lE ( I S (v) - S (u ) 1 2) = ( Juv , Juv )  = ( dF()..) = F (v) - F(u)  
J(U , v] 

since F is right-continuous ;  this confirms (6), and it remains to check that (5) holds. 
The process S satisfies conditions (7)-(9) , and it follows that the stochastic integral 

1 (1/1) = ( 1/1 ()..) dS ()") 
J(-rr,rr] 

is defined for a broad class of functions 1/1 : (-li,  li ]  -+ IC. We claim that 

(25) 1 (1/1) = J,I,(1/I) (almost surely) for 1/1 E H F ·  

The result of  the theorem will follow immediately by the choice 1/1 = in , for which (25) 
implies that (almost surely) 1 Un ) = J,l,Un)  = Xn , which is to say that 

( einJ... dS ()") = Xn 
J(-rr,rr] 

as required. 
It remains to prove (25) ,  which we do by systematic approximation. Suppose first that 1/1 

is a step function, 

(26) 

where -li < al < a2 < ' " < an :s li and C l , C2 , . . . , Cn E IC. Then 

n n 
1 (1/1) = L::>j [S(aj+ l ) - S (aj ) ]  = L CjJ,l,(JaJ , aJ+ l ) by (24) 

j= 1 j= l 

by (26) . 

Hence 1 (1/1) = J,I,(1/I) for all step functions 1/1 .  More generally, if 1/1 E H F and {1/In }  is a 
sequence of step functions converging to 1/1 ,  then J,I,(1/In ) -+ J,I,(1/I) . By the definition of the 
stochastic integral, it is the case that ! (1/In ) -+ 1 (1/1) ,  and it follows that ! (1/1) = J,I,(1/I) ,  which 
proves (25) .  • 
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Exercises for Section 9 .4 

1 .  Let S be the spectral process of  a stationary process X with zero mean and unit variance. Show 
that the increments of S have zero means. 

2. Moving average representation. Let X be a discrete-time stationary process having zero means, 
continuous strictly positive spectral density function f, and with spectral process S . Let 

1 einJ... 
Yn = dS(A) .  

(-n, n ]  .J2ref(A) 

Show that . . . , Y - I , Yo , YI , . . , is a sequence of uncorrelated random variables with zero means and 
unit variances .  

Show that Xn may be represented as  a moving average Xn = 'f'..'t=-oo aj Yn-j where the aj are 
constants satisfying 

00 
j2ref(A) = L aj e-ijJ... for A E (-re, re ] .  

j=-oo 

3. Gaussian process. Let X be a discrete-time stationary sequence with zero mean and unit vari­
ance, and whose fdds are of the multivariate-normal type. Show that the spectral process of X has 
independent increments having normal distributions. 

9.5 The ergodic theorem 

The law of large numbers asserts that 

(1) 

whenever {Xj } i s  an independent identically distributed sequence with mean /L ;  the conver­
gence takes place almost surely. This section is devoted to a complete generalization of the law 
of large numbers, the assumption that the Xj be independent being replaced by the assumption 
that they form a stationary process. This generalization is called the 'ergodic theorem' and 
it has more than one form depending on the type of stationarity-weak or strong-and the 
required mode of convergence; recall the various corresponding forms of the law of large 
numberst .  

I t  i s  usual to state the ergodic theorem for discrete-time processes, and we conform to this 
habit here. Similar results hold for continuous-time processes, sums of the form 'L7 Xj being 
replaced by integrals of the form f; X (t) dt .  Here is the usual form of the ergodic theorem. 

(2) Theorem. Ergodic theorem for strongly stationary processes. Let X =: {Xn : n 2::: I }  
be a strongly stationary process such that EIX 1 1  < 00. There exists a random variable Y with 
the same mean as the Xn such that 

1 n - L Xj -+ Y a.s. and in mean. 
n j=l 

tThe original weak ergodic theorem was proved by von Neumann, and the later strong theorem by Birkhoff. 
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The proof of this is difficult, as befits a complete generalization of the strong law of large 
numbers (see Problem (9.7 . 1 0» .  The following result is considerably more elementary. 

(3) Theorem. Ergodic theorem for weakly stationary processes. If X = {XII : n ?: i }  is 
a (weakly) stationary process, there exists a random variable Y suJh that lEY = lEX 1 and 

We prove the latter theorem first. The normal proof of the ' strong ergodic theorem' (2) is 
considerably more difficult, and makes use of harder ideas than those required for the 'weak 
ergodic theorem' (3) .  The second part of this section is devoted to a discussion of the strong 
ergodic theorem, together with a relatively straightforward proof. 

Theorems (2) and (3) generalize the laws of large numbers . There are similar generaliza­
tions of the central limit theorem and the law of the iterated logarithm, although such results 
hold only for stationary processes which satisfy certain extra conditions . We give no details 
of this here, save for pointing out that these extra conditions take the form 'Xm and XII are 
"nearly independent" when 1 m  - n l is large' .  

We give two proofs of (3) .  Proof A is conceptually easy but has some technical difficul­
ties ;  we show that n- 1 'L7 Xj is a mean-square Cauchy-convergent sequence (see Problem 
(7 . 1 1 . 1 1» .  Proof B uses the spectral representation of X;  we sketch this here and show that 
it yields an explicit form for the limit Y as the contribution made towards X by 'oscillations 
of zero frequency' . 

Proof A. Recall from (7 . 1 1 . 1 1 ) that a sequence {YII }  converges in mean square to some limit 
if and only if {Yn }  is mean-square Cauchy convergent, which is to say that 

(4) 

A similar result holds for complex-valued sequences. We shall show that the sequence 
{n- 1 'L7 Xj } satisfies (4) whenever X is stationary. This is easy in concept, since it involves 
expressions involving the autocovariance function of X alone; the proof of the mean-square 
version of the law of large numbers was easy for the same reason. Unfortunately, the verifi­
cation of (4) is not a trivial calculation .  

For any complex-valued random variable Z, define 

the function I I . I I is a norm (see Section 7 .2) when viewed as a function on the collection 
of equivalence classes of random variables with finite second moment and with Y � Z if 
JP'(Y = Z) = 1 .  We wish to show that 

(5) 

where 

II (X)n - (X)m l l -+ 0 as n , m -+ 00 



9.5 The ergodic theorem 395 

[Physicists often use the notation ( . ) to denote expectation . ]  Set 

where the infimum is calculated over all vectors 1. = (A I , A2 , . . .  , AN) containing non­
negative entries with sum 1 .  Clearly J-LN 2: J-LN+ I and so 

J-L = lim J-L N = inf J-L N 
N---+ oo N 

exists . If m < n then 

where 

and so 

II (X)n + (X)m l l = 2 1 1t AJ XJ I I 
J = I 

It is not difficult to deduce (see Exercise (7 . 1 .2b) for the first line here) that 

II (X)n - (X)m 1 1 2 = 2 1 1 (X)n 1 1 2 + 2 1 1 (X)m 1 1 2 - II (X)n + (X)m 1 1 2 

::: 2 1 1 (X)n 1 1 2 + 2 1 1 (X)m 1 1 2 - 4J-L2 

= 2 1 II (X)n 1 1 2 - J-L2 1 + 2 1 1 1 (X)m 1 1 2 - J-L2 1 

and (5) follows as soon as we can show that 

(6) I I (X)n I I � J-L as n � 00. 

The remaining part of the proof is devoted to demonstrating (6) . 
Choose any E > 0 and pick N and 1. such that 

where Ai 2: 0 and L� Ai = 1 .  Define the moving average 

it is not difficult to see that Y = {Yk } is a stationary process (see Problem (8 .7 . 1 )) .  We shall 
show that 

(7) 

where 

1 I ( Y )n - (X)n l l � 0 as n � 00 
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Note first that, by the triangle inequality (7 . 1 .5) ,  

(8) 

since I I Yn I I = I I YI I I for all n. Now 

where 
I k+n- I 

(Xkn = - L Xj ; n j=k 
now use the facts that (Xh ,n = (X)n , 1 - A l = A2 + A3 + . . .  + AN ,  and the triangle inequality 
to deduce that 

N 

I I ( Y )n - (X)n l l :S L Aj l l (X)j ,n - (X) I , n l l .  
j=2 

However, by the triangle inequality again, 

1 II (X )j ,n - (Xh ,n II = ;;- 1 1 (Xj + . . . + XJ+n- t >  - (X I + . . .  + Xn ) I I 
1 

= - 1 1 (Xn+ 1 + . . .  + XJ+n- t >  - (XI + . . .  + Xj- t >  I I n 
2j 

::: - I I XI I I n 
since II X n II = II X I II for all n . Therefore, 

let n � 00 to deduce that (7) holds. Use (8) to obtain 

11 ::: II (X)n II ::: II (X) n - (Y )n II + II (Y )n I I 
::: I I (X)n - (Y )n I I + 11 + E � 11 + E as n � 00. 

Now E was arbitrary, and we let E {- 0 to obtain (6) . 

Since (X )n � Y, we have that (X)n � Y,  which implies that E(X)n � EY. However, 
E(X)n = EXI ,  whence EY = EXI . • 

Sketch proofB. Suppose thatE(Xn) = 0 for all n . The process X has a spectral representation 

Now, 

Xn = 1 ein).. dS(A) . 
(-n,n ] 

1 n

I
l n 1 (9) (X )n = - L Xj = - L eij).. dS(A) = gn (A) dS(A) n j= l (-n,n]  n j= 1 (-n,n ]  
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where 

if ).. = 0, 
(10) 

it A # o. 

We have that I gn ()..) I ::: 1 for all n and )", and, as n -+ 00, 

(11) 
{ 1 if ).. = 0, 

gn ()..) -+ g ()..) = 
0 if ).. # O. 

It can be shown that 

implying that 

r gn ()..) dS()") � r g ()..) dS()") as n -+ 00, l(-n,n] l(-n,n] 

(X)n � r g ()..) dS()") = S(O) - S(O-) , l(-n,n ] 
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by the right-continuity of S, where S(O-) = limy to S(y) . This shows that (X )n converges 
in mean square to the random magnitude of the discontinuity of S()") at ).. = 0 (this quantity 
may be zero); in other words, (X)n converges to the 'zero frequency ' or ' infinite wavelength' 
contribution of the spectrum of X. This conclusion is natural and memorable, since the average 
of any oscillation having non-zero frequency is zero . • 

The second proof of Theorem (3) is particularly useful in that it provides an explicit rep­
resentation for the limit in terms of the spectral process of X. It is easy to calculate the first 
two moments of this limit. 

(12) Lemma. If X is a stationary process with zero means and autocovariance function c(m) 
then the limit variable Y = limn---+oo {n- 1 'LJ=1 Xj } satisfies 

I 
n 

E(Y) = 0, E( I Y I 2) = lim - L C(j ) .  n---+oo n j= l 

A similar result holds for processes with non-zero means. 

Proof. We have that (X)n � Y, and so (X ) n � Y by Theorem (7 .2 .3 ) .  The result of 
Exercise (7 .2 . 1 )  implies that E« (X)n ) -+ E(Y) as n -+ 00; however, E« (X)n ) = E(Xt }  = 0 
for all n . 

In order to prove the second part, either use Exercise (7 .2 . 1 )  again and expand E( (X)� ) in 
terms of c (see Exercise (2)), or use the method of Proof B of (3) .  We use the latter method. 
The autocovariance function c (m) satisfies 

1 n r ;:;
.
� c(j ) = c(O) l(_n,n

/n ().. ) dF ()..) 

-+ c(O) r g ().. ) d F()") as n -+ 00 l( -n,n] 
= c (O) [F (O) - F(O-)] 
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where gn and g are given by ( 1 0) and ( 1 1 ) ,  F is the spectral distribution function, and F(O-) = 
limy to F(y) as usual. We can now use (9.4.6) and the continuity properties of S to show that 

c (O) [F(O) - F(O-) ] = E ( I S (O) - S(0-) 1 2) = E( I Y I 2) . • 

We turn now to the strong ergodic theorem (2), which we shall first rephrase slightly. Here 
is some terminology and general discussion . 

A vector X = (X I , X2 , . . .  ) of real-valued random variables takes values in the set of real 
vectors of the form x = (X I , X2 , . . .  ) .  We write Il�T for the set of all such real sequences, where 
T denotes the set { I ,  2, . . .  } of positive integers . The natural 0' -field for � T is the product 
/BT of the appropriate number of copies of the Borel a -field /B of subsets of R Let Q be a 
probability measure on the pair (�T , /B T ) .  The triple (�T , /BT , Q) is our basic probability 
space, and we make the following crucial definitions. 

There is a natural ' shift operator' r mapping �T onto itself, defined by r (x) = x' where 
x, = (X2 , X3 , . . .  ) ;  that is, the vector x = (X I , X2 , . . .  ) is mapped to the vector (X2 , X3 , . . .  ) .  
The measure Q i s  called stationary if and only if Q(A) = Q(r- 1 A) for all A E /BT (remember 
that r- I  A = {x E �T : r (x) E A}) .  If Q is stationary, we call the shift r 'measure preserving' . 
Stationary measures correspond to strongly stationary sequences of random variables, as the 
following example indicates. 

(13) Example. Let X = (X I , X2 , . . .  ) be a strongly stationary sequence on the probability 
space (Q , :F ,  IP') . Define the probability measure Q on (�T , /BT ) by Q(A) = IP'(X E A) for 
A E /B T . Now X and r (X) have the same fdds, and therefore 

Q(r - I A ) = IP'(r (X) E A) = IP'(X E A) = Q(A) 
for all (measurable) subsets A of � T . 

We have seen that every strongly stationary sequence generates a stationary measure on 
(�T , /B T ) .  The converse is true also. Let Q be a stationary measure on (�T , /BT) ,  and define 
the sequence Y = (YI , Y2 , . . .  ) of random variables by Yn (x) = Xn , the nth component of the 
real vector x .  We have from the stationarity of Q that, for A E /BT , 

Q(Y E A) = Q(A) = Q(r- I A ) = Q(r (Y) E A) 
so that Y and r (Y) have the same fdds .  Hence Y is a strongly stationary sequence. • 

There is a certain special class of events in /BT called invariant events . 

(14) Definition. An event A in /BT is called invariant if A = r- I  A .  
A n  event A i s  invariant if 

(15) X E A if and only if r (x) E A , 
for any x E �T . Now ( 1 5) is equivalent to the statement 'x E A if and only if rn (x) E A for all 
n ::::: 0' ; remembering that rn (x) = (Xn+ l , Xn+2 , . . .  ), we see therefore that the membership 
by x of an invariant event A does not depend on any finite collection of the components of x. 
Here are some examples of invariant events : 

A I  = {x :  lim sup xn :::: 3 } , 
n--+oo 

A2 = {x : the sequence n- I  Xn converges} , 

A3 = {x : Xn = 0 for all large n } .  
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We denote by 1 the set of all invariant events . It is not difficult to see (Exercise ( 1 )) that 1 is 
a a-field, and therefore 1 is a sub-a-field of /BT , called the invariant a -field. 

Finally, we need the idea of conditional expectation . Let U be a random variable on 
(JRT , /BT , Q) with finite mean JE(U) ; here, JE denotes expectation with respect to the measure 
Q. We saw in Theorem (7 .9 .26) that there exists an 1-measurable random variable Z such 
that JEIZ I < 00 and JE«U - Z) /G )  = 0 for all G E 1 ;  Z is usually denoted by Z = JE(U 1 1 )  
and is called the conditional expectation of U given 1 .  

We are now ready to restate the strong ergodic theorem (2) in the following way. 

(16) Ergodic theorem. Let Q be a stationary probability measure on (JRT , /BT ), and let f 
be a real-valued random variable on the space (JRT , /BT , Q). Let fl , f2 , . . .  be the sequence 
of random variables defined by 

(17) 

If f has finite mean, then 

(18) 
1 n 
- L fj � JE(f I 1)  a. s. and in mean. n j= l 

The sequence Y = (fl , f2 , . . .  ) is of course strongly stationary : since Q is stationary, 

The above theorem asserts that the average of the first n values of Y converges as n � 00, 
the limit being the conditional mean of f given 1 ;  this is a conclusion very similar to that of 
the strong law of large numbers (7 .5 . 1 ) . 

To understand the relationship between Theorems (2) and ( 1 6) , consider the situation 
treated by (2) . Let X l , X2 , . . .  be a strongly stationary sequence on (Q , F ,  JID) , and let Q 
be the stationary measure on (JRT , /BT ) defined by Q(A) = JID(X E A) for A E /BT . We 
define f : JRT � JR by f (x) = X l for x = (X l , X2 , . . .  ) E JRT , so that fj in ( 1 7) is given 
by fj (x) = Xj .  It is clear that the sequences {Xn : n ::: 1 }  and { fn : n ::: I }  have the same 
joint distributions, and it follows that the convergence of n- l 'L7 fj entails the convergence 
of n-

I 'L7 Xj . 

(19) Definition. The stationary measure Q on (JRT , /BT ) is called ergodic if each invariant 
event has probability either 0 or 1 ,  which is to say that Q(A) = 0 or 1 for all A E 1 .  

Ergodic stationary measures are of particular importance. The simplest example o f  such a 
measure is product measure. 

(20) Example. Independent sequences. Let § be a probability measure on (IR, /B) , and 
let Q = §T , the appropriate product measure on (JRT , /BT ) .  Product measures arise in the 
context of independent random variables, as follows .  Let X I ,  X2 , . . .  be a sequence of in­
dependent identically idstributed random variables on a probability space (Q , F ,  JID) , and let 
§(A) = JID(X I E A) for A E /B. Then § is a probability measure on (JR, /B) .  The probability 
space (JRT , /BT , §T ) is the natural space for the vector X = (X l , X2 , . . .  ) ;  that is, §T (A) = 
JID(X E A) for A E /BT . 
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Suppose that A (E 93T) is invariant. Then, for all n , A belongs to the a-field generated 
by the subsequence (Xn , Xn+ l , . . .  ) ,  and hence A belongs to the tail a -field of the Xi . By 
Kolmogorov 's zero-one law (7 . 3 . 1 5) ,  the latter a -field is trivial, in that all events therein have 
probability either 0 or 1 .  Hence all invariant events have probability either 0 or 1 ,  and therefore 
the measure §T is ergodic. • 

The conclusion ( 1 8) of the ergodic theorem takes on a particularly simple form when the 
measure Q is ergodic as well as stationary. In this case, the random variable JE(Y I i ) is (a.s . )  
constant, as the following argument demonstrates. The conditional expectation JE(Y I i )  is  
i -measurable, and therefore the event Ay = {JE(Y I i ) ::: y}  belongs to i for all y .  However, 
i is trivial, in that it contains only events having probability 0 or 1 .  Hence JE(Y I i) takes 
almost surely the value sup{y : Q(Ay ) = OJ . Taking expectations, we find that this value is 
JE(y) , so that the conclusion ( 1 8) becomes 

(21) 
1 

n 

- L Yi -+ JE(Y) a.s .  and in mean 
n i= 1  

in  the ergodic case . 

Proof of ergodic theorem (16). We give full details of this for the case when Q is ergodic, 
and finish the proof with brief notes describing how to adapt the argument to the general case. 

Assume then that Q is ergodic, so that JE(Y I i) = JE(Y) . First we prove almost-sure 
convergence, which is to say that 

(22) 
1 

n 
- L Yi -+ JE(Y) a.s .  
n i= 1  

I t  suffices to prove that 

(23) if JE(Y) < 0 then lim sup I � t Yi ) ::: 0 a.s .  
n--HXl n i= 1 

To see that (23) suffices, we argue as follows .  Suppose that (23) holds, and that Z is a 
(measurable) function on (lRT , 93T , Q) with finite mean, and let E > O. then y' = Z -JE(Z) -E 
and y" = -Z + JE(Z) - E have negative means. Applying (23) to y '  and y" we obtain 

JE(Z) - E ::: lim inf I � t Zi ) ::: lim sup I � t Zi ) ::: JE(Z) + E a .s . ,  n--+oo n . n--+oo n . ,= 1 ,= 1 

where Zi i s  the random variable given by Zi (X) = Z(r i- 1 (x) ) .  These inequalities hold for 
all E > 0, and therefore 

lim inf I � t Zi ) = lim sup I �  t Zi ) = JE(Z) a.s .  n--+ oo n i=1 n--+oo n i=1 

as required for almost-sure convergence . 
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Turning to the proof of (23), suppose that E(Y) < 0, and introduce the notation Sn = 
L:7= 1 Yi . Now Sn .:::: Mn where Mn = max{O, Sl , S2 , . . .  , Sn } satisfies Mn .:::: Mn+ l . Hence 
Sn .:::: Moo where Moo = limn--->oo Mn . Therefore 

(24) lim sup { .!.Sn } .:::: lim sup { .!.Moo } , 
n--->oo n n--->OO n 

and (23) will be proved once we know that Moo < 00 a.s .  It is easily seen that the event 
{Moo < Do} is an invariant event, and hence has probability either 0 or 1 ;  it is here that we 
use the hypothesis that 'Ol is ergodic . We must show that 'Ol(Moo < 00 ) = 1 ,  and to this end 
we assume the contrary, that 'Ol(Moo = 00) = 1 .  

Now, 

(25) Mn+l = max{O, Sl , S2 , . . .  , Sn+d 

= max {O, Sl + max{O, S2 - Sl , . . .  , Sn+l  - Sd } 

= max{O, Sl + M� } 

where M� = max{O, S; , S� , . . .  , S� } ,  and S; = L:{=l Yi+l . It follows from (25) that 

Mn+l = M� + max{-M� , Y } ,  

since S l = Y .  Taking expectations and using the fact that E(M� )  = E(Mn ) ,  we  find that 

(26) 

If Mn t 00 a.s .  then M� t 00 a.s . ,  implying that max {- M� , Y} t Y a.s .  It follows by (26) 
(and dominated convergence) that 0 .:::: E(Y) in contradiction of the assumption that E(Y) < O. 
Our initial hypothesis was therefore false, which is to say that 'Ol(Moo < 00 ) = 1, and (23) is 
proved. 

Having proved almost-sure convergence, convergence in mean will follow by Theorem 
(7 . 1 0.3) once we have proved that the family {n- 1 Sn : n ::: I }  is uniformly integrable. The 
random variables Yl , Y2 , . . .  are identically distributed with finite mean; hence (see Exercise 
(5 .6 .5» for any E > 0, there exists 8 >  0 such that, for all i ,  

(27) 

Hence, for all n ,  

E( I Yi l IA) < E for all A satisfying 'Ol(A) < 8 . 

whenever 'Ol(A) < 8 . We deduce by an appeal to Lemma (7 . 1 0.6) that {n- 1 Sn : n ::: l } is a 
uniformly integrable family as required. 

This completes the proof in the ergodic case. The proof is only slightly more complicated 
in the general case, and here is a sketch of the additional steps required. 
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1 .  Use the definition of 1 to show that E(Y 1 1 ) = E(Yi 1 1 ) for all i .  
2 .  Replace (23) by the following statement: on the event {E(Y 1 1 ) < O} , we have that 

except possibly for an event of probability O. Check that this is sufficient for the required 
result by applying it to the random variables 

where E > O. 
y' = Z - E(Z 1 1 ) - E , y" = -Z + E(Z 1 1 ) - E ,  

3 .  Moving to (26), prove that E(M� I 1 ) = E(Mn I 1 ) , and deduce the inequality 
E(max{-M� ,  Y } 1 1 ) ::::: O. 

4. Continuing from (26), show that {Mn --+ oo} = {M� --+ oo}, and deduce the inequality 
E(Y I 1) ::::: 0 on the event {Mn --+ Do} . This leads us to the same contradiction as in 
the ergodic case, and we conclude the proof as before. • 

Here are some applications of the ergodic theorem. 

(28) Example. Markov chains. Let X = {Xn } be an irreducible ergodic Markov chain with 
countable state space S, and let 7C be the unique stationary distribution of the chain. Suppose 
that X (0) has distribution 7C ;  the argument of Example (8 .2.4) shows that X is strongly 
stationary. Choose some state k and define the collection I = { In : n ::::: O} of indicator 
functions by 

In = { I  if Xn = k , 
o otherwise. 

Clearly I is strongly stationary. It has autocovariance function 

c (n ,  n + m) = cov(In , In+m ) = ll"k [Pkk (m) - ll"k ] , m ::::: 0, 

where Pkk (m) = JP'(Xm = k I Xo = k) . The partial sum Sn = ,£j:6 Ij is the number of 
visits to the state k before the nth jump, and a short calculation gives 

1 
-E(Sn ) = ll"k for all n . n 

It is a consequence of the ergodic theorem (2) that 

.!.Sn � S  as n --+ 00,  
n 

where S is a random variable with mean E(S) = E(Io) = ll"k . Actually S is constant in that 
JP'(S = ll"k) = 1 ;  just note that c (n ,  n + m) --+ 0 as m --+ 00 and use the result of Problem 
(9 .7 .9 ) .  • 

(29) Example. Binary expansion. Let X be uniformly distributed on [0, 1 ] . The random 
number X has a binary expansion 

00 
X = 0 . X IX2 · · · = L Xjrj 

j= l  
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where X] , X 2, . . .  is a sequence of independent identically distributed random variables, each 
taking one of the values 0 or 1 with probability ! (see Problem (7 . 1 1 .4)) . Define 

(30) Yn = 0 . Xn Xn+l . . . for n � 1 

and check for yourself that Y = {Yn : n � 1 }  is strongly stationary. Use (2) to see that 

1 
n 

a. s. 1 - "'" y. ----+ - as n -+ 00 . 
n � J 2 

j = l 

Generalize this example as follows .  Let g : R -+ R be such that : 
(a) g has period 1 ,  so that g (x + 1 )  = g (x)  for all x ,  
(b) g i s  uniformly continuous and integrable over [0, 1 ] ,  

and define Z = {Zn : n � I }  b y  Zn = g (2n- 1 X)  where X i s  uniform on  [0, 1 ]  as before. The 
process Y, above, may be constructed in this way by choosing g (x)  = x modulo 1 .  Check 
for yourself that Z is strongly stationary, and deduce that 

Can you adapt this example to show that 

as n -+ 00.  

1 
n { I 

- L: g (X + (j - l )n) � 
Jo 

g (x)  dx 
n 

j = l 0 

as n -+ oo  

for any fixed positive irrational number n?  • 

(31) Example. Range of random walk. Let Xl , X2 , . . .  be independent identically dis­
tributed random variables taking integer values , and let Sn = X] + X 2 + . . .  + Xn ;  think 
of Sn as being the position of a random walk after n steps. Let Rn be the range of the walk 
up to time n, which is to say that Rn is the number of distinct values taken by the sequence 
S] , S2 , . . .  , Sn . It was proved by elementary means in Problem (3 . 1 1 .27) that 

(32) 
1 
-E(Rn )  -+ lP'(no return) as n -+ 00 
n 

where the event {no return} = {Sk i= 0 for all k � I }  is the event that the walk never revisits 
its starting point So = O. 

Of more interest than (32) is the fact that 

(33) 
1 a.s . - Rn ----+ lP'(no return) , 
n 

and we shall prove this with the aid of the ergodic theorem ( 1 6) .  
First, let N be a positive integer, and let Zk be the number of  distinct points visited by 

S(k- l )N+] ,  S(k- l )N+2 , . . .  , SkN ; clearly ZI , Z2 , . . .  are independent identically distributed 
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variables . Now, if KN :s n < (K + I ) N, then I Rn - RKN I  :s N and RKN :s ZI + Z2 + 
. . . + Z K .  Therefore 

by the strong law of large numbers. It is easily seen that ZI = RN , and therefore, almost 
surely, 

(34) lim sup { � Rn } :s � JE (RN ) --+ lP'(no return) n-HXl n N 

as N --+ 00, by (32) . This is the required upper bound. 
For the lower bound, we must work a little harder. Let Vk be the indicator function of the 

event that the position of the walk at time k is not revisited subsequently; that is, 

{ I if Sj i= Sk for all j > k, 
Vk = 

o otherwise. 

The collection of points Sk for which Vk = 1 is a collection of distinct points, and it follows 
that 

(35) 

On the other hand, Vk may be represented as Y (Xk+l , Xk+2 , . . .  ) where Y : Il�T --+ {O, I }  is 
defined by 

_ { I if X I + . . .  + Xl i= 0 for alI t ::: 1 ,  Y (X I , X2 , . . .  ) - . o otherwIse. 

The Xi are independent and identically distributed, and therefore Theorem ( 1 6) may be applied 
to deduce that 

Note that JE(VI ) = lP'(no return) . 
It follows from (35) that 

lim inf { � Rn } ::: lP'(no return) a.s . ,  n--->oo n 

which may be combined with (34) to obtain the claimed result (33) .  • 
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Exercises for Section 9 . 5  

1. Let T = { I ,  2,  . . .  } and let 1 be the set of invariant events of (J�T , 93T ) .  Show that 1 is a a-field. 

2. Assume that X l , X2 , . . .  is a stationary sequence with autocovariance function c (m ) . Show that ( I n ) 2 
n j - I c (O) 

var - L Xi = 2" L L c( i )  - - . 
n i= 1  n j=I i=O n 

Assuming that j- I 2:{�d c( i )  ---+ a2 as j ---+ 00, show that 

as n ---+ 00 .  

3. Let XI , X 2 , . . .  b e  independent identically distributed random variables with zero mean and unit 
variance. Let 00 

Yn = L aiXn+i for n � 1 
i=O 

where the ai are constants satisfying 2:i aT < 00.  Use the martingale convergence theorem to show 
that the above summation converges almost surely and in mean square. Prove that n- I 2:7=1  Yi ---+ 0 
a.s .  and in mean, as n ---+ 00. 

9.6 Gaussian processes 

Let X = {X (t ) : -00 < t < oo} be a real-valued stationary process with autocovariance 
function c(t) ; in line with Theorem (9 .3 .2), c is a real-valued function which satisfies : 

(a) c( -t) = c(t) , 
(b) c is a non-negative definite function. 

It is not difficult to see that a function c : lR � lR is the autocovariance function of some 
real-valued stationary process if and only if c satisfies (a) and (b) . Subject to these conditions 
on c, there is an explicit construction of a corresponding stationary process . 

(1) Theorem. If c : lR � lR and c satisfies (a) and (b) above, there exists a real-valued 
strongly stationary process X with autocovariance function c. 
Proof. We shall construct X by defining its finite-dimensional distributions (fdds) and then 
using the Kolmogorov consistency conditions (8 .6 .3 ) .  For any vector t = (tI , t2 , . . . , tn ) of 
real numbers with some finite length n , let Ft be the multivariate normal distribution function 
with zero means and covariance matrix V = (Vjk ) with entries Vjk = C (tk - tj ) (see Section 
4.9) . 

The family {Ft : t E lRn , n = 1 ,  2, . . .  } satisfies the Kolmogorov consistency conditions 
(8 .6 .3) and so there exists a process X with this family of fdds. It is clear that X is strongly 
stationary with autocovariance function c. • 

A result similar to ( 1 )  holds for complex-valued functions c : lR � C, (a) being replaced 
by the property that 

(2) c( -t) = c (t) .  
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We do not explore this here, but choose to consider real-valued processes only. The process X 
which we have constructed in the foregoing proof is an example of a (real-valued) 'Gaussian 
process '  . 

(3) Definition. A real-valued continuous-time process X is called a Gaussian process if each 
finite-dimensional vector (X (tl ) ,  X (t2 ) ,  . . .  , X (tn ) )  has the multivariate normal distribution 
N(JL(t) , V(t) ) for some mean vector JL and some covariance matrix V which may depend on 
t = (tl , t2 , · · ·  , tn ) . 

The X (tj ) may have a singUlar multivariate normal distribution. We shall often restrict our 
attention to Gaussian processes with E(X (t ) ) = 0 for all t ; as before, similar results are easily 
found when this fails to hold. 

A Gaussian process is not necessarily stationary. 

(4) Theorem. The Gaussian process X is stationary if and only if E(X (t)) is constant for 
all t and the covariance matrix V(t) in Definition (3) satisfies V(t) = V(t + h) for all t and 
h > 0, where t + h = (t l + h , t2 + h , . . .  , tn + h) . 
Proof. This is  an easy exercise . • 

It is clear that a Gaussian process is strongly stationary if and only if it is weakly stationary. 
Can a Gaussian process be a Markov process? The answer is in the affirmative. First, we 

must rephrase the Markov property (6. 1 . 1 )  to deal with processes which take values in the real 
line. 

(5) Definition. The continuous-time process X. taking values in JR, is called a Markov process 
if the following holds: 

for all x ,  X l .  X2 , • • •  , Xn-l . and all increasing sequences tl < tz < . . .  < tn of times. 

(7) Theorem. The Gaussian process X is a Markov process if and only if 

for all X I ,  X2 , . . .  , Xn- l and all increasing sequences tl < t2 < . . .  < tn of times. 
Proof. It is clear from (5) that (8) holds whenever X is Markov. Conversely, suppose that X 
is Gaussian and satisfies (8) .  Both the left- and right-hand sides of (6) are normal distribution 
functions. Any normal distribution is specified by its mean and variance, and so we need only 
show that the left- and right-hand sides of (6) have equal first two moments. The equality of 
the first moments is trivial, since this is simply the assertion of (8) .  Also, if 1 ::: r < n, then 
E(Y Xr )  = 0 where 

(9) 

and we have written Xr = X (tr ) for ease of notation; to see this, write 

E(YXr )  = E(XnXr - E(XnXr I Xl , . . .  , Xn- l ) ) 
= E(XnXr )  - E(XnXr )  = O. 
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However, Y and X are normally distributed, and furthermore E(y) = 0; as in Example (4 .5 .9) , 
Y and X, are independent. It follows that Y is independent of the collection X I , X2 , . . .  , Xn- I , 
using properties of the multivariate normal distribution. 

Write A, = {X, = x, } and A = A l n A2 n · · · n An- I . By the proven independence, 
E(y2 I A) = E(y2 I An- I ) , which may be written as var(Xn I A) = var(Xn I An- I ) ,  by (9) . 
Thus the left- and right-hand sides of (6) have the same second moment also, and the result is 
proved. • 

(10) Example. A stationary Gaussian Markov process. Suppose X is stationary, Gaussian 
and Markov, and has zero means. Use the result of Problem (4. 14 . 1 3) to obtain that 

c (O)E[X (s + t) I X es) ]  = c(t)X (s )  whenever t 2: 0,  

where c is the autocovariance function of X.  Thus, if 0 .:::: s .:::: s + t then 

c (O)E[X (O) X (s + t ) ]  = C(O)E [ E (X (O)X (s + t) I X (0) , X (s »)] 

= c (O)E [X (O)E (X (s + t) I X es» ) ]  
= c(t)E (X (O)X (s » ) 

by Lemma (7.7 . 10) .  Thus 

(11) 

This is satisfied whenever 

(12) 

c (O)c (s + t) = c (s )c (t) for s ,  t 2: O .  

c (t) = c (O)e-a l t l . 

Following Problem (4. 14 .5) we can see that ( 1 2) is the general solution to ( 1 1 )  subject to some 
condition of regularity such as that c be continuous. We shall see later (see Problem ( 1 3 . 1 2 .4» 
that such a process is called a stationary Omstein-Uhlenbeck process . • 

(13) Example. The Wiener process. Suppose that 0'2 > 0 and define 

(14) c (s , t) = O'2 min{s , t }  whenever s , t 2: 0 . 

We claim that there exists a Gaussian process W = { W et) : t 2: O} with zero means such that 
W(O) = 0 and cov(W(s ) ,  W(t» = c (s ,  t ) .  By the argument in the proof of ( 1 ) , it is sufficient 
to show that the matrix Vet) with entries (Vjk ) ,  where Vjk = c (tk , tj ) ,  is positive definite for 
all t = (t1 , t2 , . . .  , tn ) .  In order to see that this indeed holds, let Z 1 , Z2 , . . .  , Zn be complex 
numbers and suppose that 0 = to < tl < . . .  < tn . It is not difficult to check that 

whenever one of the Zj is non-zero; this guarantees the existence of W. It is called the Wiener 
process ; we explore its properties in more detail in Chapter 1 3 ,  noting only two facts here. 
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(15) Lemma. The Wiener process W satisfies JE(W(t)2 ) = a2t for all t 2: O. 

Proof. JE(W(t )2 ) = cov (W(t) , W(t») = c(t , t ) = a2t .  

(16) Lemma. The Wiener process W has stationary independent increments, that is : 
(a) the distribution ofW(t) - W(s) depends on t - s alone, 

• 

(b) the variables W(tj ) - W(Sj ), 1 :s j :s n, are independent whenever the intervals (Sj , tj ] 
are disjoint. 

Proof. The increments of W are jointly normally distributed; their independence follows as 
soon as we have shown that they are uncorre1ated. However, if u :s v :s s :s t , 

by ( 14) . 

JE ( [W(v) - W(u) ] [W(t ) - W(s) l ) = c(v, t ) - c(v, s) + c(u , s) - c(u , t) 
= a2 (v - v + u - u) = 0 

Finally, W(t) - W(s) is normally distributed with zero mean, and with variance 

JE ( [W(t) - W(s) ]2 ) = JE(W(t )2 ) - 2c(s, t ) + JE(W(s)2 ) 
= a2 (t - s) if s :S t . 

Exercises for Section 9 . 6  

1. Show that the function c (s , t )  = min {s , t }  is positive definite. That is ,  show that 

n 

L C(tk , tj )Z{ Zk > 0 
j ,k= 1 

• •  

for all 0 :s tl < t2 < . . .  < tn and all complex numbers Z 1 ,  Z2 , . . .  , Zn at least one of which is 
non-zero. 

2. Let XI , X 2 , . . .  be a stationary Gaussian sequence with zero means and unit variances which 
satisfies the Markov property. Find the spectral density function of the sequence in terms of the 
constant p = COV(Xl ,  X2) .  

3. Show that a Gaussian process is strongly stationary if and only if it is weakly stationary. 

4. Let X be a stationary Gaussian process with zero mean, unit variance, and autocovariance function 
c (t ) .  Find the autocovariance functions of the processes X2 = {X (t)2 : -00 < t < oo} and 
X3 = {X (t) 3 : -00 < t < oo} .  
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9.7 Problems 

1. Let . . .  , X - I , Xo , X I ,  . . .  be uncorrelated random variables with zero means and unit variances, 
and define 

00 
Yn = Xn + a L f3i- 1 Xn-i for - 00 < n < 00, 

i= 1 
where a and f3 are constants satisfying 1 f3 1 < 1 ,  1f3 - a l  < 1 .  Find the best linear predictor of Yn+ 1 
given the entire past Yn , Yn- I , . . . . 
2. Let I Yk : -00 < k < oo} be a stationary sequence with variance a'f; , and let 

r 
Xn = L ak Yn-k , 

k=O 
-00 < n < 00, 

where ao , a I , . . .  , ar are constants. Show that X has spectral density function 

2 ay i). 2 fx ("A) = 2 fy ("A) I Ga (e ) 1 
ax 

where fy is the spectral density function of Y, ai = var(XI ) ,  and Ga (z) = 2:k=O akZk . 
Calculate this spectral density explicitly in the case of 'exponential smoothing' ,  when r = 00, 

ak = t-tk ( 1 - t-t), and 0 < t-t < 1 .  

3. Suppose that Yn+ 1 = aYn + f3Yn- 1 is the best linear predictor of Yn+ 1 given the entire past 
Yn , Yn- I ,  . . .  of the stationary sequence {Yk : -00 < k < oo} . Find the spectral density function of 
the sequence. 

4. Recurrent events (5.2.15). Meteorites fall from the sky at integer times TI , T2 , . . .  where Tn = 
XI + X2 + . . .  + Xn . We assume that the Xi are independent, X2 , X3 , . . .  are identically distributed, 
and the distribution of XI is such that the probability that a meteorite falls at time n is constant for 
all n .  Let Yn be the indicator function of the event that a meteorite falls at time n .  Show that {Yn } is 
stationary and find its spectral density function in terms of the characteristic function of X2 . 

5. Let X = {Xn : n � I }  be given by Xn = cos(n U) where U is uniformly distributed on [-n, n ] .  
Show that X i s  stationary but not strongly stationary. Find the autocorrelation function o f  X and its 
spectral density function. 

6. (a) Let N be a Poisson process with intensity "A, and let a > O. Define X (t) = N (t + a) - N (t) 
for t � O. Show that X is strongly stationary, and find its spectral density function. 

(b) Let W be a Wiener process and define X = (X (t )  : t � I }  by X(t )  = Wet) - Wet - 1 ) .  
Show that X i s  strongly stationary and find its autocovariance function. Find the spectral density 
function of X .  

7. Let ZI , Z2 , . . .  be uncorrelated variables, each with zero mean and unit variance. 
(a) Define the moving average process X by Xn = Zn + aZn_ 1  where a is a constant. Find the 

spectral density function of X.  
(b) More generally, let Yn = 2:1=0 ai Zn-i , where ao = 1 and a I , . . .  , ar are constants . Find the 

spectral density function of Y. 
8. Show that the complex-valued stationary process X = (X (t ) : -00 < t < oo} has a spectral 
density function which is bounded and uniformly continuous whenever its autocorrelation function p 
is continuous and satisfies 1000 I p (t ) 1 dt < 00. 

9. Let X = IXn : n � I }  be stationary with constant mean t-t = E(Xn ) for all n, and such that 
cov(Xo , Xn ) -+ 0 as n -+ 00. Show that n - I 2:1=1 Xj � t-t. 
10. Deduce the strong law of large numbers from an appropriate ergodic theorem. 
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11. Let Q be a stationary measure on (lR T , 93T ) where T = { I ,  2, . . .  j. Show that Q is ergodic if and 
only if 

1 n 
- L Yi --+ JE(Y) 
n i= l 

a.s .  and in mean 

for all Y : lR T --+ lR for which JE(Y) exists, where Yi : lR T --+ lR is given by Yi (x) = Y (r i - 1 (x) ) .  As 
usual, r is the natural shift operator on lR T . 

12. The stationary measure Q on (lRT , 93T ) is called strongly mixing if Q (A n r-n B) --+ Q(A)Q(B) 
as n --+ 00, for all A, B E 93T ; as usual, T = { I ,  2, . . .  j and r is the shift operator on lR T . Show that 
every strongly mixing measure is ergodic. 

13. Ergodic theorem. Let (Q ,  :F, lP') be a probability space, and let T : Q --+ Q be measurable and 
measure preserving (i .e . ,  lP'(T- 1 A) = lP'(A) for all A E :F). Let X : Q --+ lR be a random variable, 
and let Xi be given by Xi (w) = X(Ti- 1 (w) ) .  Show that 

1 n 
- L Xi --+ JE(X 1 1) 
n i= l 

a.s .  and in mean 

where 1 is the (J -field of invariant events of T .  
If T is ergodic (in that lP'(A) equals 0 o r  1 whenever A is invariant), prove that JE(X 1 1) = JE(X) 

almost surely. 

14. Consider the probability space (Q , :F, lP') where Q = [0, 1 ) ,  T is the set of Borel subsets, and IP' 
is Lebesgue measure. Show that the shift T : Q --+ Q defined by T (x ) = 2x (mod 1 )  is measurable, 
measure preserving, and ergodic (in that lP'(A) equals 0 or 1 if A = T- 1 A).  

Let X : Q --+ lR be the random variable given by the identity mapping X (w) = w. Show that the 
proportion of 1 's ,  in the expansion of X to base 2, equals i almost surely. This is sometimes called 
'Borel 's  normal number theorem' .  

15. Let g : lR --+ lR be periodic with period 1 ,  and uniformly continuous and integrable over [0, 1 1 -
Define Zn = g (X + ( n  - l)a) , n ::: 1 ,  where X i s  uniform o n  [0, 1 ]  and a i s  irrational. Show that, 
as n --+ 00, 

1 n ( 1 
- L Zj --+ 10 g (u) du 
n j=l 0 

a.s .  

16. Let X = {X (t) : t ::: OJ be a non-decreasing random process such that: 
(a) X(O) = 0, X takes values in the non-negative integers, 
(b) X has stationary independent increments, 
(c) the sample paths {X (t , w) : t ::: OJ have only jump discontinuities of unit magnitude. 

Show that X is a Poisson process. 

17. Let X be a continuous-time process.  Show that: 
(a) if X has stationary increments and m et) = JE(X (t) ) is a continuous function of t, then there exist 

a and {J such that m et) = a + {Jt , 
(b) if  X has stationary independent increments and v et) = var(X ( t ) - X (0) ) is a continuous function 

of t then there exists (J2 such that var(X (s + t) - X (s ) ) = (J2t for all s .  
18. A Wiener process W i s  called standard if W(O) = 0 and W(l )  has unit variance. Let W be a 
standard Wiener process, and let a be a positive constant. Show that: 
(a) a W (t ja2) is a standard Wiener process, 
(b) W (t + a) - W (a) is a standard Wiener process, 
(c) the process V ,  given by V (t) = t W ( l j t) for t > 0, V (0) = 0, is a standard Wiener process, 
(d) the process W(l )  - W( l  - t) is a standard Wiener process on [0, 1 ] .  
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19. Let W be a standard Wiener process. Show that the stochastic integrals 

X (t) = l d W (u ) ,  y et) = l e- (t -u) d W (u ) ,  t � 0 ,  

are well defined, and prove that X (t) = Wet) ,  and that Y has autocovariance function cov (Y (s ) ,  y et))  = 

i (e- , s-t , - e-s-t) , s < t .  

20. Let W be  a standard Wiener process.  Find the means of  the following processes, and the autoco­
variance functions in cases (b) and (c) :  
(a) X (t) = I W (t) I ,  
(b) y et) = e W (t) , 
(c) Z (t) = JJ W (u) du .  

Which of  these are Gaussian processes? Which of  these are Markov processes? 

21. Let W be a standard Wiener process.  Find the conditional joint density function of W (t2 ) and 
W (t3 ) given that W (tl ) = W (t4) = 0, where tl < t2 < t3 < t4 ' 

Show that the conditional correlation of W (t2 ) and W (t3 ) is 

p = 
(t4 - t3 ) (t2 - tl ) 
(t4 - t2 ) (t3 - tl ) 

22. Empirical distribution function. Let Ul , U2 , ' "  be independent random variables with the 
unifonn distribution on [0, 1 ] .  Let Ij (x ) be the indicator function of the event {Uj :s x } , and define 

The function Fn is called the 'empirical distribution function' of the Uj . 

(a) Find the mean and variance of Fn (x ) ,  and prove that In(Fn (x) - x) � Y (x)  as n ---+ 00, where 
Y (x) is nonnally distributed. 

(b) What is the (multivariate) limit distribution of a collection of random variables of the fonn 
{In(Fn (Xi ) - Xi ) : 1 :s i :s k} ,  where o :s  X l  < x2 < . . .  < xk :s I ?  

(c) Show that the autocovariance function of the asymptotic finite-dimensional distributions of 
In(Fn (x) - x) ,  in the limit as n ---+ 00, is the same as that of the process Z (t) = Wet) - t W ( I ) , 
o :s  t :s 1 ,  where W is a standard Wiener process. The process Z is called a 'Brownian bridge' 
or 'tied-down Brownian motion' .  



10 
Renewals 

Summary. A renewal process is a recurrent-event process with independent 
identically distributed interevent times. The asymptotic behaviour of a re­
newal process is described by the renewal theorem and the elementary renewal 
theorem, and the key renewal theorem is often useful. The waiting-time para­
dox leads to a discussion of excess and current lifetimes, and their asymptotic 
distributions are found. Other renewal-type processes are studied, including 
alternating and delayed renewal processes, and the use of renewal is illustrated 
in applications to Markov chains and age-dependent branching processes. The 
asymptotic behaviour of renewal-reward processes is studied, and Little's  for­
mula is proved. 

10.1 The renewal equation 

We saw in Section 8 . 3  that renewal processes provide attractive models for many natural 
phenomena. Recall their definition. 

(1) Definition. A renewal process N = {N(t) : t ::: O} is a process such that 

N (t ) = max{n : Tn :s t } 

where To = 0, Tn = X t + X2 + . . .  + Xn for n ::: 1 ,  and {Xd is a sequence of independent 
identically distributed non-negativet random variables. 

We commonly think of a renewal process N (t) as representing the number of occurrences 
of some event in the time interval [0 , t ] ; the event in question might be the arrival of a person 
or particle, or the failure of a light bulb. With this in mind, we shall speak of Tn as the 'time 
of the nth arrival' and Xn as the 'nth interarrival time' . We shall try to use the notation of ( 1 )  
consistently throughout, denoting by  X and T a typical interarrival time and a typical arrival 
time of the process N. 

When is N an honest process, which is to say that N (t) < 00 almost surely (see Definition 
(6 . 8 . 1 8»?  

(2) Theorem. JP'(N (t ) < 00) = I for all t if and only if lE(X t )  > 0. 

tBut soon we will impose the stronger condition that the Xi be strictly positive. 
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This amounts to saying that N is honest if and only if the interarrival times are not concen­
trated at zero . The proof is simple and relies upon the following important observation : 

(3) N(t) � n if and only if Tn ::::: t .  

We shall make repeated use of (3) .  It provides a link between N(t) and the sum Tn of 
independent variables ; we know a lot about such sums already. 

Proof of (2). Since the Xi are non-negative, if JE(X ! ) = 0 then lP'(Xi = 0) 1 for all i . 
Therefore 

lP'(N(t ) = (0) = 1 for all t > O. 

Conversely, suppose that JE(X 1 ) > O. There exists E > 0 such that lP'(X 1 > E )  = 8 > O. Let 
A i = {Xi > E } ,  and let A = {Xi > E i .o . } = lim sup Ai be the event that infinitely many of 
the Xi exceed E. We have that 

lP'(AC) = lP'(U n A�) ::::: L }�nJcY - 8 )n-m 
= L O = O. 

m n>m m m 

Therefore, by (3) ,  

lP'(N(t) = (0) = lP'(Tn ::::: t for all n) ::::: lP'(AC) = o . • 

Thus N is honest if and only if XI is not concentrated at O. Henceforth we shall assume 
not only that lP'(X 1 = 0) < 1 ,  but also impose the stronger condition that lP'(X ! = 0) = O. 
That is ,  we consider only the case when the Xi are strictly positive in that lP'(X ! > 0) = 1 .  

It is easy in principle to find the distribution of N (t) in terms of the distribution of a typical 
interarrival time. Let F be the distribution function of X! , and let Fk be the distribution 
function of Tk . 

(4) Lemmat. We have that Fl = F and Fk+! (x ) = fox Fk (X - y) dF(y) for k � 1 .  

Proof. Clearly F l = F. Also Tk+! = Tk + X k+ 1 , and Theorem (4. 8 . 1 )  gives the result when 
suitably rewritten for independent variables of general type. • 

(5) Lemma. We have that lP'(N(t) = k) = Fk (t) - Fk+! (t ) . 

Proof. {N(t) = k} = {N(t) � k} \ {N(t) � k + 1 } .  Now use (3) .  

We shall be interested largely in the expected value of N(t ) . 

(6) Definition. The renewal function m i s  given by m(t) = E(N(t) . 
Again, it is easy to find m in terms of the Fk . 

• 

tReaders of Section 5 .6 may notice that the statement of this lemma violates our notation for the domain 

of an integral. We adopt the convention that expressions of the form Ii g (y)  d F (y)  denote integrals over the 
half-open interval (a , b], with the left endpoint excluded. 
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00 
(7) Lemma. We have that m (t) = L Fk (t) . 

k= l 
Proof. Define the indicator variables 

Then N(t) = L�l h and so 

{ I  if Tk .:::: t , 
h = 0 otherwise. 

• 

An alternative approach to the renewal function is by way of conditional expectations and 
the 'renewal equation ' .  First note that m is the solution of a certain integral equation . 

(8) Lemma. The renewal function m satisfies the renewal equation, 

(9) m(t) = F(t) + fot m(t - x) dF(x ) .  

Proof. Use conditional expectation to obtain 

m(t) = E(N(t)) = E(E[N(t) I XI l) ; 

but, on the one hand, 
E(N(t) I X l = X) = O if t < x 

since the first arrival occurs after time t .  On the other hand, 

since the process of arrivals, starting from the epoch of the first arrival , is a copy of N itself. 
Thus 

m(t) = fooo E(N(t) I Xl = x) dF(x) = fo\ 1 + m(t - x)] dF(x) . • 

We know from (7) that 
00 

m(t) = L Fk (t) 
k=l 

is a solution to the renewal equation (9) . Actually, it is the unique solution to (9) which is 
bounded on finite intervals .  This is a consequence of the next lemma. We shall encounter a 
more general form of (9) later, and it is appropriate to anticipate this now. The more general 
case involves solutions J-i to the renewal-type equation 

(10) J-i(t) = H (t) + fot J-i(t - x) dF(x ) , t :::: 0, 

where H is a uniformly bounded function. 
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(11) Theorem. The function JL, given by 

JL (t ) = H (t ) + fo t 
H (t - x ) dm (x ) ,  

is a solution of the renewal-type equation ( 1 0). If H is bounded onjinite intervals then JL is 
bounded onjinite intervals and is the unique solution of ( 1  0) with this propertyt. 

We shall make repeated use of this result, the proof of which is simple. 

Proof. If h : [0, (0) -+ �, define the functions h * m and h * F by 

(h * m) (t) = fo t 
h (t - x) dm (x ) ,  (h * F) (t) = fo t 

h (t - x) dF(x ) , 

whenever these integrals exist. The operation * i s  a type of convolution ; do not confuse it 
with the related but different convolution operator of Sections 3 . 8  and 4 .8 .  It can be shown 
that 

(h * m ) * F = h * (m * F) , 

and so we write h * m * F for this double convolution. Note also that: 

(12) 

(13) 

m = F + m * F by (9) , 

FHI = Fk * F = F * Fk by (4) .  

Using this notation, JL can be written as  JL = H + H * m . Convolve with F and use ( 1 2) to 
find that 

JL * F = H * F + H * m * F = H * F + H * (m - F) 
= H * m  = JL - H, 

and so JL satisfies ( 1 0) .  
I f  H i s  bounded on finite intervals then 

sup IJL (t ) l ::::: sup IH (t ) 1 + sup I t H (t - x) dm (x) 1 
OSt � T  OSt � T  OSt � T  10 

::::: [ 1  + m(T)] sup IH (t ) 1 < 00,  
OSt � T  

and so  JL i s  indeed bounded on  finite intervals ;  we  have used the finiteness of  m here (see 
Problem ( 1 O.6 . 1b» .  To show that JL is the unique such solution of ( 1 0) ,  suppose that JL l is 
another bounded solution and write 8 (t ) = JL(t) - JL1 (t) ; 8 is a bounded function . Also 
8 = 8 * F by ( 1 0) .  Iterate this equation and use ( 1 3) to find that 8 = 8 * Fk for all k :::: 1 ,  
which implies that 

1 8 (t ) 1 ::::: Fk (t) sup 1 8 (u) 1 for all k :::: 1 .  

tThink of the integral in ( 1 1 ) as J H (t - x )m' (x)  dx if you are unhappy about its present form. 
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Let k -+ 00 to find that l o (t ) I = 0 for all t, since 

Fk (t) = lP'(N(t) :::: k) -+ 0 as k -+ 00 

by (2) . The proof is complete. • 

The method of Laplace-Stieltjes transforms is often useful in renewal theory (see Definition 
( 1 5) of Appendix I) . For example, we can transform ( 1 0) to obtain the formula 

* H* «() JL «() = 
1 _ F* «() 

for () i= 0, 

an equation which links the Laplace-Stieltjes transforms of JL, H, and F. In particular, setting 
H = F, we find from (8) that 

(14) m* «() _ F* «() 
- 1 - F* «() ' 

a formula which is directly derivable from (7) and ( 1 3) .  Hence there is a one-one correspon­
dence between renewal functions m and distribution functions F of the interarrival times. 

(15) Example. Poisson process. This is the only Markovian renewal process, and has expo­
nentially distributed interarrival times with some parameter A. The epoch Tk of the kth arrival 
is distributed as r CA ,  k) ; Lemma (7) gives that 

00 lo t A (As )k- l e-AS lo t 
met) = L ds = A ds = At . 

k= l O (k - l ) ! 0 

Alternatively, just remember that N (t) has the Poisson distribution with parameter At to obtain 
the same result. • 

Exercises for Section 1 0 . 1 

1. Prove that E(eON(t) < 00 for some strictly positive e whenever E(X l ) > O. [Hint: Consider 
the renewal process with interarrival times X" = E I{Xk ::::E } for some suitable E . ]  

2 .  Let N b e  a renewal process and let W b e  the waiting time until the length o f  some interarrival 
time has exceeded s .  That is, W = inf{t : C (t )  > s } , where C (t) is the time which has elapsed (at 
time t) since the last arrival. Show that 

{ 0 if x < s ,  
FW (x) = S 1 - F(s) + Jo Fw (x - u) dF(u) if  x :::: s ,  

where F i s  the distribution function of  an  interarrival time. I f  N i s  a Poisson process with intensity A ,  
show that 

E(eow) - A - e  
- -A---e-e---;("A--O"')'-s 

for e < A ,  

and E(W) = (eAS - l ) /A .  You may find it useful to rewrite the above integral equation in the form of 
a renewal-type equation. 

3. Find an expression for the mass function of N (t) in a renewal process whose interarrival times 
are: (a) Poisson distributed with parameter A, (b) gamma distributed, f (A ,  b) . 
4. Let the times between the events of a renewal process N be uniformly distributed on (0, 1 ) .  Find 
the mean and variance of N (t) for 0 � t � 1 .  
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10.2 Limit theorems 

We study next the asymptotic behaviour of N (t) and its renewal function m (t) for large values 
of t. There are four main results here, two for each of N and m . For the renewal process N 
itself there is a law of large numbers and a central limit theorem; these rely upon the relation 
( 1O . l .3 ) ,  which links N to the partial sums of independent variables. The two results for m 
deal also with first- and second-order properties. The first asserts that met) is approximately 
linear in t ;  the second asserts that the gradient of m is asymptotically constant. The proofs 
are given later in the section. 

How does N(t) behave when t is large? Let JL = E(X 1 ) be the mean of a typical interarriva1 
time. Henceforth we assume that JL < 00.  

( 1 )  Theorem. 
I a. s . 1 

-N (t ) ---+ - as t � 00. t JL 

(2) Theorem. If 0"2 = var(X I ) satisfies 0 < 0" < 00, then 

as t � 00. 

I t  i s  not quite so  easy to find the asymptotic behaviour of  the renewal function. 

1 1 (3) Elementary renewal theorem. - m(t) � - as t � 00. 
t It 

The second-order properties of m are hard to find, and we require a preliminary definition. 

(4) Definition. Call a random variable X and its distribution Fx arithmetic with span A 
(> 0) if X takes values in the set {mA : m = 0, ± 1 ,  . . .  } with probability 1 ,  and A is maximal 
with this property. 

If the interarrival times of N are arithmetic, with span A say, then so is Tk for each k. In 
this case met) may be discontinuous at values of t which are multiples of A, and this affects 
the second-order properties of m. 

(5) Renewal theorem. If X I is not arithmetic then 

(6) h m et + h) - m (t) � - as t � 00 jor all h. 
J.L 

If Xl is arithmetic with span A, then (6) holds whenever h is a multiple oj).. 
It is appropriate to make some remarks about these theorems before we set to their proofs . 

Theorems ( 1 )  and (2) are straightforward, and use the law of large numbers and the central 
limit theorem for partial sums of independent sequences .  It is perhaps surprising that (3) is 
harder to demonstrate than ( 1 )  since it concerns only the mean value of N(t) ; it has a suitably 
probabilistic proof which uses the method of truncation, a technique which proved useful in 
the proof of the strong law (7 .5 . 1 ) .  On the other hand, the proof of (5) is difficult. The usual 
method of proof is largely an exercise in solving integral equations, and is not appropriate for 
inclusion here (see Feller 1 97 1 ,  p. 360) . There is an alternative proof which is short, beautiful, 
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and probabilistic, and uses 'coupling' arguments related to those in the proof of the ergodic 
theorem for discrete-time Markov chains .  This method requires some results which appear 
later in this chapter, and so we defer a sketch of the argument until Example ( 1 0 .4 .2 1 ) . In 
the case of arithmetic interarrival times, (5) is essentially the same as Theorem (5 .2 .24) ,  a 
result about integer-valued random variables. There is an apparently more general form of 
(5) which is deducible from (5) . It is called the 'key renewal theorem' because of its many 
applications. 

In the rest of this chapter we shall commonly assume that the interarrival times are not arith­
metic. Similar results often hold in the arithmetic case, but they are usually more complicated 
to state . 

(7) Key renewal theorem. If g : [0, (0) -+ [0, (0) is such that :  
(a) g (t) 2: 0for all t, 
(b) 1000 g et) dt < 00, 
(c) g is a non-increasing function, 

then 

r g et - x )  dm (x) -+ .!. roo g (x)  dx 
10 M 10 

as t -+ oo  

whenever x !  is not arithmetic. 

In order to deduce this theorem from the renewal theorem (5) ,  first prove it for indicator 
functions of intervals ,  then for step functions, and finally for limits of increasing sequences 
of step functions. We omit the details. 

Proof of (1). This is easy. Just note that 

(8) 

Therefore, if N(t) > 0, 

TN(t ) :::: t < TN(t )+ ! for all t .  

TN(t) t TN(t)+ ! ( 1 ) 
N(t) 

:::: 
N (t) 

< 
N(t) + 1 

1 + 
N(t) 

. 

As t -+ 00, N(t) � 00, and the strong law of large numbers gives 

M :::: lim (_
t 

-) :::: M almost surely. H OO  N(t) 

Proof of (2). This is Problem ( 1 0.5 .3 ) .  

• 

• 

In preparation for the proof of (3) ,  we recall an important definition. Let M be a random 
variable taking values in the set { I ,  2, . . .  } .  We call the random variable M a stopping time 
with respect to the sequence Xi of interarrival times if, for all m 2: 1 ,  the event {M :::: m}  
belongs to the a -field of  events generated by  X! , X 2 , . . . , Xm . Note that M = N (t) + 1 i s  a 
stopping time for the Xi , since 

{M :::: m} = {N(t) :::: m - 1 }  = {t Xi > t } , 
1 =1 
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which i s  an event defined in terms of Xl , X2 ,  . . .  , Xm . The random variable N(t) i s  not a 
stopping time. 

(9) Lemma. Wald's equation. Let Xl , X2 , . . .  be independent identically distributed ran­
dom variables with finite mean, and let M be a stopping time with respect to the Xi satisfying 
E(M) < 00. Then 

M 
E(� Xi) = E(X j )E(M) . 

1= 1 

Applying Wald's equation to the sequence of interarrival times together with the stopping 
time M = N(t) + 1 ,  we obtain 

(10) E(TN(t)+ I )  = JL [m (t ) + 1 ] .  

Wald's equation may seem trite, but this i s  far from being the case. For example, it i s  not 
generally true that E(TN(t) = JLm (t) ; the forthcoming Example ( 1 0 .3 .2) is an example of 
some of the dangers here. 

Proof of Wald's equation (9). The basic calculation is elementary. Just note that 

M 00 
L Xi = L XJ{M:::: i J , 
i= l  i=l 

so that (using dominated convergence or Exercise (5 .6 .2» 

by independence, 

since {M � i }  = {M :s i - l }C , an event definable in terms of Xl , X2 , . . .  , Xi- l and therefore 
independent of Xi . The final sum equals 

00 
E(X l )  L lP(M � i )  = E(Xl )E(M) . • 

i= l  

Proof of (3) . Half o f  this i s  easy. We have from (8) that t < TN(t)+ I ; take expectations of 
this and use ( 1 0) to obtain 

Letting t � 00, we obtain 

(11) 

met) -- > - - - . 
t JL t 

. . 1 1 
hm mf -m et) � - .  t ...... oo t JL 

We may be tempted to proceed as follows in order to bound m et) above. We have from (8) 
that TN(t) :s t, and so 
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The problem is that XN(t)+ 1 depends on N(t ) ,  and so E(XN(t)+ l ) i= J,L in general . To cope 
with this ,  truncate the Xi at some a > 0 to obtain a new sequence 

Xl! = J { X ,  
J a 

if Xj < a ,  
i f  Xj 2: a . 

Now consider the renewal process Na with associated interarrival times {Xn . Apply ( 1 2) to 
Na , noting that J,La = E (Xj ) ::: a ,  to obtain 

(13) 

However, Xi ::: Xj for all j, and so Na (t) 2: N(t) for alI t .  Therefore 

and ( 1 3) becomes 

Let t -+ 00 to obtain 

E(Na (t» 2: E(N(t» = m (t) 

1 1 
lim sup -m (t) ::: a ;  

t-'>oo t J,L 

now let a -+ 00 and use monotone convergence (5 .6 . 1 2) to find that J,La -+ J,L, and therefore 

. 1 1 
hm sup -m (t) ::: - . 

t-'>oo t J,L 

Combine this with ( 1 1 )  to obtain the result. 

Exercises for Section 1 0.2 

• 

1. Planes land at Heathrow airport at the times of a renewal process with interarrival time distribution 
function F. Each plane contains a random number of people with a given common distribution and 
finite mean. Assuming as much independence as usual, find an expression for the rate of arrival of 
passengers over a long time period. 

2. Let ZI , Z2 , . . .  be independent identically distributed random variables with mean 0 and finite 
variance a 2, and let Tn = 2::7=1 Zi . Let M be a finite stopping time with respect to the Zi such that 
JE(M) < 00. Show that var(TM )  = JE(M)a2 . 

3. Show that JE(TN(t)+k)  = J,L(m (t) +k) for all k 2: 1 ,  but that it is not generally true that JE(TN(t) = 
fl-m (t) . 
4. Show that, using the usual notation, the family {N(t) / t  : 0 ::: t < oo }  is unifonuly integrable. 
How might one make use of this observation? 

5. Consider a renewal process N having interarrival times with moment generating function M, and 
let T be a positive random variable which is independent of N. Find JE(sN(T ) when: 
(a) T is exponentially distributed with parameter v ,  
(b) N i s  a Poisson process with intensity A, in  tenus of  the moment generating function of  T .  What 

is the distribution of N(T) in this case, if T has the gamma distribution r ev ,  b) ? 
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10.3 Excess life 

Suppose that we begin to observe a renewal process N at some epoch t of time. A certain 
number N(t) of arrivals have occurred by then,  and the next arrival will be that numbered 
N(t) + 1 .  That is to say, we have begun our observation at a point in the random interval 
It = [TN(t) , TN(t)+d ,  the endpoints of which are arrival times .  

(1) Definition. 
(a) The excess lifetime at t is E(t) = TN(t)+ 1 - t .  
(b) The current lifetime (or age) at t is C(t) = t - TN(t) . 
(c) The total lifetime at t is D(t) = E (t) + C (t) = XN(t)+ I ' 

That is, E(t) is the time which elapses before the next arrival, C(t) is the elapsed time 
since the last arrival (with the convention that the zeroth arrival occlli's at time 0), and D(t) 
is the length of the interarrival time which contains t (see Figure 8 . 1  for a diagram of these 
random variables) . 

(2) Example. Waiting time paradox. Suppose that N is a Poisson process with parameter 
A. How large is E(E (t» ? Consider the two following lines of reasoning. 
(A) N is a Markov chain, and so the distribution of E(t) does not depend on the arrivals 

prior to time t .  Thus E(t) has the same mean as E(O) = XI , and so E(E (t» = A - I . 
(B) If t is fairly large, then on average it lies near the midpoint of the interarrival interval It 

which contains it. That is 

1 1 1 
E(E(t» c::=. -E (TN(t)+ 1 - TN(t) ) = -E(XN(t)+ I ) = - .  2 2 2A 

These arguments cannot both be correct. The reasoning of (B) is false, in that X N (t)+ I does 
not have mean A- I ; we have already observed this after ( 1 0.2 . 1 2) .  In fact, XN(t)+ 1 is a very 
special interarrival time; longer intervals have a higher chance of catching t in their interiors 
than small intervals . In Problem ( 1 0.6 .5) we shall see that E(XN(t)+d = (2 - e-At ) /A .  For 
this process, E (t) and C(t) are independent for any t ;  this property holds for no other renewal 
process with non-arithmetic interarrival times. • 

Now we find the distribution of the excess lifetime E(t) for a general renewal process. 

(3) Theorem. The distribution function of the excess life E (t) is given by 

lP' (E(t) .:::: y) = F(t + y)  - 10\ 1 - F(t + y - x) ] dm (x ) .  

Proof. Condition o n  X I in the usual way to obtain 

lP' (E(t) > y) = E [lP' (E(t )  > y I XI ) ] . 
However, you will see after a little thought that 

if x .:::: t ,  
if t < x .:::: t + y , 
if x > t + y , 
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since E (t) > y if and only if no arrivals occur in (t , t + y ] .  Thus 

lP' (E (t) > y) = 1000 
lP'(E(t) > y I Xl = x ) dF(x) 

= t lP' (E (t - x) > y) dF(x )  + 100 
dF(x) .  io t+y 

SO /1 (t) = lP'(E (t) > y) satisfies ( 1 0. 1 . 1 0) with H (t) = I - F(t + y ) ; use Theorem ( 1O . 1 . 1 1 ) 
to see that 

/1(t) = 1 - F(t + y) + lo t 
[ 1  - F(t + y - x) ]  dm (x ) 

as required. 

(4) Corollary. The distribution of the current life C(t) is given by 

lP'( C(t) ::: y) = t -y 

{ 0 

1 - F(t) + 10 [ 1  - F(t - x) ]  dm (x ) 

ify > t ,  

ify  .::::: t .  

Proof. I t  i s  the case that C (t) ::: y i f  and only i f  there are no  arrivals i n  ( t  - y , t ] .  Thus 

lP' (C(t) ::: y) = lP' (E(t - y) > y) if y .::::: t 

• 

and the result follows from (3) .  • 

Might the renewal process N have stationary increments , in the sense that the distribution 
of N(t + s) - N(t) depends on s alone when s ::: O? This is true for the Poisson process but 
fails in general. The reason is simple: generally speaking, the process of arrivals after time 
t depends on the age t of the process to date. When t is very large, however, it is plausible 
that the process may forget the date of its inception, thereby settling down into a stationary 
existence. Thus turns out to be the case. To show this asymptotic stationarity we need to 
demonstrate that the distribution of N(t + s) - N(t) converges as t -+ 00. It is not difficult 
to see that this is equivalent to the assertion that the distribution of the excess life E(t) settles 
down as t -+ 00, an easy consequence of the key renewal theorem ( 1 0.2 .7) and Lemma (4.3 .4) . 

(5) Theorem. If X I is not arithmetic and /1 = JE(X I ) < 00 then 

1 loY 
lP'(E (t) .::::: y) -+ - [ 1  - F(x ) ]  dx as t -+ 00. 

/1 0 

Some difficulties arise if X I is arithmetic. For example, if the Xj are concentrated at the value 
1 then, as n -+ 00, { I if  c = 1 , 

lP' (E (n + c) .::::: 1) -+ . _ � o If c - 4 .  
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Exercises for Section 10 .3  

1 .  Suppose that the distribution of  the excess lifetime E(t) does not depend on  t .  Show that the 
renewal process is a Poisson process. 

2. Show that the current and excess lifetime processes, C(t) and E (t ) ,  are Markov processes. 

3. Suppose that X 1 is non-arithmetic with finite mean f-t. 
(a) Show that E(t) converges in distribution as t ---+ 00, the limit distribution function being 

lox I 
H (x) = - [ I - F(y) ] dy . 

o f-t 

(b) Show that the r th moment of this limit distribution is given by 

assuming that this is finite. 
(c) Show that 

E (E(tn = E ( {(XI - t)+ n + fot h (t - x) dm (x) 

for some suitable function h to be  found, and deduce by the key renewal theorem that E (E(ty ) ---+ 

E(X1+ 1 )/ {f-t(r + I ) }  as t ---+ 00, assuming this limit is finite. 

4. Find an expression for the mean value of the excess lifetime E(t) conditional on the event that 
the current lifetime C(t) equals x .  
5. Let M (t) = N (t ) + I ,  and suppose that X 1 has finite non-zero variance a2 . 
(a) Show that var(TM(t) - f-tM (t) ) = a2 (m (t) + 1 ) .  

(b) In the non-arithmetic case, show that var(M (t) )/ t ---+ a2/f-t3 as t ---+ 00 .  

10.4 Applications 

Here are some examples of the ways in which renewal theory can be applied. 

(1) Example. Counters, and their dead periods. In Section 6.8 we used an idealized Geiger 
counter which was able to register radioactive particles, irrespective of the rate of their arrival . 
In practice, after the detection of a particle such counters require a certain interval of time in 
order to complete its registration. These intervals are called 'dead periods ' ;  during its dead 
periods the counter is locked and fails to register arriving particles. There are two common 
types of counter. 
Type 1. Each detected arrival locks the counter for a period of time, possibly of random 
length, during which it ignores all arrivals .  
Type 2. Each arrival locks the counter for a period of time, possibly of random length, 
irrespective of whether the counter is already locked or not. The counter registers only those 
arrivals that occur whilst it is unlocked. 

Genuine Geiger counters are of Type 1 ; this case might also be used to model the process in 
Example (8 .3 . 1 )  describing the replacement of light bulbs in rented property when the landlord 
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Xl X2 X3 X4 Xs X6 Time 
Arrival 
process 

Dead Lo I Ll - I  L2 - I  periods I 

Xl X2 X3 
Time 

Detection 
process 

Figure 1 0. 1 .  Arrivals and detections by a Type I counter; • indicates an undetected arrival, 
and 0 indicates a detected arrival. 

is either mean or lazy. We consider Type 1 counters briefly ; Type 2 counters are harder to 
analyse, and so are left to the reader. 

Suppose that arrivals occur as a renewal process N with renewal function m and interarrival 
times Xl , X 2 , . . .  having distribution function F. Let Ln be the length of the dead period 
induced by the nth detected arrival. It is customary and convenient to suppose that an additional 
dead period, of length Lo , begins at time t = 0; the reason for this will soon be clear. We 
suppose that {Ln } is a family of independent random variables with the common distribution 
function h, where h (0) = O. Let N (t) be the number of arrivals detected by the Type 1 
�unter by time t .  Then N is a stochastic process with interarrival times i\ , X 2 , . . .  where 
Xn+ l = Ln + En an� En is the excess life of N at the end of the nth dead"period (see Figure 
1 0. 1 ) . The process N is not in general a renewal process, because the Xi need be neither 
independent nor identically distributed. In the veri:, special case when N is a Poisson process, 
the En are independent exponential variables and N is a renewal process; it is easy to construct 
other examples for which this conclusion fails. 

It is not difficult to find the elapsed time X 1 until the first detection. Condition on Lo to 
obtain 

lP(Xl .:::: x) = E(lP(.X\ .:::: x I Lo») = fox lP(Lo + Eo ':::: x I Lo = I) dh(l) . 

However, Eo = E(Lo) ,  the excess lifetime of N at Lo , and so 

(2) lP(Xl .:::: x) = fox lP(E(l) .:::: x - I) dFdl) .  

Now use Theorem ( 1 0.3 . 3 )  and the integral representation 

m(t ) = F(t ) + fot F(t - x) dm (x ) , 

which follows from Theorem ( 1 0. 1 . 1 1 ) ,  to find that 

(3) lP(Xl .:::: x ) = fox (lX [ 1  - F(x - y)] dm (y») dFdl) 
= fox [ 1 - F(x - y)]h (y) dm (y) .  
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N(t) 

3 • 

2 • 

• 

�-------�-------------�----------
Zo YI ZI Y2 Z2 

Figure 1 0.2. An alternating renewal process. 

If N is a Poisson process with intensity A, equation (2) becomes 

N is now a renewal process, and this equation describes the common distribution of the 
interarrival times. 

If the counter is registering the arrival of radioactive particles, then we may seek an estimate 
A of the unknown emission rate A of the source b!sed upon our knowledge of the mean length 
E(L) of a dead period and the counter reading N(t) . Assume that the particles arrive in the 
manner of a Poisson process, and let Yt = N (t) / t be the density of observed particles. Then 

and so A :::::: J: where 

1 1 Yt :::::: E(X} ) = E(L) + A - I for large t ,  

� Yt A = --------
1 - YtE(L) • 

(4) Example. Alternating renewal process. A machine breaks down repeatedly. After the 
nth breakdown the repairman takes a period of time, length Yn , to repair it; subsequently the 
machine runs for a period of length Zn before it breaks down for the next time. We assume 
that the Ym and the Zn are independent of each other, the Ym having common distribution 
function Fy and the Zn having common distribution function F z .  Suppose that the machine 
was installed at time t = O. Let N(t) be the number of completed repairs by time t (see 
Figure 1 0.2) . Then N is a renewal process with interarrival times XI , X2 ,  . . . given by 
Xn = Zn- ) + Yn and with distribution function 

F(x)  = foX Fy (x - y) dFz (y ) .  

Let pet) be  the probability that the machine i s  working at time t .  
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(5) Lemma. We have that 

p(t) = 1 - Fz (t) + fot p(t - x) dF(x ) 

and hence 
p (t) = 1 - Fz (t) + fo\ 1 - Fz (t - x) ] dm (x )  

where m is the renewal junction of N. 
Proof. The probability that the machine is on at time t satisfies 

p(t) = lP'(on at t )  = lP'(Zo > t) + lP'(on at t, Zo ::::: t) 
= lP'(Zo > t) + E [lP'(on at t , ZO ::::: t I X l ) ] 
= lP'(Zo > t) + fot lP'(on at t I X l  = x )  dF(x) 

since lP'(on at t , ZO ::::: t I X l  > t) = O 

= lP'(Zo > t) + fot p(t - x )  dF(x ) .  

Now use Theorem ( 1 0. 1 . 1 1 ) .  • 

(6) Corollary. If Xl is not arithmetic then p (t) -+ ( 1 + p) - l as t -+ 00, where p 
E(Y)/E(Z) is the ratio of the mean lengths of a typical repair period and a typical working 
period. 
Proof. Use the key renewal theorem ( 1 0.2 .7) .  • •  

(7) Example. Superposition of renewal processes. Suppose that a room is illuminated by 
two lights , the bulbs of which fail independently of each other. On failure, they are replaced 
immediately. Let Nl and N2 be the renewal processes describing the occurrences of bulb 
failures in the first and second lights respectively, and suppose that these are independent 
processes with the same interarrival time distribution function F. Let N be the superposition 
of these two processes ; that is, N(t) = Nl (t) + N2 (t) is the total number of failures by time 
t .  In general N is not a renewal process . Let us assume for the sake of simplicity that the 
interarrival times of Nl and N2 are not arithmetic. 

(8) Theorem. N is a renewal process if and only if Nt and N2 are Poisson processes. 
Proof. It is easy to see that N is a Poisson process with intensitx 2A whenever Nl and N2 
are Poisson processes with intensity A .  Conversely, suppose that N is a renewal process, and 
write {Xn ( 1 ) } ,  {Xn (2) } ,  and {Xn } for the interarrival times of Nl , N2 , and N respectively. 
Clearly Xl = min {Xl ( 1 ) ,  Xl (2) } ,  and so the distribution function F of Xl  satisfies 

(9) 1 - F(Y) = [ 1  - F(y) ]2 . 
Let El (t ) ,  E2 (t) , and E(t) denote the excess lifetimes of Nt , N2 , and N respectively at time 
t . Clearly, E(t) = min {E t  (t) , E2 (t ) } ,  and so 

� 2 lP' (E(t )  > y ) = lP' (Et (t) > y) . 



1 0 .4 Applications 

Let t --+ 00 and use Theorem ( 1 0.3 .5 )  to obtain 

(10) � ioo [1 - F(x ) ] dx = :2 (iOO [ 1 - F(x ) ] dx r 
where /1 = lE(X I ) and /1 = lE (X I ( 1 ) ) .  Differentiate ( 1 0) and use (9) to obtain 

1 � 2 100 ;::; [ 1 - F(y ) ] = 2 [1  - F(y) ] [ 1  - F(x ) ] dx 
/1 /1 y 

1 2 = ;::; [ 1  - F(y) ] 
/1 

(this step needs further justification if F is not continuous). Thus 

1 - F(y ) = � [ 1 - F(x ) ] dx 2� 100 /1 y 

which is an integral equation with solution 

( 2/1 ) F (y) = 1 - exp -
/12 Y . 
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• •  

(11) Example. Delayed renewal process. The Markov chain of Example (8 .3 .2) indicates 
that it is sometimes appropriate to allow the first interarrival time Xl to have a distribution 
which differs from the shared distribution of X2 , X3 , . . . .  

(12) Definition. Let X I , X 2 ,  . . .  be independent positive variables such that X 2 ,  X 3 ,  . . . have 
the same distribution. Let 

n 
To = 0, Tn = L Xi , Nd (t) = max{n : Tn ::::: t } .  

I 

Then Nd is called a delayed (or modified) renewal process. 

Another example of a delayed renewal process is provided by a variation of the Type 1 
counter of ( 1 )  with particles arriving in the manner of a Poisson process. It was convenient 
there to assume that the life of the counter began with a dead period in order that the process N 
of detections be a renewal process. In the absence of this assumption N is a delayed renewal 
process. The theory of delayed renewal processes is very similar to that of ordinary renewal 
processes and we do not explore it in detail. The renewal equation ( 1 0. 1 .9) becomes 

where Fd is the distribution function of X 1 and m is the renewal function of an ordinary 
renewal process N whose interarrival times are X2 , X3 , . . . . It is left to the reader to check 
that 

(13) 
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and 

00 
(14) md (t) = L pf (t) 

k= l 

where pf is the distribution function of Tk = Xl + X2 + . . .  + Xk and P is the shared 
distribution function of X2 , X3 , . . . .  

With our knowledge of the properties of m,  it is not too hard to show that md satisfies the 
renewal theorems . Write J-i for lE(X2) . 
(15) Theorem. We have that: 

1 1 
(a) -md (t) -+ - as t -+ 00. t J-i 
(b) If X2 is not arithmetic then 

(16) 
h md (t + h) - md (t) -+ - as t -+ 00 for any h .  J-i 

If X 2 is arithmetic with span A then ( 1 6) remains true whenever h is a multiple of A. 

There is an important special case for the distribution function pd . 

(17) Theorem. The process Nd has stationary increments if and only if 

(18) 
1 lnY 

pd (y) = _ [ 1 - P(x) ] dx .  
J-i 0 

If pd is given by ( 1 8) ,  then Nd is called a stationary (or equilibrium) renewal process . We 
should recognize ( 1 8) as the asymptotic distribution ( 1 0.3 .5) of the excess lifetime of the 
ordinary renewal process N. So the result of ( 17 )  is no surprise since Nd starts off with this 
'equilibrium' distribution . We shall see that in this case md (t) = t / J-i for all t � o. 
Proof of (17). Suppose that Nd has stationary increments . Then 

md (s + t) = lE([Nd (s + t) - Nd (s) ] + Nd (s» ) 
= lE(Nd (t» + lE(Nd (s» 
= md (t) + md (s) . 

By monotonicity, md (t) = ct for some c > O. Substitute into ( 1 3) to obtain 

and let t -+ 00 to obtain c = 1 /  J-i.  
Conversely, suppose that pd is given by ( 1 8) .  Substitute ( 1 8) into ( 1 3) and use the method 

of Lap1ace-Stie1tjes transforms to deduce that 

(19) 
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Now, Nd has stationary increments if and only if the distribution of Ed (t ) ,  the excess lifetime 
of Nd at t, does not depend on t . But 

00 
lP'(Ed (t) > y) = L lP'(Ed (t) > y ,  Nd (t ) = k) 

k=O 
= lP'(Ed (t) > y ,  Nd (t) = 0) 

+ f t lP'(Ed (t ) > y ,  Nd (t) = k I Tk = x) dFf (x ) 
k= ! Jo 

= 1 - Fd (t + y) + 10\ 1 - F(t + y - X ) ] d (� Ff (x )) 
= 1 - Fd (t + y) + lot [ 1 - F(t + y - x) ] dmd (x ) 

from ( 14) . Now substitute ( 1 8) and ( 19) into this equation to obtain the result. • •  

(20) Example. Markov chains. Let Y = {Yn : n � O} be a discrete-time Markov chain with 
countable state space S. At last we are able to prove the ergodic theorem (6.4. 2 1 )  for Y ,  as 
a consequence of the renewal theorem ( 1 6) . Suppose that Yo = i and let j be an aperiodic 
state. We can suppose that j is persistent, since the result follows from Corollary (6 .2 .5) if j 
is transient. Observe the sequence of visits of Y to the state j .  That is, let 

To = 0, Tn+ ! = min {k > Tn : Yk = j} for n � O. 

TI may equal +00; actually lP'(T! < (0) = iij . Conditional on the event {Tl < oo} ,  the 
inter-visit times 

Xn = Tn - Tn- l for n � 2 
are independent and identically distributed; following Example (8 . 3 .2) , Nd (t) = max{n : 
Tn ::s t } defines a delayed renewal process with a renewal function md (t) = L�= l Pij (n) for 
integral t . Now, adapt ( 1 6) to deal with the possibility that the first interarrival time Xl = T\ 
equals infinity, to obtain 

d d iij 
Pij (n) = m (n) - m (n - 1 )  -+ - as n -+ 00 

J-Lj 

where J-Lj is the mean recurrence time of j . • 

(21) Example. Sketch proof of the renewal theorem. There is an elegant proof of the 
renewal theorem ( 1 0.2 .5) which proceeds by coupling the renewal process N to an independent 
delayed renewal process Nd ; here is a sketch of the method. Let N be a renewal process with 
interarrival times {Xn } and interarrival time distribution function F with mean J-L . We suppose 
that F is non-arithmetic ; the proof in the arithmetic case is easier. Let Nd be a stationary 
renewal process (see ( 1 7)) with interarrival times { Yn ) ,  where Y\ has distribution function 

1 loY 
Fd (y) = _  [ l - F(x ) ] dx 

J-L 0 
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and Y2 , Y3 ,  . . .  have distribution function F; suppose further that the Xi are independent of 
the Yi . The idea of the proof is as follows .  

(a) For any E > 0, there must exist an arrival time Ta = 'Lf Xi of N and an arrival time 

T; = 'L� Yi of Nd such that I Ta - T; I < E .  
(b) I f  we  replace Xa+l , Xa+2 , . . .  b y  Yb+ l , Yb+2 , . . . i n  the construction o f  N, then the 

distributional properties of N are unchanged since all these variables are identically 
distributed. 

(c) But the Yi are the interarrival times of a stationary renewal process, for which ( 1 9) holds ; 
this implies that md (t + h) - md (t) = hi 11 for all t ,  h .  However, met) and md (t) are 
nearly the same for large t ,  by the previous remarks, and so m (t + h) - m (t) c::=. hi 11 for 
large t . 

The details of the proof are slightly too difficult for inclusion here (see Lindvall 1977) . • 

(22) Example. Age-dependent branching process. Consider the branching process Z(t) 
of Section 5 .5 in which each individual lives for a random length of time before splitting into 
its offspring. We have seen that the expected number met) = JE(Z(t) ) of individuals alive at 
time t satisfies the integral equation (5 .5 .4) : 

(23) met) = v lo t 
m et - x) dFT (X ) + ['0 dFT (X ) 

where FT is the distribution function of a typical lifetime and v is the mean number of offspring 
of an individual ; we assume for simplicity that FT is continuous. We have changed some of 
the notation of (5 .5 .4) for obvious reasons. Equation (23) reminds us of the renewal-type 
equation ( 1 0. 1 . 1 0) but the factor v must be assimilated before the solution can be found using 
the method of Theorem ( 1 0. 1 . 1 1 ) . This presents few difficulties in the supercritical case. If 
v > 1 ,  there exists a unique {3 > 0 such that 

F; ({3 ) = ('0 e-fJx dFT (X ) = � ;  
Jo v 

this holds because the Lap1ace-Stieltjes transform F; (e) is a strictly decreasing continuous 
function of e with 

F; (O) = 1 ,  F; (e) -+ 0 as e -+ 00. 

Now, with this choice of {3 ,  define 

P (t ) = v lo t 
e-fJx dFT (X ) , g et) = e-fJtm (t) . 

Multiply through (23) by e-fJt to obtain 

(24) g et) = h (t) + lo t 
g et - x) dP(x) 

where 
h (t) = e-fJt [ 1 - FT (t ) ] ; 

(24) has the same general form as ( 1 0. 1 . 1 0) ,  since our choice for {3 ensures that P is the 
distribution function of a positive random variable. The behaviour of g et) for large t may be 
found by applying Theorem ( 1 0. 1 . 1 1 )  and the key renewal theorem ( 1 0.2 .7) .  • 



1 0.5 Renewal-reward processes 43 1 

Exercise for Section 1 0.4 

1. Find the distribution of the excess lifetime for a renewal process each of whose interarrival times is 
the sum of two independent exponentially distributed random variables having respective parameters 
A and {.t. Show that the excess lifetime has mean 

10.5 Renewal-reward processes 

Renewal theory provides models for many situations in real life. In practice, there may be 
rewards and/or costs associated with such a process, and these may be introduced as follows .  

Let { (Xi , Ri ) : i 2: 1}  be independent and identically distributed pairs of random variables 
such that Xi > O. For a typical pair (X, R) ,  the quantity X is to be interpreted as an interarrival 
time of a renewal process, and the quantity R as a reward associated with that interarrival time; 
we do not assume that X and R are independent. Costs count as negative rewards .  We now 
construct the renewal process N by N(t) = sup{n : Tn :'S t } where Tn = Xl + X2 + . . .  + Xn , 
and the 'cumulative reward process' C by 

N(t) 
C Ct) = L Ri . 

i= l 

The rewardfunetion is e (t ) = lECCt) . The asymptotic properties of CCt) and e(t) are given 
by the following analogue of Theorems ( 1 0.2 . 1 )  and ( 1 0.2 .3 ) .  

(1)  Renewal-reward theorem. Suppose that 0 < lEX < 00 and lE I R I < 00. Then: 

C(t ) a.s .  lER 
(2) -- ---+ - as t -+ 00, t lEX 

e (t ) lER 
(3) - -+ - as t -+ 00. t lEX 

Proof. We have by the strong law of large numbers and Theorem ( 1 0.2 . 1 )  that 

(4) 
"N(t) C (t ) L...i= l Ri N(t ) a.s . lER -- = . -- ---+ - . t N(t) t lEX 

We saw prior to Lemma ( 1 0.2 .9) that N(t) + 1 is a stopping time for the sequence {Xi : 
i 2: 1 } ,  whence it is a stopping time for the sequence of pairs { (Xi , R; ) : i 2: I } .  By a 
straightforward generalization of Wald's equation ( 1 0.2 .9) ,  

N(t)+ l  
e (t) = lE( � Rj) - lE(RN(t)+ l ) = lE (N(t) + l )lE(R) - lE(RN(t)+ l ) .  

J = l  
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The result will follow once we have shown that t- IE(RN(t)+ l )  -+ 0 as t -+ 00. 
By conditioning on Xl , as usual, we find that r (t) = E(RN(t)+d satisfies the renewal 

equation 

(5) r et) = H(t) + lot r et - x ) dF(x ) ,  

where F i s  the distribution function of X ,  H (t ) = E(R/{x>t } ) ,  and (X, R )  is a typical 
interarrival-time/reward pair. We note that 

(6) H (t) -+ 0 as t -+ 00, I H (t ) 1 < E I R I  < 00.  

By Theorem ( 1 0. 1 . 1 1 ) ,  the renewal equation (5 )  has solution 

r et ) = H(t) + lo t 
H (t - x) dm (x) 

where m et) = E(N(t» . By (6) , for E > 0, there exists M(E) < 00 such that IH (t) 1 < E for 
t :::: M(E ) .  Therefore, when t :::: M(E ) ,  

I r et) I I { t-M 
I
t } -t- :s t I H (t) 1 + 

Jo 
I H (t - x ) 1  dm (x ) + 

t -M 
IH (t - x) 1 dm (x ) 

:s � { E + Em(t - M) + E I R I (m (t) - m et - M») } 
E 

-+ ­EX as t -+ 00, 

by the renewal theorems ( 1 0.2 .3) and ( 1 0 .2 .5) .  The result follows on letting E ,j, O. • 

The reward process C accumulates rewards at the rate of one reward per interarrival time. In 
practice, rewards may accumulate in a continuous manner, spread over the interval in question, 
in which case the accumulated reward C (t) at time t is obtained by adding to C (t) that part of 
RN(t )+ 1 arising from the already elapsed part of the interval in progress at time t. This makes 
no effective difference to the conclusion of the renewal-reward theorem so long as rewards 
accumulate in a monotone manner. Suppose then that the reward C(t) accumulated at time t 
necessarily lies between C(t ) and C (t) + RN(t)+ I .  We have as in (4) that 

I ,,�(t)+ l R -
- (C (t ) R ) _ L.., l= l  I 
t + N(t)+ l - N(t) + 1 

Taken with (4) , this implies that 

N(t) + 1 a. s . ER 
--- --+ - .  

EX 

(7) 
C(t) a.s. ER 

-- --+ - as t -+ 00. t EX 

One has similarly that e(t ) = E(C(t) ) satisfies e(t ) / t -+ ER/EX as t -+ 00. 
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(8) Example. A vital component of an aeroplane is replaced at a cost b whenever it reaches 
the given age A . If it fails earlier, the cost of replacement is a . The distribution function of 
the usual lifetime of a component of this type is F, which we assume to have density function 
f. At what rate does the cost of replacing the component accrue? 

Let X l , X2 , . . .  be the runtimes of the component and its replacements . The Xi may be 
assumed independent with common distribution function 

H(x )  = { ;(X ) if x < A ,  
if x � A . 

By Lemma (4.3 .4), the mean of the Xi is 

lEX = foA
[ 1 - F(x ) ] dx .  

The cost of replacing a component having runtime X is 

{ a if X < A ,  
S(X) = 

b if X � A ,  

whence lES  = aF(A) + b [ 1 - F(A) ] .  

(9) 

By the renewal-reward theorem ( 1 ) ,  the asymptotic cost per unit time is 

lES aF (A) + b [ 1 - F(A) ] 
lEX foA [ 1 - F(x ) ] dx 

One may choose A to minimize this expression. • 

We give two major applications of the renewal-reward theorem, of which the first is to 
passage times of Markov chains . Let X = {X (t) : t � O} be an irreducible Markov chain in 
continuous time on the countable state space S, with transition semigroup {Pt } and generator 
G = (gij ) .  For simplicity we assume that X is the minimal process associated with its jump 
chain Z, as discussed prior to Theorem (6.9 .24). Let U = inf {t : X (t) =1= X (O) } be the first 
'holding time' of the chain, and define the 'first passage time' of the state i by Fi = inf{t > 
U : X(t) = i } .  We define the mean recurrence time of i by JLi = lE(Fi I X (O) = i ) . In 
avoid to avoid a triviality, we assume l S I  � 2, implying by the irreducibility of the chain that 
gi = -gii > 0 for each i . 
(10) Theorem. Assume the above conditions, and let X (0) = i . If JLi < 00, the proportion 
of time spent in state i, and the expectation of this amount, satisfy, as t -+ 00, 

(11) 

(12) 

I 1 t a. s . 1 - I{x (s)=i }  ds ---+ -- ,  t 0 JLigi 
I 1 t 1 - Pii (S ) ds -+ -- .  t 0 JLi gi 

We note from Exercise (6.9 . 1 1b) that the limit in ( 1 1 )  and ( 1 2) is the stationary distribution 
of the chain. 
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Proof. We define the pairs (Pr , Qr ) ,  r :::: 0, of times as follows .  First, we let Po = 0 and 
Qo = inf{t : X (t) i= i } ,  and more generally 

Pr = inf { t > Pr- l + Qr- l : X (t) = i } ,  
Qr = inf {s > 0 :  X (Pr + s )  i= i } .  

That is, Pr is the time of the rth passage of X into the state i ,  and Qr is the subsequent 
holding time in state i .  The Pr may be viewed as the times of arrivals in a renewal process 
having interarrival times distributed as Pi conditional on X(O) = i ,  and we write N(t) = 
sup{r : Pr :s t }  for the associated renewal process .  With the interarrival interval (Pr ,  Pr+d 
we associate the reward Qr . 

We have that 

(13) 
1 

N(t) - l 
1 lo t 1 

N(t) 
- L Qr :S - I{x (s)=i } ds :s - L Qr . 
t r=O t o t r=O 

Applying Theorem ( 1 ) , we identify the limits in ( 1 1 )  and ( 1 2) as lE(QO)/lE(Pl ) . Since Qo has 
the exponential distribution with parameter gi , and PI is the first passage time of i ,  we see 
that lE(QO)/lE(Pl ) = (gi l1; ) - 1 as required. • 

Another important and subtle application of the renewal-reward theorem is to queueing. 
A striking property of this application is its degree of generality, and only few assumptions 
are required of the queueing system. Specifically, we shall assume that: 

(a) customers arrive one by one, and the nth customer spends a 'waiting time' Vn in the 
system before departingt ;  

(b)  there exists almost surely a finite (random) time T (>  0) such that the process beginning 
at time T has the same distribution as the process beginning at time 0; the time T is 
called a 'regeneration point' ; 

(c) the number Q(t) of customers in the system at time t satisfies Q (O) = Q(T) = O. 
From (b) follows the almost-sure existence of an infinite sequence of times 0 = To < TI < 

T2 < . . .  each of which is a regeneration point of the process, and whose interarrival times 
Xi = Ti - Ti- l are independent and identically distributed. That is, there exists a renewal 
process of regeneration points . 

Examples of such systems are multifarious, and include various scenarios described in 
Chapter 1 1 :  a stable GIGII queue where the T; are the times at which departing customers 
leave the queue empty, or alternatively the times at which an arriving customer finds no one 
waiting; a network of queues, with the regeneration points being stopping times at which the 
network is empty. 

Let us assume that (a) , (b), (c) hold. We call the time intervals [Ti- l , Ti ) cycles of the 
process, and note that the processes Pi = { Q (t) : Ti- l :s t < Ti l ,  i :::: 1 ,  are independent 
and identical1y distributed. We write N; for the number of arriving customers during the 
cycle [Ti- l , Ti ) ,  and N = NI , T = TI . In order to avoid a triviality, we assume also that 
the regeneration points are chosen in such a way that Ni > 0 for all i .  We shall apply the 
renewal-reward theorem three times, and shall assume that 

(14) lET < 00, lEN < 00, lE(NT) < 00. 

tThis waiting time includes any service time. 
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(A) Consider the renewal process with arrival times To , Tl , T2 , . . . . The reward associated 
with the interarrival time Xi = Ti - T;- l is taken to be 

fT, Ri = 17 Q(u) du o  
T, - l  

The Ri have the same distribution as  R = Rl = ft Q(u) du ;  furthermore Q(u) :s N when o :s u :s T, whence IER :s IE(NT) < 00 by ( 1 4) .  By the renewal-reward theorem ( 1 )  and 
the discussion before (7) ,  

(15) 
1 lot a. s .  IER - Q(u) du ---+ -t ° lET as t -+ 00 .  

The ratio IE(R)jlE(T) is termed the ' long run average queue length' and i s  denoted by  L. 
(B) Consider now another renewal-reward process with arrival times To , Tl , T2 , . . . .  The 
reward associated with the interarrival time Xi is taken to be the number M of customers who 
arrive during the corresponding cycle. By the renewal-reward theorem and the discussion 
prior to (7) ,  we have from hypothesis ( 1 4) that the number N (t ) of arrivals by time t satisfies 

(16) 
N(t ) a.s .  lEN 
-- ---+ - as t -+ 00 .  t lET 

The ratio IE(N)jlE(T) is termed the ' long run rate of arrival ' and is denoted by A .  
(C) Consider now the renewal-reward process with interarrival times Nt , N2 , . . .  , the reward 
Si associated with the interarrival time Ni being the sum of the waiting times of customers 
arriving during the i th cycle of the queue. The mean reward is IES = IE(L� Vi ) ; this is no 
larger than IE(NT) which by ( 1 4) is finite. Applying the renewal-reward theorem and the 
discussion prior to (7) ,  we have that 

(17) 
� Ln \1:. � IES 

----r as n -+ 00. n I lEN i= l  

The ratio IE(S)jlE(N) i s  termed the ' long run average waiting time' and i s  denoted by  W.  

(18) Little's theorem. Under the assumptions above, we have that L = A W. 

Proof. We have that 

L IER . lET . lEN lE ft Q(u) du 
AW lET lEN IES IEL� Vi 

so that the result will follow once we have shown that 

(19) 

Each side of this equation is the mean amount of customer time spent during the first cycle of 
the system: the left side of ( 1 9) counts this by customer, and the right side counts it by unit of 
time. The required equality follows. • 
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(20) Example. Cars arrive at a car wash in the manner of a Poisson process with rate v .  
They wait in  a line, while the car at  the head of the line is washed by the unique car-wash 
machine. There is space in the line for exactly K cars , including any car currently being 
washed, and, when the line is full , arriving cars leave and never return. The wash times of 
cars are independent random variables with distribution function F and mean () .  

Let Pi denote the proportion o f  time that there are exactly i cars i n  the line, including any 
car being washed. Since the queue length is not a Markov chain (unless wash times are expo­
nentially distributed) , one should not talk of the system being ' in equilibrium' .  Nevertheless, 
using renewal theory, one may see that there exists an asymptotic proportion Pi of time. 

We shall apply Little 's  theorem to the smaller system comprising the location at the head 
of the line, that is, the car-wash machine itself. We take as regeneration points the times at 
which cars depart from the machine leaving the line empty. 

The ' long run average queue length'  is L = 1 - PO, being the proportion of time that the 
machine is in use. The ' long run rate of arrival ' A is the rate at which cars enter this subsystem, 
and this equals the rate at which cars join the line. Since an arriving car joins the line with 
probability 1 - P K , and since cars arrive in the manner of a Poisson process with parameter 
v ,  we deduce that A = v ( 1 - PK) . Finally, the ' long run average waiting time' W is the mean 
time taken by the machine to wash a car, so that W = () .  

We have by Little 's theorem ( 1 8) that L = AW  which i s  to say that 1 - PO = v ( 1 - PK)() . 
This equation may be  interpreted in  terms of  the cost of  running the machine, which is 
proportional to 1 - PO , and the disappointment of customers who arrive to find the line full ,  
which is proportional to v P K . • 

Exercises for Section 1 0.5  

1. I f  X ( t )  is an irreducible persistent non-null Markov chain, and u (·) is a bounded function on  the 
integers, show that 

� r u (X (s» ds � L 7ri u (i ) , 
t Jo i ES 

where 1C is the stationary distribution of X (t) . 
2. Let M(t) be an alternating renewal process, with interarrival pairs {Xr , Yr : r :::: I } . Show that 

I r a.s .  lEXl t 
Jo I{M(s) is even} ds -----+ 

lEX 1 + lEY! 
as t -+ 00. 

3 .  Let C(s) be  the current lifetime (or age) of  a renewal process N(t) with a typical interarrival time 
X. Show that 

� r C (s) ds � 
lE(X2) 

as t -+ 00. 
t Jo 2lE(X) 

Find the corresponding limit for the excess lifetime. 

4. Let j and k be distinct states of an irreducible discrete-time Markov chain X with stationary 
distribution 1C . Show that 

1 /7rk 
peT· < Tk I Xo = k) = ----------J lE(1j I Xo = k) + lE(Tk I Xo = j )  

where Ti = min {n :::: I : Xn = i }  is the first passage time to  the state i .  [Hint: Consider the times of 
return to j having made an intermediate visit to k.] 
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10.6 Problems 

In the absence of indications to the contrary, {Xn : n :::: I }  denotes the sequence of interarrival times 
of either a renewal process N or a delayed renewal process Nd . In either case, Fd and F are the 
distribution functions of X l  and X 2 respectively, though Fd I=- F only if the renewal process is 
delayed. We write JL = E(X2) ,  and shall usually assume that 0 < JL < 00. The functions m and md 

denote the renewal functions of N and Nd . We write Tn = 2::7= 1 Xi , the time of the nth arrival. 

1. (a) Show that lP'(N (t) ---+ 00 as t ---+ (0) = 1 .  
(b) Show that m et) < 00 if JL I=- O. 
(c) More generally show that, for all k > 0, E(N(t)k ) < 00 if JL I=- O. 

2. Let v et)  = E(N(t)2 ) .  Show that 

v et)  = m et) + 2 fot 
m et - s) dm (s ) .  

Find v (t) when N i s  a Poisson process. 

3. Suppose that rr2 = var(X 1 ) > O. Show that the renewal process N satisfies 

N(t) - (tIJL) � N(O, 1 ) ,  Vtrr 21JL3 as t ---+ 00 .  

4. Find the asymptotic distribution of the current life C (t) of N as t ---+ 00 when X 1 is not arithmetic. 

5. Let N be a Poisson process with intensity A.  Show that the total life D (t) at time t has distribution 
function lP'(D (t) .::; x) = 1 - (1 + A rnin{t , x })e-h for x :::: O. Deduce that E(D(t) )  = (2 - e -At )/A .  

6.  A Type I counter records the arrivals of  radioactive particles. Suppose that the arrival process 
is Poisson with intensity A,  and that the counter is locked for a dead period of fixed length T after 
each detected arrival. Show that the detection process N is a renewal process with interarrival time 
distribution F(x) = 1 - e-J.. (x-T) if x :::: T. Find an expression for lP'(N (t) :::: k) . 
7. Particles arrive at a Type 1 counter in the manner of a renewal process N; each detected arrival 
locks the counter for a dead period of random positive length. Show that 

lP'(Xl .::; x) = fox 
[ 1  - F (x - y) lh (y) dm (y) 

where F L is the distribution function of a typical dead period. 

S. (a) Show that m(t) = !t..t - ! ( 1  - e -2J..t ) if the interarrival times have the gamma distribution 
r (A , 2) . 

(b) Radioactive particles arrive like a Poisson process, intensity A, at a counter. The counter fails to 
register the nth arrival whenever n is odd but suffers no dead periods . Find the renewal function 
in of the detection process N. 

9. Show that Poisson processes are the only renewal processes with non-arithmetic interarrival times 
having the property that the excess lifetime E (t) and the current lifetime C (t) are independent for 
each choice of t .  

10. Let N1 be a Poisson process, and let N2 be a renewal process which is independent of N1 with 
non-arithmetic interarrival times having finite mean. Show that N (t) = N1 (t) + N2 (t) is a renewal 
process if and only if N2 is a Poisson process. 

11. Let N be a renewal process, and suppose that F is non-arithmetic and that rr 2 = var(X d < 00. 
Use the properties of the moment generating function F* ( -e) of Xl to deduce the formal expansion 

1 rr 2 - JL2 
m* (e ) = - + 2 + 0( 1 )  a s  e ---+ O .  

e JL 2JL 
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Invert this Laplace-Stieltjes transform formally to obtain 

t 0-2 - J-t2 
m (t) = - + 2 + 0(1 )  as t --+ oo . 

J-t 2J-t 

Prove this rigorously by showing that 

t lot 
m et) = - - FE (t) + [1 - FE (t - x)] dm (x ) , 

J-t 0 

where FE is the asymptotic distribution function of the excess lifetime (see Exercise ( l0.3 .3)) , and 
applying the key renewal theorem. Compare the result with the renewal theorems . 

12. Show that the renewal function md of a delayed renewal process satisfies 

where m is the renewal function of the renewal process with interarrival times X 2 , X 3, . . . .  
13. Let m (t) be the mean number of living individuals at time t in an age-dependent branching process 
with exponential lifetimes, parameter 'A, and mean family size v (> 1 ) .  Prove that m(t) = I e (v- l )At 
where I is the number of initial members. 

14. Alternating renewal process. The interarrival times of this process are Zo , YI , Z] , Y2 , . . . , 
where the Yi and Zj are independent with respective common moment generating functions My and 
Mz . Let pet) be the probability that the epoch t of time lies in an interval of type Z. Show that the 
Laplace-Stieltjes transform p* of p satisfies 

p * (B ) = -,--_l---,--------,M--=z=-(
'::-
-

::-
B'-,-) -----:-:-

1 - My (-B)Mz (-B) 

15. Type 2 counters. Particles are detected by a Type 2 counter of the following sort. The incoming 
particles constitute a Poisson process with intensity 'A. The jth particle locks the counter for a length 
Yj of time, and annuls any after-effect of its predecessors . Suppose that Yl , Y2 , . , . are independent of 
each other and of the Poisson process, each having distribution function G .  The counter is unlocked 
at time O. 

Let L be the (maximal) length of the first interval of time during which the counter is locked. 
Show that H(t) = JP'(L > t) satisfies 

H(t) = e-At [ 1  - G(t)] + l H(t - x) [ l  - G(x)]'Ae-AX dx . 

Solve for H in terms of G, and evaluate the ensuing expression in the case G(x) = 1 - e-!-'x where 
J-t > O. 
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16. Thinning. Consider a renewal process N, and suppose that each arrival is 'overlooked' with 
probability q, independently of all other arrivals .  Let M(t) be the number of arrivals which are 
detected up to time t / P where p = 1 - q . 
(a) Show that M is  a renewal process whose interarrival time distribution function Fp i s  given by 

Fp (x) = 2::�1  pq,- l F, (x/p) , where Fn is the distribution function of the time of the nth 
arrival in the original process N.  

(b) Find the characteristic function of Fp in  terms of that of F, and use the continuity theorem to 
show that, as p ..l- 0, Fp (s ) ---+ 1 - e -s / JL for s > 0, so long as the interarrival times in the original 
process have finite mean /-t. Interpret ! 

(c) Suppose that p < 1 ,  and M and N are processes with the same fdds .  Show that N is a Poisson 
process . 

17. (a) A PC keyboard has 100 different keys and a monkey is tapping them (uniformly) at random. 
Assuming no power failure, use the elementary renewal theorem to find the expected number of 
keys tapped until the first appearance of the sequence of fourteen characters 'W. Shakespeare' .  
Answer the same question for the sequence 'omo ' .  

(b) A coin comes up heads with probability p o n  each toss .  Find the mean number o f  tosses until the 
first appearances of the sequences (i) HHH, and (ii) HTH. 

18. Let N be a stationary renewal process. Let s be a fixed positive real number, and define X (t) = 
N(s + t) - N(t) for t ::: O. Show that X is a strongly stationary process. 

19. Bears arrive in a village at the instants of a renewal process;  they are captured and confined at a 
cost of $c per unit time per bear. When a given number B bears have been captured, an expedition 
(costing $d) is organized to remove and release them a long way away. What is the long-run average 
cost of this policy? 



11  
Queues 

Summary. A queue may be specified by its arrival process and its queueing 
and service disciplines. Queues with exponentially distributed interarrival and 
service times are the easiest to study, since such processes are Markov chains. 
Imbedded Markov chains allow an analysis when either the interarrival or the 
service times are exponentially distributed. The general case may be studied 
using the theory of random walks via Lindley 's  equation. Open and closed 
networks of Markovian queues may be studied via their stationary distributions. 

11.1  Single-server queues 

As summarized in Section 8 .4, with each queue we can associate two sequences {Xn : n � I }  
and {Sn : n � I }  of independent positive random variables, the Xn being interarrival times with 
common distribution function F x and the Sn being service times with common distribution 
function Fs . We assume that customers arrive in the manner of a renewal process with 
interarrival times {Xn } ,  the nth customer arriving at time Tn = Xl + X2 + . . .  + Xn . Each 
arriving customer joins the line of customers who are waiting for the attention of the single 
server. When the nth customer reaches the head of this line he is served for a period of 
length Sn , after which he leaves the system. Let Q(t) be the number of waiting customers at 
time t (including any customer whose service is in progress at t ) ;  clearly Q(O) = O. Thus 
Q = { Q (t) : t � O} is a random process whose finite-dimensional distributions (fdds) are 
specified by the distribution functions F x and F s . We seek information about Q .  For example, 
we may ask: 

(a) When is Q a Markov chain, or when does Q contain an imbedded Markov chain? 
(b) When is Q asymptotically stationary, in the sense that the distribution of Q(t) settles 

down as t -+ oo? 
(c) When does the queue length grow beyond all bounds, i n  that the server i s  not able to 

cope with the high rate of arrivals?  
The answers to these and other similar questions take the form of applying conditions to the 
distribution functions Fx and Fs ; the style of the analysis may depend on the types of these 
distributions functions. With this in mind, it is convenient to use a notation for the queueing 
system which incorporates information about F x and F s .  The most common notation scheme 
describes each system by a triple AIB/s, where A describes Fx , B describes Fs , and s is the 
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number of servers. 'TYpically, A and B may each be one of the following : 

D(d) == almost surely concentrated at the value d (D for 'deterministic ' ) , 

M(A) == exponential , parameter A (M for 'Markovian ' ), 

r CA ,  k) == gamma, parameters A and k ,  
G == some general distribution, fixed but unspecified. 

44 1 

(1) Example. M(l)/M(p,)/l. Interarrival times are exponential with parameter A and service 
times are exponential with parameter /1. Thus customers arrive in the manner of a Poisson 
process with intensity A. The process Q = { Q (t) } is a continuous-time Markov chain with 
state space {O, 1 , 2 ,  . . .  } ;  this follows from the lack-of-memory property of the exponential 
distribution. Furthermore, such systems are the only systems whose queue lengths are homo­
geneous Markov chains .  Why is this? • 

(2) Example. M(l)ID(I)/I. Customers arrive in the manner of a Poisson process, and each 
requires a service time of constant length 1 .  The process Q is not a Markov chain, but we 
shall see later that there exists an imbedded discrete-time Markov chain { Qn : n :::: O} whose 
properties provide information about Q .  • 

(3) Example. G/G/I. In this case we have no special information about Fx or Fs . Some 
authors denote this system by GI/G/1 ,  reserving the title GIGII to denote a more complicated 
system in which the interarrival times may not be independent. • 

The notation M(A) is sometimes abbreviated to M alone. Thus Example ( 1 )  becomes 
M/M/1 ; this slightly unfortunate abbreviation does not imply that Fx and Fs are the same. A 
similar remark holds for systems described as GIG/I . 

Broadly speaking, there are two types of statement to be made about the queue Q :  
(a) ' time-dependent' statements, which contain information about the queue for finite values 

of t ;  
(b) ' limiting ' results, which discuss the asymptotic properties of  the queue a s  t -+ 00. 

These include conditions for the queue length to grow beyond all bounds . 
Statements of the former type are most easily made about M(A)/M(/1)/1 ,  since this is the only 
Markovian system; such conclusions are more elusive for more general systems, and we shall 
generally content ourselves with the asymptotic properties of such queues . 

In the subsequent sections we explore the systems MIMI 1 , M/G/ 1 ,  GlMll ,  and GIG/1 , in 
that order. For the reader's convenience, we present these cases roughly in order of increasing 
difficulty. This is not really satisfactory, since we are progressing from the specific to the 
general, so we should like to stress that queues with Markovian characteristics are very special 
systems and that their properties do not always indicate features of more general systems. 

Here is a final piece of notation. 

(4) Definition. The traffic intensity p of a queue is defined as p = lE(S) /lE(X) , the ratio of 
the mean of a typical service time to the mean of a typical interarrival time. 

We assume throughout that neither lEeS) nor lE(X) takes the value zero or infinity. 
We shall see that queues behave in qualitatively different manners depending on whether 

p < 1 or p > 1 . In the latter case, service times exceed interarrival times ,  on average, and 
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the queue length grows beyond all bounds with probability 1 ;  in the former case, the queue 
attains an equilibrium as t -+ 00. It is a noteworthy conclusion that the threshold between 
instability and stability depends on the mean values of Fx and Fs alone. 

11 .2 MIMIl 

The queue M(A)/M(JL)/l is very special in that Q is a continuous-time Markov chain. Fur­
thermore, reference to (6 . 1 1 . 1 )  reminds us that Q is a birth-death process with birth and death 
rates given by 

An = A for all n ,  
_ { JL if n 2: 1 ,  

JLn - 0 if n = o. 

The probabilities Pn (t ) = lP'( Q (t) = n) satisfy the Kolmogorov forward equations in the 
usual way : 

(1) 

(2) 

dPn 
dt = APn- I (t ) - (A + JL)Pn (t) + JLPn+I (t ) for n 2: 1 ,  

dpo dt = -APO (t) + JLPI (t ) ,  

subject to the boundary conditions Pn (O) = Dan , the Kronecker delta. I t  i s  slightly tricky to 
solve these equations, but routine methods provide the answer after some manipulation . There 
are at least two possible routes: either use generating functions or use Laplace transforms with 
respect to t . We proceed in the latter way here, and define the Laplace transformt of Pn by 

(3) Theorem. We have that Pn (8) = 8- 1 [ 1  - a(8) ]a (8)n where 

(4) 
(A + JL + 8) - J (A + JL + 8)2 - 4AJL a�) = . 2JL 

The actual probabilities Pn (t) can be deduced in terms of Bessel functions . It turns out 
that pn (t) = Kn (t) - Kn+I (t) where 

and In (x ) is a modified Bessel function (see Feller 1 97 1 ,  p. 482) ,  defined to be the coefficient 
of zn in the power series expansion of exp[ !x (z + Z- I ) ] .  See Exercise (5) for another 
representation of Pn (t) . 

tDo not confuse Pn with the Laplace-Stieltjes transform p:; CO) = Jooo e-et dpn (t) . 
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Proof. Transfonn ( 1 )  and (2) to obtain 

(5) 

(6) 

I'-Pn+ ! - (A + I'- + B )Pn + APn- 1 = 0 for n � 1 , 

I'-PI - (A + B )po = - 1 ,  

where we have used the fact (see equation ( 14) of Appendix I) that 

1000 -8t dPn � e - dt = B Pn - DOn , o dt 
for all n . 
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Equation (5) is an ordinary difference equation, and standard techniques (see Appendix I) 
show that it has a unique solution which is bounded as B � 00 and which is given by 

(7) 

where a is given by (4) . Substitute (7) into (6) to deduce that po (B ) = [ 1  - a(B) ] jB and the 
proof is complete. Alternatively, po (B ) may be calculated from the fact that Ln Pn (t) = 1 ,  
implying that Ln Pn (B ) = B- 1 . • 

The asymptotic behaviour of Q (t) as t � 00 is deducible from (3) ,  but more direct methods 
yield the answer more quickly. Remember that Q is a Markov chain . 

(8) Theorem. Let p = A. j I'- be the traffic intensity. 
(a) If p <; 1, then lP'(Q(t) = n) --+ (1 - p)pn = ](n for n � 0, where Jt is the unique 

stationary distribution. 
(b) If p ::::: 1. there is no stationary distribution, and lP'(Q(t) == n) --+ ° for all n. 

The result is very natural. It asserts that the queue settles down into equilibrium if and 
only if interarrival times exceed service times on average. We shall see later that if p > 1 
then JtD(Q(t) � 00 as t � (0) = 1 ,  whilst if p = 1 then the queue length experiences wild 
oscillations with no reasonable bound on their magnitudes. 

Proof. The process Q is an irreducible chain . Let us try to find a stationary distribution, as 
done in greater generality at (6 . 1 1 .2) for birth-death chains .  Let t � 00 in ( 1 )  and (2) to find 
that the mass function 7C is a stationary distribution if and only if 

(9) 
nn+! - (1 + p)nn + pnn- I = 0 for n � 1 ,  

n l  - pno = O. 
(The operation of taking limits is justifiable by (6 .9 .20) and the unifonnity of Q. )  The general 
solution to (9) is 

nn = 
{ A + Bpn if p =1= 1 ,  
A + Bn i f  p = 1 ,  

where A and B are arbitrary constants . Thus the only bounded solution to (9) with bounded 
sum is 

nn = 
{ Bpn if p <; 1 ,  o if p � 1 . 

Hence, if p <; 1 ,  nn = ( 1  - p)pn is a stationary distribution, whilst if p � 1 then there exists 
no stationary distribution. By Theorem (6 .9 .2 1 ) ,  the proof is complete. • 
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There is an alternative derivation of the asymptotic behaviour (8) of Q, which has other 
consequences also. Let Un be the epoch of time at which the nth change in Q occurs . That is 
to say 

Uo = 0, Un+l = inf {t > Un : Q(t) =1= Q(Un+) } .  

Now let Qn = Q(Un+) be the number of waiting customers immediately after the nth change 
in Q. Clearly { Qn : n :::: O} is a random walk on the non-negative integers, with 

· th b b· l ·
).. P 

WI pro a l lty -- = -- ,  
).. + It l + p 

. 
h b b ' l ' It 1 

WIt pro a l lty -- = -- ,  
).. + It l + p 

whenever Qn :::: 1 (see paragraph A after (6. 1 1 . 1 2) for a similar result for another birth-death 
process) . When Qn = 0 we have that 

lP'(Qn+ l = 1 I Qn = 0) = 1 ,  

so that the walk leaves 0 immediately after arriving there; it is only in this regard that the walk 
differs from the random walk (6.4. 15 ) with a retaining barrier. Look for stationary distributions 
of the walk in the usual way to find (exercise) that there exists such a distribution if and only 
if p < 1 ,  and it is given by 

(10) 

Follow the argument of Example (6.4 . 1 5) to find that { non-null persistent 

{ Qn } is null �ersistent 

transIent 

if p < 1 ,  
i f  p = 1 ,  
if p > 1 .  

Equation ( 1 0) differs from the result of (8) because the walk { Qn } and the process Q behave 
differently at the state O. It is possible to deduce (8) from ( 1 0) by taking account of the times 
which elapse between the jumps of the walk (see Exercise ( 1 1 .2 .6) for detai ls) . It is clear now 
that Qn --+ 00 almost surely as n --+ 00 if p > 1 ,  whilst { Qn } experiences large fluctuations 
in the symmetric case p = 1 .  

Exercises for Section 1 1 .2 

1. Consider a random walk on the non-negative integers with a reflecting barrier at 0, and which 
moves rightwards or leftwards with respective probabilities p / ( 1  + p) and 1 / ( 1 + p) ;  when at 0, the 
particle moves to 1 at the next step. Show that the walk has a stationary distribution if and only if 
p < I ,  and in this case the unique such distribution Jr is given by 11"0 = � ( 1 - p) ,  1I"n = i ( I - p2) pn- I 

for n � 1 . 
2. Suppose now that the random walker of Exercise ( 1 ) delays its steps in the following way. When 
at the point n ,  it waits a random length of time having the exponential distribution with parameter 
en before moving to its next position; different 'holding times ' are independent of each other and of 
further information concerning the steps of the walk. Show that, subject to reasonable assumptions 
on the en , the ensuing continuous-time process settles into an equilibrium distribution v given by 
Vn = C1I"n /en for some appropriate constant C . 
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By applying this result to the case when eo = A, en = 1.. + f-t for n � I ,  deduce that the equilibrium 
distribution of the M(A)IM(f-t)/1 queue is Vn = (1 - p) pn , n � 0, where p = 1.. / f-t < l .  
3. Waiting time. Consider a M(A )1M(f-t)/1 queue with p = 1../ f-t satisfying p < 1 ,  and suppose that 
the number Q (O) of people in the queue at time 0 has the stationary distribution ]fn = (1 - p )pn , 
n � O. Let W be the time spent by a typical new arrival before he begins his service. Show that the 
distribution of W is given by lP'(W .::; x) = 1 - pe-x (I-'-J...) for x � 0, and note that lP'(W = 0) = 1 - p .  
4. A box contains i red balls and j lemon balls, and they are drawn at random without replacement. 
Each time a red (respectively lemon) ball is drawn, a particle doing a walk on {O,  1 , 2,  . . .  } moves 
one step to the right (respectively left) ; the origin is a retaining barrier, so that leftwards steps from 
the origin are suppressed. Let ]f en ; i ,  j) be the probability that the particle ends at position n ,  having 
started at the origin. Write down a set of difference equations for the ]f en ; i, j ) ,  and deduce that 

]f en ; i , j) = A(n ; i, j ) - A(n + 1 ;  i, j )  for i .::; j + n 

where A(n ; i, j ) = (�) /e!n) . 

5. Let Q be a M(A)IM(f-t)1 l queue with Q (O) = O. Show that Pn (t) = lP'(Q (t) = n) satisfies 

where the ]f en ; i, j ) are given in the previous exercise. 

6. Let Q (t) be the length of an M(A)IM(f-t)11 queue at time t, and let Z = { Zn }  be the jump chain 
of Q . Explain how the stationary distribution of Q may be derived from that of Z, and vice versa. 

7. Tandem queues. Two queues have one server each, and all service times are independent and 
exponentially distributed, with parameter f-ti for queue i .  Customers arrive at the first queue at the 
instants of a Poisson process of rate A « min {f-t 1 , f-t2 }) ,  and on completing service immediately enter 
the second queue. The queues are in equilibrium. Show that: 
(a) the output of the first queue is a Poisson process with intensity A, and that the departures before 

time t are independent of the length of the queue at time t ,  
(b) the waiting times of  a given customer in  the two queues are not independent. 

11.3 MlG!l 

MlM/1 is the only queue which is a Markov chain; the analysis of other queueing systems 
requires greater ingenuity. If either interarrival times or service times are exponentially dis­
tributed then the general theory of Markov chains still provides a method for studying the 
queue. The reason is that, for each of these two cases, we may find a discrete-time Markov 
chain which is imbedded in the continuous-time process Q. We consider M/G/1 in this section, 
which is divided into three parts dealing with eqUilibrium theory, the 'waiting time' of a typical 
customer, and the length of a typical 'busy period' during which the server is continuously 
occupied. 

(A) Asymptotic queue length. Consider M(A)/G/I . Customers arrive in the manner of a 
Poisson process with intensity A. Let Dn be the time of departure of the nth customer from the 
system, and let Q (Dn ) be the number of customers which he leaves behind him in the system 
on his departure (really, we should write Q(Dn +) instead of Q (Dn ) to make clear that the 
departing customer is not included). Then Q (D) = { Q (Dn )  : n 2: 1 }  is a sequence of random 
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variables. What can we say about a typical increment Q(Dn+d - Q(Dn ) ? If Q(Dn ) > 0, 
the (n + l ) th customer begins his service time immediately at time Dn ; during this service 
time of length Sn+ l , a random number, Un say, of customers arrive and join the waiting line . 
Therefore the (n + l ) th customer leaves Un + Q(Dn )  - 1 customers behind him as he departs. 
That is, 

(1) 

If Q(Dn ) = 0, the server must wait for the (n + l ) th arrival before shet sets to work again. 
When this service is complete, the (n + l ) th customer leaves exactly Un customers behind 
him where Un is the number of arrivals during his service time, as before. That is ,  

(2) 

Combine ( l )  and (2) to obtain 

(3) 

where h is defined by 
{ I  if x > 0, 

h ex) -

O ·f 0 1 x ::::; . 
Equation (3) holds for any queue. However, in the case of M (A) / G / 1  the random variable Un 
depends only on the length of time Sn+l , and is independent of Q(Dn ) ,  because of the special 
properties of the Poisson process of arrivals .  We conclude from (3) that Q(D) is a Markov 
chain . 

(4) Theorem. The sequence Q(D) is a Markov chain with transition matrix 

(� 01 02 1 00 01 02 . . .  

PD � � 00 0 ) 
0 00 

where 

and S is a typical service time. 

The quantity OJ is simply the probability that exactly j customers join the queue during a 
typical service time. 

Proof. We need to show that P D is the correct transition matrix. In the notation of Chapter 6, 

POj = lP'(Q(Dn+d = j I Q(Dn ) = 0) = lE(lP'(Un = j I S» ) 

tRecall the convention o f  Section 8 . 4  that customers are male and servers female. 
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where S = Sn+ l is the service time of the (n + l )th customer. Thus 

as required, since, conditional on S, Un has the Poisson distribution with parameter AS. 
Likewise, if  i :::: 1 then 

( . .  ) { OJ-i+ l Pij = JE lP'(Un = ] - I + 1 I S) = 
0 

if j - i + I :::: 0, 

if j - i + 1 < o.  
• 

This result enables us to observe the behaviour of the process Q = { Q (t) } by evaluating 
it at the time epochs DJ , D2 , . . . and using the theory of Markov chains .  It is important to 
note that this course of action provides reliable information about the asymptotic behaviour 
of Q only because Dn --+ 00 almost surely as n --+ 00. The asymptotic behaviour of Q(D) 
is described by the next theorem. 

(5) Theorem. Let p = .A.E(S) be the traffic intensity. 
(a) If p < 1, then Q(D) is ergodic with a unique stationary distribution 'If, having gener­

ating junction 

" j Ms(.A.(s - 1» G(8) = '-:-r 1tjS = (1 - p) (s - 1)  S _ Ms (.A.(s _ 1» ' J 

where Ms is the moment generating function of a typical service time. 
(b) If p > 1, then Q(D) is transient. 
(c) If p = 1, then Q eD) is null persistent. 
Here are some consequences of this theorem. 

(6) Busy period. A busy period is a period of time during which the server is continuously 
occupied. The length B of a typical busy period behaves similarly to the time B' between 
successive visits of the chain Q(D) to the state O. Thus 

if p < I then JE(B) < 00 ,  

i f  p = I then JE(B) = 00, 

i f  p > 1 then lP'(B = 00) > O. 
lP'(B = 00) = 0, 

See the forthcoming Theorems ( 17 )  and ( 1 8) for more details about B . 

(7) Stationarity of Q. It is an immediate consequence of (5) and Theorem (6.4. 17 )  that 
Q(D) is asymptotically stationary whenever p < 1 .  In this case it can be shown that Q is 
asymptotically stationary also, in that lP'(Q (t) = n) --+ 7rn as t --+ 00. Roughly speaking, this 
is because Q(t) forgets more and more about its origins as t becomes larger. 

Proof of (5). The sequence Q(D) is irreducible and aperiodic. We proceed by applying 
Theorems (6.4 .3 ) ,  (6.4. 1 0) ,  and (6.4. 1 3) .  
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(a) Look for a root of the equation 7C = 7C PD . Any such 7C satisfies 

(8) 
J+ I 

7r) = 7r00) + L 7ri O)-i+ I , for j :::: O. 
i= 1  

First, note that i f  7r0 (:::: 0 ) i s  given, then ( 8 ) has a unique solution 7C .  Furthermore, this solution 
has non-negative entries. To see this, add equations (8) for j = 0, 1 ,  . . .  , n  and solve for 
7rn+ l to obtain 

(9) 

where 

n 
7rn+ I OO = 7rOEn + L 7ri En-i+ 1  for n :::: 0 

i= 1  

En = 1 - DO - 01 - . . .  - On > 0 because L D) = 1 .  
) 

From (9) ,  7rn+ 1  :::: 0 whenever 7ri :::: 0 for all i ::::: n ,  and so 

(10) 7rn :::: 0 for all n 

if 7r0 :::: 0, by induction .  Return to (8) to see that the generating functions 

satisfy 

and therefore 

(11) 

G(s )  = L 7r)s) , � (s) = L O) s) , 
) ) 

1 G(s) = 7rO� (s )  + - [G(s )  - 7ro]� (s )  s 

G(s) = 7ro (s - l )� (s)
. s - � (s )  

The vector 7C i s  a stationary distribution i f  and only i f  7r0 > 0 and lims t 1 G(s )  = 1 .  Apply 
L'Hopital 's rule to ( 1 1 )  to discover that 

7r0 = 1 - �' ( 1 )  > 0 

is a necessary and sufficient condition for this to occur, and thus there exists a stationary 
distribution if and only if 

(12) �I ( l )  < 1 .  

However, 
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where Ms is the moment generating function of S. Thus 

(13) �I ( l )  = AM� (O) = AlE(S) = p 
and condition ( 1 2) becomes p < 1 .  Thus Q (D) is non-null persistent if and only if p < 1 .  In 
this case, G(s) takes the form given in (5a) .  

(b) Recall from Theorem (6.4. 1 0) that Q (D) is  transient if  and only if  there is  a bounded 
non-zero solution {Yj : j :::: I } to the equation 

(14) 

(15) 

;= 1 
00 

Yj = L);Yj+;- 1 for j :::: 2. 
;=0 

If p > 1 then � (s ) satisfies o < �(O) < 1 ,  � ( l )  = 1 ,  �I ( l )  > 1 ,  
from ( 1 3) . Draw a picture (or see Figure 5 . 1 ) to see that there exists a number b E  (0, 1 )  such 
that �(b) = b. By inspection, Yj = 1 - bj solves ( 14) and ( 15 ) , and (b) is shown. 

(c) Q(D) is transient if p > 1 and non-null persistent if and only if p < 1 .  We need only 
show that Q (D) is persistent if p = 1 .  But it is not difficult to see that {Yj : j I- O} solves 
equation (6.4. 1 4) , when Yj is given by Yj = j for j :::: 1 ,  and the result follows. • 

(B) Waiting time. When p < 1 the imbedded queue length settles down into an equilibrium 
distribution 1C .  Suppose that a customer joins the queue after some large time has elapsed. 
He will wait a period W of time before his service begins; W is called his waiting time (this 
definition is at odds with that used by some authors who include the customer's service time 
in W). The distribution of W should not vary much with the time of the customer's arrival 
since the system is 'nearly '  in equilibrium. 

(16) Theorem. The waiting time W has moment generating function 

Mw (s) = 
( 1 - p)s 

A + S - AMs (S) 
when the imbedded queue is in equilibrium. 
Proof. The condition that the imbedded queue be in equilibrium amounts to the supposition 
that the length Q (D) of the queue on the departure of a customer is distributed according to 
the stationary distribution 1C .  Suppose that a customer waits for a period of length W and then 
is served for a period of length S. On departure he leaves behind him all those customers who 
have arrived during the period, length W + S, during which he was in the system. The number 
Q of such customers is Poisson distributed with parameter A(W + S) , and so 

lE(s Q ) = lE (lE(s Q I W, S») 
= lE(eA(W +S) (s- l ) 

= lE(eAW(s- l) lE(eAS (s- I ) by independence 

= MW (A (S - 1 ))MS (A (S - 1 )) . 
However, Q has distribution 1C given by (5a) and the result follows .  • 
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(C) Busy period: a branching process. Finally, put yourself in the server's  shoes. She may 
not be as interested in the waiting times of her customers as she is in the frequency of her tea 
breaks. Recall from (6) that a busy period is a period of time during which she is continuously 
occupied, and let B be the length of a typical busy period. That is, if the first customer arrives 
at time TJ then 

B = inf{t  > 0 : Q (t + Td = OJ ; 

The quantity B is well defined whether or not Q (D) is ergodic, though it may equal +00. 

(17) Theorem. The moment generating function M B of B satisfies the functional equation 

MB (S ) = Ms (s - A + AMB (S ») . 
It can be shown that this functional equation has a unique solution which is the moment 

generating function of a (possibly infinite) random variable (see Feller 1 97 1 ,  pp. 441 ,  473) . 
The server may wish to calculate the probability 

JP'(B < (0) = lim JP'(B .:::: x) x---+ oo 

that she is eventually free. It is no surprise to find the following, in agreement with (6). 

(18) Theorem. We have that 

JP'(B < (0) { -
I 

< 1 
if p .:::: 1 ,  
ifp > l .  

This may remind you of  a similar result for the extinction probability of a branching process. 
This is no coincidence; we prove ( 1 7) and ( 1 8) by methods first encountered in the study of 
branching processes. 

Proof of (17) and (18). Here is an imbedded branching process. Call customer C2 an 'off­
spring' of customer Cl if C2 joins the queue while Cl is being served. Since customers arrive 
in the manner of a Poisson process, the numbers of offspring of different customers are in­
dependent random variables. Therefore, the family tree of the 'offspring process '  is that of a 
branching process. The mean number of offspring of a given customer is given in the notation 
of the proof of (5) as J,L = 8,'( 1 ) ,  whence J,L = p by ( 1 3 ) . The offspring process is ultimately 
extinct if and only if the queue is empty at some time later than the first arrival. That is, 

JP'(B < (0) = JP'(Zn = 0 for some n ) ,  

where Zn i s  the number of  customers i n  the nth generation of  the process. We have by Theorem 
(5.4.5) that 11 = JP'(Zn = 0 for some n) satisfies 

11 = 1 if and only if J,L ':::: 1 .  

Therefore JP'(B < (0) = 1 if and only if p .:::: 1 ,  as required for ( 1 8) . 
Each individual in this branching process has a service time; B is the sum of these service 

times. Thus 

(19) 
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where S is the service time of the first customer, Z is the number of offspring of this customer, 
and Bj is the sum of the service times of the jth such offspring together with all his descendants 
in the offspring process (this is similar to the argument of Problem (5 . 1 2 . 1 1» .  The two terms 
on the right side of ( 1 9) are not independent of each other; after all, if S is large then Z is 
likely to be large as well . However, condition on S to obtain 

and remember that, conditional on Z, the random variables Bl , B2 , . . .  , Bz are independent 
with the same distribution as B to obtain 

where Gpo(/L) is the probability generating function of the Poisson distribution with parameter 
/1. Therefore 

as required. • 

Exercises for Section 1 1 . 3 

1. Consider M(A)ID(d)1 1 where p = Ad < 1 .  Show that the mean queue length at moments of 
departure in equilibrium is ip (2 - p ) / ( l  - p) .  

2 .  Consider M(A)/M(fL)/I ,  and show that the moment generating function of  a typical busy period 
is given by 

for all sufficiently small but positive values of s .  

3. Show that, for a M/OI1 queue, the sequence o f  times at which the server passes from being busy 
to being free constitutes a renewal process .  

11 .4 GIMII 

The system GIM(/1)/l contains an imbedded discrete-time Markov chain also, and this chain 
provides information about the properties of Q (t ) for large t. This section is divided into two 
parts, dealing with the asymptotic behaviour of Q (t ) and the waiting time distribution. 

(A) Asymptotic queue length. This time, consider the epoch of time at which the nth customer 
joins the queue, and let Q (An )  be the number of individuals who are ahead of him in the system 
at the moment of his arrival. The quantity Q (An ) includes any customer whose service is in 
progress ;  more specifically, Q (An)  = Q(Tn -) where Tn is the instant of the nth arrival. The 
argument of the last section shows that 

(1) 
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where Vn is the number of departures from the system during the interval [Tn , Tn+ I ) between 
the nth and (n + l ) th arrival. This time, Vn depends on Q(An ) since not more than Q(An ) + 1 
individuals may depart during this interval. However, service times are exponentially dis­
tributed, and so, conditional upon Q(An ) and Xn+l = Tn+l - Tn , the random variable Vn has 
a truncated Poisson distribution 

(2) 

Anyway, given Q(An ) ,  the random variable Vn is independent of the sequence Q(A ) ) ,  Q(A2 ) ' 

. . . , Q (An- l ) ,  and so Q(A) = { Q (An ) : n ::: I }  is a Markov chain. 

(3) Theorem. The sequence Q(A) is a Markov chain with transition matrix 

where 

1 - ao - a l 
( 1 - ao 

P A = I - ao � a l - a2 

and X is a typical interarrival time. 

ao 
al 
a2 

0 0 

) ao 0 . . . 
a l ao 

The quantity aj is simply the probability that exactly j events of a Poisson process occur 
during a typical interarrival time. 

Proof. This proceeds as for Theorem ( 1 1 .3 .4) . • 

(4) Theorem. Let p = {J.LE(X) }-1 be the traffic intensity. 
(a) If p < 1, then Q (A) is ergodic with a unique stationary distribution 1t given by 

1tj = (1 - rJ)r/ for j 2: 0 

where rJ is the smaUest positive root oi rJ = MX (J.L(rJ - 1 »  and Mx is the moment 
generating junction of X. 

(b) If p > 1, then Q(A) is transient. 
(c) If p == 1, then Q(A) is null persistent. 
If P < 1 then Q(A) is asymptotically stationary. Unlike the case of M/G/l , however, the 

stationary distribution 1t given by (4a) need not be the limiting distribution of Q itself; to see 
an example of this, just consider D( l )/M/1 . 

Proof. Let Qd be an M(jL)/G/1 queue whose service times have the same distribution as the 
interarrival times of Q (the queue Qd is called the dual of Q, but more about that later). The 
traffic intensity Pd of Qd satisfies 

(5) PPd = 1 .  
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From the results of Section 1 1 .3 , Qd has an imbedded Markov chain Qd (D) ,  obtained from 
the values of Qd at the epochs of time at which customers depart. We shall see that Q(A) 
is non-null persistent (respectively transient) if and only if the imbedded chain Qd (D) of Qd 
is transient (respectively non-null persistent) and the results will follow immediately from 
Theorem ( 1 1 . 3 .5) and its proof. 

(a) Look for non-negative solutions 7C to the equation 

(6) 7C = 7CPA 

which have sum 7C I' = 1 .  Expand (6) , set 

(7) Yj = 7C0 + 1Tl + . . .  + 1Tj - I for j :::: 1 ,  

and remember that Lj Olj = 1 to obtain 

(8) 

(9) 

00 
Y I = L OliYi , 

;= 1 
00 

Yj = L Oli YJ+i- 1 for j :::: 2 . 
;=0 

These are the same equations as ( 1 1 . 3 . 14) and ( 1 1 . 3 . 1 5 ) for Qd. As in the proof of Theorem 
( 1 1 . 3 .5) , it is easy to check that 

(10) Yj = 1 - rJj 

solves (8) and (9) whenever 
00 

A (s) = L OljSj 
j=O 

satisfies A' ( 1 )  > 1 ,  where rJ is the unique root in the interval (0, 1 ) of the equation A (s ) = s .  
However, write A in terms o f  Mx , a s  before, to find that A(s) = MX (J-i(s - 1 » , giving 

, 1 
A ( 1 )  = Pd = - . 

P 

Combine (7) and ( 1 0) to find the stationary distribution for the case P < 1 .  If P :::: 1 then 
Pd ::s 1 by (5), and so (8) and (9) have no bounded non-zero solution since otherwise Qd(D) 
would be transient, contradicting Theorem ( 1 1 . 3 .5 ) . Thus Q(A) is non-null persistent if and 
only if P < 1 .  

(b) To prove transience, we seek bounded non-zero solutions {Yj : j :::: I } to the equations 

(11) 
J+ l 

Yj = L Y;Olj-i+ 1 for j :::: 1 .  
;=1 

Suppose that {Yj } satisfies ( 1 1 ) , and that Yl :::: O. Define 1T = {1Tj : j :::: O} as follows: 

1T0 = YI0l0 , 1Tl = Y l ( 1 - 0l0) ,  1Tj = Yj - Yj- l for j :::: 2 . 
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It is an easy exercise to show that 1C satisfies equation ( 1 1 . 3 . 8 ) with the OJ replaced by the 
Olj throughout. But ( 1 1 . 3 . 8 ) possesses a non-zero solution with bounded sum if and only if 
Pd < 1 ,  which is to say that Q (A) is transient if and only if P = 1 /  Pd > 1 .  

(c) Q (A) is transient if and only if P > 1 ,  and is non-null persistent if and only if P < 1 .  
If P = 1 then Q (A) has no choice but null persistence. • 

(B) Waiting time. An arriving customer waits for just as long as the server needs to complete 
the service period in which she is currently engaged and to serve the other waiting customers . 
That is, the nth customer waits for a length Wn of time : 

where Z r is the excess (or residual) service time of the customer at the head of the queue, and 
Z2 , Z3 , . . .  , ZQ (An l are the service times of the others. Given Q (An ) ,  the Zi are independent, 
but Z r does not in general have the same distribution as Z2 , Z3 , . . . .  In the case of GIM(/t)/1 , 
however, the lack-of-memory property helps us around this difficulty. 

(12) Theorem. The waiting time W of an arriving customer has distribution 

{ ° lP W < x = ( 
-

) 
1 - l1e-JL( I -'7lx 

ifx < 0, 
ifx :::: 0, 

where 11 is given in (4a), when the imbedded queue is in equilibrium. 

Note that W has an atom of size 1 - 11 at the origin. 

Proof. By the lack-of-memory property, Wn is the sum of Q (An ) independent exponential 
variables. Use the equilibrium distribution of Q (A) to find that 

/t( 1  - 11) Mw (s ) = ( 1 - 11) + 11 ( 1 ) /t - 11 - S  

which we recognize as the moment generating function of a random variable which either 
equals zero (with probability 1 - 11) or is exponentially distributed with parameter /t( 1  - 11) 
(with probability 11) . • 

Finally, here is a word of caution. There is another quantity called virtual waiting time, 
which must not be confused with actual waiting time. The latter is the actual time spent by 
a customer after his arrival ; the former is the time which a customer would spend if he were 
to arrive at some particular instant. The equilibrium distributions of these waiting times may 
differ whenever the stationary distribution of Q differs from the stationary distribution of the 
imbedded Markov chain Q(A) .  

Exercises for Section 1 1 .4 

1. Consider GIM(fL)l1 ,  and let Olj = lE« fLX)j e-JLX /j ! )  where X is a typical interarrival time. 
Suppose the traffic intensity p is less than 1 .  Show that the equilibrium distribution 1C of the imbedded 
chain at moments of arrivals satisfies 

00 
lTn = L OlilTn+i- l 

i=O 
for n :::: 1 .  
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Look for a solution of the form lTn = en for some e, and deduce that the unique stationary distribution 
is given by lTj = ( l - 7])7]i for j :::: 0, where 7] is the smallest positive root of the equation s = 
MX (f-t(s - 1 » . 

2. Consider a GIM(f-t)! 1 queue in equilibrium. Let 7] be the smallest positive root of the equation 
x = M X (f-t(x - 1» where M X is the moment generating function of an interarrival time. Show that 
the mean number of customers ahead of a new arrival is 7] (l - 7]) - 1 , and the mean waiting time is 
7] {f-t( 1  - 7] ) }- 1 . 

3. Consider D( l )IM(f-t)/1 where f-t > 1 .  Show that the continuous-time queue length Q (t) does not 
converge in distribution as t ---+ 00, even though the imbedded chain at the times of arrivals is ergodic. 

11 .5 G/G/l 

If neither interarrival times nor service times are exponentially distributed then the methods 
of the last three sections fail .  This apparent setback leads us to the remarkable discovery that 
queueing problems are intimately related to random walk problems. This section is divided 
into two parts, one dealing with the equilibrium theory of GIGll and the other dealing with 
the imbedded random walk. 

(A) Asymptotic waiting time. Let Wn be the waiting time of the nth customer. There is a 
useful relationship between Wn and Wn+ l in terms of the service time Sn of the nth customer 
and the length Xn+l of time between the nth and the (n + l )th arrivals .  

(1) Theorem. Lindley's equation. We have that 

Wn+ l = max{O, Wn + Sn - Xn+d · 

Proof. The nth customer is in the system for a length Wn + Sn of time. If Xn+l > Wn + Sn 
then the queue is empty at the (n + l )th arrival, and so Wn+ l = O. If Xn+l ::::; Wn + Sn then 
the (n + 1 )th customer arrives while the nth is still present, but only waits for a period of 
length Wn + Sn - Xn+ l before the previous customer leaves .  • 

We shall see that Lindley 's equation implies that the distribution functions 

of the Wn converge as n ---+ (Xl to some limit function F(x ) .  Of course, F need not be a proper 
distribution function; indeed, it is intuitively clear that the queue settles down into equilibrium 
if and only if F is a distribution function which is not defective. 

(2) Theorem. Let Fn (x ) = JP'(Wn ::::; x ) .  Then 

ifx < 0, 

ifx 2: 0, 

where G is the distributionfunction ofUn = Sn -Xn+ l . Thus the limit F (x ) = limn---+oo Fn (x ) 
exists. 
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Note that {Un : n 2: I }  is a collection of independent identically distributed random variables. 

Proof. If x 2: 0 then 

lP'(Wn+l ::s x )  = i: lP'(Wn + Un ::s x I Un = y) dG(y )  

= i� lP'(Wn ::s x - y) dG(y) by independence, 

and the first part is proved. We claim that 

(3) Fn+1 (x ) ::s Fn (x ) for all x and n .  

I f  (3 ) holds then the second result follows immediately; we  prove ( 3 ) by induction. Trivially, 
F2 (x ) ::s FI (x ) because FI (x ) = 1 for all x 2: O. Suppose that (3) holds for n = k - 1 ,  say. 
Then, for x 2: 0, 

by the induction hypothesis. The proof is complete. • 

It follows that the distribution functions of {Wn } converge as n -+ 00 . It is clear, by 
monotone convergence, that the limit F (x ) satisfies the Wiener-Hopf equation 

F(x) = i� F(x - y) dG(y) for x 2: 0; 

this is not easily solved for F in terms of G. However, it is not too difficult to find a criterion 
for F to be a proper distribution function. 

(4) Theorem. Let p = lE(S)/lE(X) be the traffic intensity 
(a) If p < 1, then F is a non-defective distribution function. 
(b) If p > 1, then F(x) = Ofor all x. 
(c) If p = 1 and var(U) > O. then F(x) = Ofor all x .  

An explicit formula for the moment generating function of F when p < 1 is given in 
Theorem ( 1 4) below. Theorem (4) classifies the stability of G/G/1 in terms of the sign of 
1 - p; note that this information is obtainable from the distribution function G since 

(5) p < 1 * lEeS) < lE(X) * lE(U) = i: u dG(u) < 0 

where U is a typical member of the Ui . We call the process stable when p < 1 .  
The crucial step in the proof of (4) is important in its own right. Use Lindley's equation 

( 1 )  to see that: 

WI = 0 , 
W2 = max{O, WI + Ul l = max{O, UJ } ,  
W3 = max{O, W2 + U2} = max{O, U2 , U2 + UJ } ,  
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and in general 

(6) Wn+ l = max {O, Vn , Vn + Vn-I , . . .  , Vn + Vn- I + . . .  + VI } 

which expresses Wn+ I in terms of the partial sums of a sequence of independent identically 
distributed variables . It is difficult to derive asymptotic properties of Wn+1 directly from (6) 
since every non-zero term changes its value as n increases from the value k, say, to the value 
k + 1 .  The following theorem is the crucial observation. 

(7) Theorem. The random variable Wn+ 1  has the same distribution as 

W�+ 1 = max {O, VI , VI + V2 , . . .  , VI + V2 + . . .  + Vn } .  

Proof. The vectors (VI , V2 , . . .  , Vn ) and (Vn ,  Vn- I , . . .  , V» are sequences with the same 
joint distribution. Replace each Vi in (6) by Vn+l -i .  • 

That is to say, Wn+ l and W�+ I are different random variables but they have the same 
distribution . Thus 

Furthermore, 

(8) 

F(x) = lim JP'(Wn :'S x) = lim JP'(W� :'S x ) .  n---+oo n---+oo 

W� :'S W�+ I for all n 2: 1 ,  

a monotonicity property which is not shared by {Wn } . This property provides another method 
for deriving the existence of F in (2) . 

Proof of (4). From (8) , the limit W' = limn---+oo W� exists almost surely (and, in fact, point­
wise) but may be +00. Furthermore, 

(9) 

where 

Wi = max{O, :E I , :E2 , . . .  } 

and F(x) = JP'(W' :'S x ) .  Thus 

F(x) = JP'(:En :'S x for all n) if x 2: 0, 

and the proof proceeds by using properties of the sequence { :En } of partial sums, such as the 
strong law (7 .5 . 1 ) :  

(10) 

Suppose first that JE(V) < O. Then 

as n -+ 00. 

JP'(:En > 0 for infinitely many n) = JP' (�:En - JE(V) > IJE (V) 1 i .o .) = 0 
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by ( 1 0) . Thus, from (9) , W' is almost surely the maximum of only finitely many terms, and 
so lP'(W' < 00) = 1 ,  implying that F is a non-defective distribution function. 

Next suppose that lE(U) > O. Pick any x > 0 and choose N such that 

For n ::::: N, 

2x N > -- . - lE(U) 

lP'(1;n ::::: x)  = lP' (�1;n - lE(U) ::::: � - lE(U») 
::::: lP' (�1;n - lE(U) ::::: - �lE(U») . 

Let n -+ 00 and use the weak law to find that 

lP'(W' ::::: x) ::::: lP'(1;n ::::: x) -+ 1 for all x .  

Therefore W' almost surely exceeds any finite number, and so lP'(W' < 00 )  = 0 as required. 
In the case when lEe U) = 0 these crude arguments do not work and we need a more precise 

measure of the fluctuations of 1;n ;  one way of doing this is by way of the law of the iterated 
logarithm (7 .6 . 1 ) .  If var(U) > 0 and lE(Uf) < 00,  then { 1;n } enjoys fluctuations of order 
O( J n log log n) in both positive and negative directions with probability 1 ,  and so 

lP'(1;n ::::: x for some n) = 1 for all x .  

There are other arguments which yield the same result. • 

(B) Imbedded random walk. The sequence 1; = { 1;n : n ::::: O} given by 

(11)  

n 
1;0 = 0, 1;n = L Uj for n ::::: 1 ,  

j= l 

describes the path of a particle which performs a random walk on JR, jumping by an amount 
Un at the nth step . This simple observation leads to a wealth of conclusions about queueing 
systems. For example, we have just seen that the waiting time Wn of the nth customer has 
the same distribution as the maximum W� of the first n positions of the walking particle. If 
lE(U) < 0 then the waiting time distributions converge as n -+ 00, which is to say that the 
maximum displacement W' = lim W� is almost surely finite. Other properties also can be 
expressed in terms of this random walk, and the techniques of reflection and reversal which 
we discussed in Section 3 . 1 0 are useful here. 

The limiting waiting time distribution is the same as the distribution of the maximum 

W' = max{O, 1; 1 , 1;2 , . . .  } ,  

and so it is appropriate to study the so-called ' ladder points ' of 1; .  Define an increasing 
sequence L (O) , L ( l ) ,  . . .  of random variables by 

L (O) = 0, L (n + 1 ) = min Im > L (n) : 1;m > 1;L(n)
} ; 
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that is, L(n + 1) is the earliest epoch m of time at which :Em exceeds the walk's previous 
maximum :EL(n) . The L(n) are called ladder points ; negative ladder points of :E are defined 
similarly as the epochs at which :E attains new minimum values .  The result of (4) amounts to 
the assertion that 

{ 0 if lE(U) < 0, 
lP'(there exist infinitely many ladder points) = 

1 if lE(U) > O. 
The total number of ladder points is given by the next lemma. 

(12) Lemma. Let TJ = lP'(:En > 0 for some n � 1 )  be the probability that at least one ladder 
point exists. The total number A of ladder points has mass function 

lP'(A = I) = ( 1 - TJ) TJI for I � o. 
Proof. The process :E is a discrete-time Markov chain. Thus 

lP'(A � I + 1 I A � I) = TJ 

since the path of the walk after the Ith ladder point is a copy of :E itself. • 

Thus the queue is stable if TJ < 1 ,  in which case the maximum W' of :E is related to the 
height of a typical ladder point. Let 

be the difference in the displacements of the walk at the (j - l ) th and j th ladder points . 
Conditional on the value of A ,  { Yj : 1 ::s j ::s A }  is a collection of independent identically 
distributed variables, by the Markov property. Furthermore, 

(13) 
A 

W' = :EL(A) = L Yj ; 
j=l 

this leads to the next lemma, relating the waiting time distribution to the distribution of a 
typical Yj .  
(14) Lemma. If the traffic intensity p satisfies p < 1 ,  the equilibrium waiting time distribution 
has moment generating function 

I - TJ Mw (s) = ----1 - TJMy (s) 

where My is the moment generating function of Y. 
Proof. We have that p < 1 if and only if TJ < 1 .  Use ( 1 3) and (5 . 1 .25) to find that 

Now use the result of Lemma ( 1 2) . • 
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Lemma ( 14) describes the waiting time distribution in terms of the distribution of Y .  Ana­
lytical properties of Y are a little tricky to obtain, and we restrict ourselves here to an elegant 
description of Y which provides a curious link between pairs of 'dual ' queueing systems. 

The server of the queue enjoys busy periods during which she works continuously ; in 
between busy periods she has idle periods during which she drinks tea. Let I be the length of 
her first idle period. 

(15) Lemma. Let L = minIm > 0; :Em < O} be the first negative ladder point o/ :E .  Then 
1 = -:EL . 
That is, I equals the absolute value of the depth of the first negative ladder point. It is of 
course possible that :E has no negative ladder points . 

Proof. Call a customer lucky if he finds the queue empty as he arrives (customers who arrive 
at exactly the same time as the previous customer departs are deemed to be unlucky). We 
claim that the (L + l ) th customer is the first lucky customer after the very first arrival. If this 
holds then ( 1 5) follows immediately since I is the elapsed time between the Lth departure 
and the (L + l ) th arrival: 

L L 
1 = L Xj+l - L S,; = -:EL . 

To verify the claim remember that 

j=l j= 1  

(16) Wn = max{O, Vn } where Vn = max{Un_ l ,  Un- I + Un-2 , . " , :En- I } 

and note that the nth customer is lucky if and only if Vn < O. Now 

and it remains to show that VL+ I < O. To see this, note that 

whenever 0 ::s k < L .  Now use ( 1 6) to obtain the result. • 

Now we are ready to extract a remarkable identity which relates 'dual pairs ' of queueing 
systems. 

(17) Definition. If Q i s  a queueing process with interarrival time distribution Fx and ser­
vice time distribution Fs , its dual process Qd is a queueing process with interarrival time 
distribution Fs and service time distribution F x .  

For example, the dual of M(A)/G/1 is G/M(A)/I ,  and vice versa; we made use of this fact 
in the proof of ( 1 1 .4.4) . The traffic densities P and Pd of Q and Qd satisfy PPd = 1 ;  the 
processes Q and Qd cannot both be stable except in pathological instances when al l their 
interarrival and service times almost surely take the same constant value. 

(18) Theorem. Let :E and :Ed be the random walks associated with the queue Q and its dual 
Qd . Then -:E and :Ed are identically distributed random walks. 
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Proof. Let Q have interarrival times {Xn } and service times {Sn } ;  I; has jumps of size Un = 
Sn - Xn+! (n :::: 1 ) .  The reflected walk - I; ,  which is obtained by reflecting I; in the x-axis, 
hasjumps of size -Un = Xn+! - Sn (n :::: 1) (see Section 3 . 10 for more details of the reflection 
principle) . Write {S� }  and {X� }  for the interarrival and service times of Qd ; I;d has jumps of 
size U� = X� - S�+ ! (n :::: 1 ) ,  which have the same distribution as the jumps of - I; .  • 

This leads to a corollary. 

(19) Theorem. The height Y of the first ladder point of I; has the same distribution as the 
length Id of a typical idle period in the dual queue. 

Proof. From ( 15 ) ,  -I d is the height ofthe first ladder point of - I;d, which by ( 1 8) is distribu ted 
as the height Y of the first ladder point of I; .  • 

Here is an example of an application of these facts . 

(20) Theorem. Let Q be a stable queueing process with dual process Qct. Let W be a typical 
equilibrium waiting time of Q and Id a typical idle period of Qd. Their moment generating 
junctions are related by 

where 1'/ = P( W > 0) . 

Proof. Use ( 1 4) and ( 1 9) .  

1 - 1'/ Mw (s) = ----1 - 1'/M1d (s ) 

• 

An application of this result is given in Exercise (2) . Another application is a second 
derivation of the equilibrium waiting time distribution ( 1 1 .4 . 1 2) of GIM/I ; just remark that 
the dual of GIMIl is M/G/l , and that idle periods of M/G/I are exponentially distributed 
(though, of course, the server does not have many such periods if the queue is unstable) . 

Exercises for Section 1 1 .5 
1. Show that, for a GIGII queue, the starting times of the busy periods of the server constitute a 
renewal process. 

2. Consider a GIM(Jl)/1 queue in equilibrium, together with the dual (unstable) M(Jl)/G/1 queue. 
Show that the idle periods of the latter queue are exponentially distributed. Use the theory of duality 
of queues to deduce for the former queue that: (a) the waiting-time distribution is a mixture of an 
exponential distribution and an atom at zero, and (b) the equilibrium queue length is geometric. 

3. Consider GIM(Jl)/1 , and let G be the distribution function of S - X where S and X are typical 
(independent) service and interarrival times. Show that the Wiener-Hop! equation 

F(x) = 1:00 F(x - y) dG (y) ,  x 2: 0, 

for the limiting waiting-time distribution F is satisfied by F(x) = I - I]e-/L( 1 -rJ)x ,  x 2: O. Here, I] 
is the smallest positive root of the equation x = M X (Jl(x - I )) ,  where M x is the moment generating 
function of X. 
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11.6 Heavy traffic 

A queue settles into equilibrium if its traffic intensity p is less than 1 ;  it is unstable if p > 1 .  It 
is our shared personal experience that many queues (such as in doctors ' waiting rooms and at 
airport check-in desks) have a tendency to become unstable . The reason is simple: employers 
do not like to see their employees idle, and so they provide only just as many servers as are 
necessary to cope with the arriving customers . That is, they design the queueing system so 
that p is only slightly smaller than 1 ; the ensuing queue is long but stable, and the server 
experiences 'heavy traffic ' .  As p t I the equilibrium queue length Qp becomes longer and 
longer, and it is interesting to ask for the rate at which Qp approaches infinity. Often it turns 
out that a suitably scaled form of Qp is asymptotically exponentially distributed. We describe 
this here for the M/D/1 system, leaving it to the readers to amuse themselves by finding 
corresponding results for other queues. In this special case, Qp � Z / (1 - p) as p t I where 
Z is an exponential variable. 

(1) Theorem. Let p = Ad be the traffic intensity of the M(A) / D(d) / I queue, and let Qp be 
a random variable with the equilibrium queue length distribution. Then ( 1 - p) Qp converges 
in distribution as p t 1 to the exponential distribution with parameter 2. 
Proof. Use ( 1 1 . 3 .5) to see that Qp has moment generating function 

(2) 
( 1 - p) (eS - 1 ) M (s ) - if p < 1 .  p - exp[s - p ees - 1 ) ] - 1 

The moment generating function of ( 1 - p) Qp is Mp«1 - p)s) , and we make the appro­
priate substitution in equation (2) . Now let p t 1 and use L' Hopital 's rule to deduce that 
Mp«1 - p)s) -+ 2/ (2 - s) .  • 

Exercise for Section 1 1 .6 

1. Consider the M(A.)!M(p,)11 queue with p = A.I p, < 1 .  Let Qp be a random variable with the 
equilibrium queue distribution, and show that ( 1  - p ) Qp converges in distribution as p t 1 ,  the limit 
distribution being exponential with parameter 1 .  

11.7 Networks of queues 

A customer departing from one queue may well be required to enter another. Under certain 
circumstances, this customer may even, at a later stage, be required to re-enter the original 
queue. Networks of queues provide natural models for many situations in real life, ranging 
from the manufacture of components in complex industrial processes to an application for a 
visa for travel to another country. 

We make concrete our notion of a queueing network as follows .  There is a finite set S of 
' stations'  labelled S l , S2 , . . .  , Se . At time t, station i contains Qi (t ) individuals, so that the 
state of the system may be represented as the vector Q (t) = ( Q ]  (t ) ,  Q2 (t) , . . .  , Qc (t» . We 
assume for simplicity that the process Q is Markovian, taking values in the set .N = {n = 
(n 1 , n2 , . . .  , ne ) : n i = 0, 1 ,  2, . . .  for 1 ::s i ::s c} of sequences of non-negative integers. The 
migration of customers between stations will be described in a rather general way in order to 
enable a breadth of applications. 
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We begin with a little notation. We write ek = (0, 0, . . .  , 0, 1 ,  0, . . .  , 0) for the row vector 
of length c with 1 in the kth position and 0 elsewhere. 

Assume that Q (t ) = n. Three types of event may occur in the short time interval (t , t + h ) ,  
at rates given by  the following. For i i= j ,  

I n - e i  + ej with probability Aij ¢i (ni ) h + o(h ) ,  

Q(t + h) = n + ej with probability vj h + o(h ) ,  

n - ei with probability JLi¢i (n ; )h + o(h ) ,  

where Aij ,  lJ.i , JLi are constants and the ¢i are functions such that ¢i (0) = 0 and ¢i (n) > 0 
for n :::: 1 .  We assume for later use that Aii = 0 for all i .  Thus a single customer moves 
from station i to station j at rate Aij ¢i (ni ) ,  a new arrival occurs at station j at rate Vj , and a 
single customer departs the system from station i at rate JLi¢i (ni ) .  Note that departures from 
a station may occur at a rate which depends on the number of customers at that station. 

Queueing networks defined in this rather general manner are sometimes termed 'migration 
processes ' or 'Jackson networks ' .  Here are some concrete instances. First, the network is 
termed a 'closed migration process ' if Vj = JLj = 0 for all j ,  since in this case no arrival from 
or departure to the outside world is permitted. If some Vj or JLj is strictly positive, the network 
is termed an 'open migration process ' . Closed migration processes are special inasmuch as 
they are restricted to a subset of .N containing vectors n having constant sum. 

(3) Example. Suppose that each station i has r servers , and that each customer at that station 
requires a service time having the exponential distribution with parameter Yi . On departing 
station i ,  a customer proceeds to station j (i= i )  with probability Pij , or departs the sys­
tem entirely with probability qi = 1 - Lj :Hi Pij . Assuming the usual independence, the 
corresponding migration process has parameters given by ¢i (n) = min {n , r } ,  Aij = Yi Pij , 
fJ..i = Yiqi , Vj = O. • 

(4) Example. Suppose that customers are invisible to one another, in the sense that each 
proceeds around the network at rates which do not depend on the positions of other customers . 
In this case, we have ¢i (n) = n . • 

(A) Closed migration processes. We shall explore the equilibrium behaviour of closed 
processes, and we assume therefore that Vj = JLj = 0 for all j .  The number of customers is 
constant, and we denote this number by N. 

Consider first the case N = 1 ,  and suppose for convenience that ¢j ( 1 )  = 1 for all j . When 
at station i ,  the single customer moves to station j at rate Aij . The customer's  position is a 
continuous-time Markov chain with generator H = (hij ) given by 

(5) 
if i i= j ,  

if i = j .  

It has an equilibrium distribution a = (Oli : i E S) satisfying a H  = 0, which is to say that 

(6) L Olj Aj i = Oli L Aij for i E S, 
j j 
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and we assume henceforth that Cl satisfies these equations. We have as usual that Oli > 0 for 
all i whenever this chain is irreducible, and we suppose henceforth that this is the case. It is 
the case that Li Oli = 1 ,  but this will be irrelevant in the following. 

The equilibrium distribution in the case of a general closed migration process is given in 
the following theorem. We write .N N for the set of all vectors in .N having sum N. Any empty 
product is to be interpreted as 1 .  

(7) Theorem. The equilibrium distribution of an irreducible closed migration process with 
N customers is 

(8) 

where BN is the appropriate normalizing constant. 
Note the product form of the equilibrium distribution in (8) . This does not imply the 

independence of queue lengths in equilibrium since they are constrained to have constant sum 
N and must therefore in general be dependent. 

Proof. The process has at most one equilibrium distribution, and any such distribution y = 
(y (0) : 0 E .N N) satisfies the equations 

i , j i , j 

This is a complicated system of equations. If we may solve the equation 'for each i ' ,  then 
we obtain a solution to (9) by summing over i . Removing from (9) the summation over i ,  we 
obtain the 'partial balance equations '  

j j 

where .N� is the subset of .N containing all vectors 0 with n i :::: 1 .  It suffices to check that (8) 
satisfies ( 1 0) . With 7C given by (8), we have that 

whence 7C satisfies ( 1 0) if and only if 

Olj<Pi (ni ) L Ol ' <p ' (n ' + 1 ) 
. Aj i <Pj (nj + 1 ) = L Aij <Pi (ni ) , 0 E .Nk , i E S. 

j I J J j 

The latter equation is simply (6), and the proof is complete. • 

(11) Example. A company has exactly K incoming telephone lines and an ample number of 
operators . Calls arrive in the manner of a Poisson process with rate \J. Each call occupies 
an operator for a time which is exponentially distributed with parameter A , and then lasts a 
further period of time having the exponential distribution with parameter J.L .  At the end of this 
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time, the call ceases and the line becomes available for another incoming call. Arriving calls 
are lost if all K channels are already in use. 

Although the system of calls is a type of open queueing system, one may instead consider 
the lines as customers in a network having three stations. That is, at any time t the state vector 
of the system may be taken to be n = (n l , n2 , n3 ) where n l is the number of free lines, n2 is 
the number of calls being actively serviced by an operator, and n3 is the number of calls still 
in operation but no longer utilizing an operator. This leads to a closed migration process with 
transition rates given by 

.1.. 1 2 = v ,  
.1..23 = A ,  
.1..3 1 = 11 , 

<PI (n) = I{n::O: l } , 
¢2 (n) = n ,  
<P3 (n) = n , 

where I/n::o: I J  is the indicator function that n :::: 1 .  It is an easy exercise to show from (6) that 
the relative sizes of aI , a2 , a3 satisfy a 1 : a2 : a3 = v - I : A- I : 11- 1 , whence the equilibrium 
distribution is given by 

(12) n l + n2 + n3 = K, 

for an appropriate constant B. • 

(B) Open migration processes. We turn now to the general situation in which customers 
may enter or leave the system. As in the case of a closed migration process ,  it is valuable to 
consider first an auxiliary process containing exactly one customer. We attach another station, 
labelled 00, to those already in existence, and we consider the following closed migration 
process on the augmented set S U {(x)}  of stations. There is a unique customer who, when at 
station i ,  moves to station j (=I i )  at rate: { Aij if 1 :'S i, j :'S c ,  

l1i if j = 00, 

Vj if i = oo. 
We assume henceforth that this auxiliary process is irreducible. Let J be its generator. The 
chain has a unique stationary distribution P = (fh , fh . . .  , f3c , f30cJ which satisfies pJ = O .  
In  particular, 

f300Vi + L f3j Aj i  = f3i (l1i + L Aij ) for i E S. 
j e8 j e8 

Note that f3i > 0 for i E S U {oo} .  We set ai = f3i / f3oo , to obtain a vector Cl = (ai : i E S) 
with strictly positive entries such that 

(13) Vi + � ajA; i = ai (l1i + � Aij ) for i E S.  
J J 

We shall make use of this vector Cl in very much the same way as we used equation (6) for 
closed migration processes. We let 
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(14) Theorem. Assume that the above auxiliary process is irreducible, and that Dj < 00 for 
all i E S. The open migration process has equilibrium distribution 

(15) 

where 

c 

n (n) = n nj (nj ) ,  n E .N , 
j= 1 

Proof. The distribution y = (y (n) : n E .N) i s  an  equilibrium distribution if  yG = 0 where 
G = (g (n, n') : n, n' E .N) is the generator of the Markov chain Q, which is to say that 

(16) 

L y(n - ej )g (n - ej , n) + L y (n - ej + ej )g (n - ej + ej , n) + L y (n + ej )g (n + ej , n) 
j, j j 

= y (n) (� g(n, n - ej ) + � g(n, n - ej + ej ) + � g(n, n + ej )) . 
I l , j j 

These are solved by y if it satisfies the 'partial balance equations ' 

(17) y (n - e; )g (n - ej , n) + L y (n - ej + ej )g (n - ej + e) , n) 
) 

together with the equation 

(18) 
j 

� y CD) (g CD, D - e, ) + � g CD' D - e, + ej )) , i E S, 

j 

We now substitute ( 1 5) into ( 1 7) and divide through by n (n) to find that n satisfies ( 1 7) by 
reason of ( 1 3 ) . Substituting n into ( 1 8) , we obtain the equation 

LfX)/J.) = L V) , j ) 
whose validity follows by summing ( 1 3) over i .  • 

Equation ( 1 5) has the important and striking consequence that, in equilibrium, the queue 
lengths at the different stations are independent random variables. Note that this equilibrium 
statement does not apply to the queueing process itself: the queue processes Qj ( ' ) ' i E S, are 
highly dependent on one another. 

It is a remarkable fact that the reversal in time of an open migration process yields another 
open migration process .  
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(19) Theorem. Let Q = (Q(t) : -00 < t < 00) be an open migration process and assume 
that, jor all t, Q(t) has distribution 1C given by Theorem ( 1 4) . Then Q/ (t) = Q( -t) is an open 
migration network with parameters 

where a satisfies ( 1 3) . 

/ Vi / l1i = - , (M· ) = (p;(.) , Oli 

Proof. It is a straighforward exercise in conditional probabilities (see Problem (6. 1 5 . 1 6)) to 
show that Q/ is a Markov chain with generator G/ = (g/ (m, n) : m, n E N) given by 

as required. 

/ n (n - ei + ej )g (n - ei + ej , n) / g (n , n - ei + ej )  = 
1C (n) 

= Aij <Pi (n; ) ,  

/ n (n - ei )g (n - ei , n) / g (n, n - e; ) = 
n (n) 

= l1i<Pi (ni ) ,  

/ n (n + ej )g (n + ej , n) / g (n, n + ej ) = 
n (n) 

= vj , 

• 

Here is one noteworthy consequence of this useful theorem. Let Q be an open migration 
network in equilibrium, and consider the processes of departures from the network from the 
various stations .  That is, let Di (t) be the number of customers who depart the system from 
station i during the time interval [0, t ] .  These departures correspond to arrivals at station i in 
the reversed process Q/. However, such arrival processes are independent Poisson processes, 
with respective parameters v; = Oli l1i . It follows that the departure processes are independent 
Poisson processes with these parameters. 

Exercises for Section 1 1 .7 

1. Consider an open migration process with c stations, in which individuals arrive at station j at 
rate Vj , individuals move from i to j at rate A ij ifJi (n i ) ,  and individuals depart from i at rate l1iifJi (ni ) , 
where ni denotes the number of individuals currently at station i .  Show when ifJi (n i )  = ni for all i 
that the system behaves as though the customers move independently through the network. Identify 
the explicit form of the stationary distribution, subject to an assumption of irreducibility, and explain 
a connection with the Bartlett theorem of Problem (8.7.6) . 
2. Let Q be an M(A)/M(I1)/s queue where A < SI1-,  and assume Q is in equilibrium. Show that 
the process of departures is a Poisson process with intensity A, and that departures up to time t are 
independent of the value of Q(t ) .  

3 .  Customers arrive in  the manner of  a Poisson process with intensity A in  a shop having two servers. 
The service times of these servers are independent and exponentially distributed with respective 
parameters 11-1 and 11-2 . Arriving customers form a single queue, and the person at the head of the 
queue moves to the first free server. When both servers are free, the next arrival is allocated a server 
chosen according to one of the following rules :  
(a) each server is equally likely to  be chosen, 
(b) the server who has been free longer is chosen. 

Assume that A < 11-1 + 11-2 , and the process is in equilibrium. Show in each case that the process of 
departures from the shop is a Poisson process, and that departures prior to time t are independent of 
the number of people in the shop at time t .  
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4. Difficult customers. Consider an M(A )1M(p,)/1 queue modified so that on completion of service 
the customer leaves with probability 8 , or rejoins the queue with probability 1 - 8 .  Find the distribution 
of the total time a customer spends being served. Hence show that equilibrium is possible if A < 8 p" 
and find the stationary distribution. Show that, in equilibrium, the departure process is Poi sson, but if 
the rejoining customer goes to the end of the queue, the composite arrival process is not Poisson. 

5. Consider an open migration process in equilibrium. If there is no path by which an individual 
at station k can reach station j, show that the stream of individuals moving directly from station j to 
station k forms a Poisson process. 

11.8 Problems 

1. Finite waiting room. Consider M(A)IM(p,)/k with the constraint that arriving customers who 
see N customers in the line ahead of them leave and never return. Find the stationary distribution of 
queue length for the cases k = 1 and k = 2.  

2. Baulking. Consider M(A )1M(p,)/1  with the constraint that if an arriving customer sees n customers 
in the line ahead of him, he joins the queue with probability p (n ) and otherwise leaves in disgust. 
(a) Find the stationary distribution of queue length if pen) = (n + 1 ) - 1 . 
(b) Find the stationary distribution 7C of queue length if pen) = Tn , and show that the probability 

that an arriving customer joins the queue (in equilibrium) is p, ( l  - ]fO)/A. 
3. Series. In a Moscow supermarket customers queue at  the cash desk to pay for the goods they want; 
then they proceed to a second line where they wait for the goods in question. If customers arrive in the 
shop like a Poisson process with parameter A and all service times are independent and exponentially 
distributed, parameter P,l at the first desk and P,2 at the second, find the stationary distributions of 
queue lengths, when they exist, and show that, at any given time, the two queue lengths are independent 
in equilibrium. 

4. Batch (or bulk) service. Consider M/G/ 1 ,  with the modification that the server may serve up to m 
customers simultaneously. If the queue length is less than m at the beginning of a service period then she 
serves everybody waiting at that time. Find a formula which is satisfied by the probability generating 
function of the stationary distribution of queue length at the times of departures, and evaluate this 
generating function explicitly in the case when m = 2 and service times are exponentially distributed. 

5. Consider M(A )1M(p,)/1  where A < p,. Find the moment generating function of the length B of a 
typical busy period, and show that lE(B) = (p, - A)- 1  and var(B) = (A + p,)/(p, - A)3 . Show that 
the density function of B is 

where 11 is a modified Bessel function. 

6. Consider M(A)/G/1 in equilibrium. Obtain an expression for the mean queue length at departure 
times. Show that the mean waiting time in equilibrium of an arriving customer is �AlE(S2)/ ( l  - p) 
where S is a typical service time and p = AlE(S) .  

Amongst all possible service-time distributions with given mean, find the one for which the mean 
waiting time is a minimum. 

7. Let Wt be the time which a customer would have to wait in a M(A)/G/l queue if he were to arrive 
at time t .  Show that the distribution function F(x ;  t) = lP'(Wt :'0 x) satisfies 

a F  a F  
- = - - A F  + AlP'(Wt + S :'0 x) 
a t  ax 

where S is a typical service time, independent of Wt . 
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Suppose that F(x ,  t)  ---+ H(x) for all x as t ---+ 00, where H is a distribution function satisfying 
o = h - 'AH + 'AlP'(U + S ::: x) for x > 0, where U is independent of S with distribution function H, 
and h is the density function of  H on (0, 00) .  Show that the moment generating function Mu of  U 
satisfies 

(1 - p)() 
MU (() = 

'A + () - 'AMs (() 
where p is the traffic intensity. You may assume that lP'(S = 0) = O. 

8. Consider a G/G/l queue in which the service times are constantly equal to 2, whilst the interarrival 
times take either of the values 1 and 4 with equal probability i .  Find the limiting waiting time 
distribution. 

9. Consider an extremely idealized model of a telephone exchange having infinitely many channels 
available. Calls arrive in the manner of a Poisson process with intensity 'A, and each requires one 
channel for a length of time having the exponential distribution with parameter JL, independently of 
the arrival process and of the duration of other calls. Let Q (t) be the number of calls being handled 
at time t, and suppose that Q (O) = [ .  

Determine the probability generating function of Q (t ) ,  and deduce E ( Q (t» , lP' ( Q (t) = 0), and 
the limiting distribution of Q (t) as t ---+ 00.  

Assuming the queue is in  equilibrium, find the proportion of time that no channels are occupied, 
and the mean length of an idle period. Deduce that the mean length of a busy period is (eA//L - 1 )/'A.  

10. Customers arrive in a shop in the manner of a Poisson process with intensity 'A,  where 0 < 'A < 1 .  
They are served one by one in the order of their arrival, and each requires a service time of unit length. 
Let Q (t) be the number in the queue at time t. By comparing Q (t) with Q (t + 1 ) ,  determine the 
limiting distribution of Q (t) as t ---+ 00 (you may assume that the quantities in question converge). 
Hence show that the mean queue length in equilibrium is 'A ( l  - i'A) / ( 1  - 'A) .  

Let W be the waiting time of  a newly arrived customer when the queue is in  equilibrium. Deduce 
from the results above that E(W) = i'A / ( l  - 'A) .  

11 .  Consider M('A)/D(l )/ I ,  and suppose that the queue is empty a t  time O. Let T be the earliest time 
at which a customer departs leaving the queue empty. Show that the moment generating function MT 
of T satisfies 

log ( 1 - f) + log MT (S ) = (s - 'A) ( I - MT (S » ) , 

and deduce the mean value of T, distinguishing between the cases 'A < 1 and 'A :::: 1 .  

12. Suppose 'A < JL, and consider a M('A)/M(JL)/l queue Q in equilibrium. 
(a) Show that Q is a reversible Markov chain. 
(b) Deduce the equilibrium distributions of queue length and waiting time. 
(c) Show that the times of departures of customers form a Poisson process, and that Q (t) is indepen­

dent of the times of departures prior to t .  
(d) Consider a sequence of  K single-server queues such that customers arrive a t  the first in  the manner 

of a Poisson process, and (for each j) on completing service in the j th queue each customer moves 
to the (j + l ) th .  Service times in the j th queue are exponentially distributed with parameter JLj , 
with as much independence as usual. Determine the (joint) equilibrium distribution of the queue 
lengths, when 'A < JLj for all j .  

13. Consider the queue M('A)/M(JL)/k, where k :::: 1 .  Show that a stationary distribution 7C exists if 
and only if 'A < kJL, and calculate it in this case. 

Suppose that the cost of operating this system in equilibrium is 

00 
Ak + B �)n - k  + I ) JTn ,  

n=k 

the positive constants A and B representing respectively the costs of employing a server and of the 
dissatisfaction of delayed customers . 
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Show that, for fixed f-t, there is a unique value A * in the interval (0, f-t) such that it is cheaper to 
have k = 1 than k = 2 if and only if A < A * . 

14. Customers arrive in a shop in the manner of a Poisson process with intensity A. They form a 
single queue. There are two servers, labelled 1 and 2, server i requiring an exponentially distributed 
time with parameter f-ti to serve any given customer. The customer at the head of the queue is served 
by the first idle server; when both are idle, an arriving customer is equally likely to choose either. 
(a) Show that the queue length settles into equilibrium if and only if A < f-t l + f-t2 . 
(b) Show that, when in equilibrium, the queue length is a time-reversible Markov chain. 
(c) Deduce the equilibrium distribution of queue length. 
(d) Generalize your conclusions to queues with many servers. 

15. Consider the D(l )IM(f-t)/1 queue where f-t > 1 ,  and let Qn be the number of people in the 
queue just before the nth arrival. Let QJL be a random variable having as distribution the stationary 
distribution of the Markov chain { Qn I . Show that (1 - f-t - I ) Q JL converges in distribution as f-t .} 1 ,  
the limit distribution being exponential with parameter 2. 

16. Taxis arrive at a stand in the manner of a Poisson process with intensity T ,  and passengers 
arrive in the manner of an (independent) Poisson process with intensity IT .  If there are no waiting 
passengers, the taxis wait until passengers arrive, and then move off with the passengers, one to each 
taxi . If there is no taxi, passengers wait until they arrive. Suppose that initially there are neither 
taxis nor passengers at the stand. Show that the probability that n passengers are waiting at time t is 

1 
(IT IT )  't

n 
e - (n +r:)t In (2tfo),  where In (x ) is the modified Bessel function, i .e . ,  the coefficient of zn 

in the power series expansion of exp{ � x (z + z - I ) I . 
17. Machines arrive for repair as a Poisson process with intensity A. Each repair involves two stages, 
the i th machine to arrive being under repair for a time Xi + Yi , where the pairs (Xi , Yi ) ,  i = 1 ,  2, . . .  , 
are independent with a common joint distribution. Let U (t) and V (t) be the numbers of machines in 
the X -stage and Y -stage of repair at time t. Show that U (t) and V (t) are independent Poisson random 
variables . 

18. Ruin. An insurance company pays independent and identically distributed claims { Kn : n � I I  
at the instants of a Poisson process with intensity A ,  where AE(K I ) < 1 .  Premiums are received at 
constant rate 1 .  Show that the maximum deficit M the company will ever accumulate has moment 
generating function eM ( l - p )() 

E( e ) = 
A
-

+
-

e
'-

-
-----'

A
'-'
E
-
( e�e'""K'--) • 

19. (a) Erlang's loss formula. Consider M(A)IM(f-t)/s with baulking, in which a customer departs 
immediately if, on arrival, he sees all the servers occupied ahead of him. Show that, in equilibrium, 
the probability that all servers are occupied is 

where p = AI f-t .  

(b) Consider an  M(A)IM(f-t)/oo queue with channels (servers) numbered 1 , 2, . . . .  On  arrival, a 
customer will choose the lowest numbered channel that is free, and be served by that channel. Show 
in the notation of part (a) that the fraction Pc of time that channel c is busy is Pc = P (lTc- 1 - lTd for 
c � 2, and PI = lTI . 
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Martingales 

Summary. The general theory of martingales and submartingales has many 
applications. After an account of the concentration inequality for martingales, 
the martingale convergence theorem is proved via the upcrossings inequality. 
Stopping times are studied, and the optional stopping theorem proved. This 
leads to Wald's identity and the maximal inequality. The chapter ends with a 
discussion of backward martingales and continuous-time martingales .  Many 
examples of the use of martingale theory are included. 

12.1 Introduction 

Random processes come in many forms, and their analysis depends heavily on the assump­
tions that one is prepared to make about them. There are certain broad classes of processes 
whose general properties enable one to build attractive theories .  Two such classes are Markov 
processes and stationary processes. A third is the class of martingales .  

(1) Definition. A sequence Y = {Yn : n :::: O} is a martingale with respect to the sequence 
X = {Xn : n :::: O} if, for all n :::: 0, 

(a) lEl Yn l  < 00, 
(b) lE(Yn+1 I Xo, X} , • • .  , Xn) = Yn •  
A warning note : conditional expectations are ubiquitous in this chapter. Remember that 

they are random variables, and that formulae of the form lE(A I B) = C generally hold only 
'almost surely ' .  We shall omit the term 'almost surely ' throughout the chapter. 

Here are some examples of martingales ;  further examples may be found in Section 7 .7 .  

(2) Example. Simple random walk. A particle jumps either one step to the right or  one 
step to the left, with corresponding probabilities p and q (= 1 - p). Assuming the usual 
independence of different moves, it is clear that the position Sn = Xl + X2 + . . .  + Xn of the 
particle after n steps satisfies lE I  Sn I ::::: n and 

lE(Sn+ l I Xl , X2 , . . .  , Xn ) = Sn + (p - q) ,  
whence it i s  easily seen that Yn = Sn - n (p - q) defines a martingale with respect to X .  • 

(3) Example. The martingale. The following gambling strategy is called a martingale . A 
gambler has a large fortune. He wagers £ 1 on an evens bet. If he loses then he wagers £2 
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on the next bet. If he loses the first n plays, then he bets £2n on the (n + 1 ) th .  He is bound 
to win sooner or later, say on the Tth bet, at which point he ceases to play, and leaves with 
his profit of 2 T - ( l  + 2 + 4 + . . .  + 2 T - I ) .  Thus,  following this strategy, he is assured an 
ultimate profit. This sounds like a good policy. 

Writing Yn for the accumulated gain of the gambler after the nth play (losses count negative) ,  
we have that Yo = 0 and I Yn l  :s 1 + 2 + . . .  + 2n- 1 = 2n - 1 . Furthermore, Yn+ ! = Yn if  the 
gambler has stopped by time n + 1 ,  and { Yn - 2n with probability ! , 

Yn+ 1 = 
Yn + 2n with probability ! , 

otherwise, implying that lE(Yn+ 1  I YI , Y2 , . . .  , Yn ) = Yn . Therefore Y is a martingale (with 
respect to itself) . 

As remarked in Example (7 .7 . 1 ) , this martingale possesses a particularly disturbing feature. 
The random time T has a geometric distribution, ]P(T = n) = ( ! )n for n :::: 1 ,  so that the 
mean loss of the gambler just before his ultimate win is 

00 
�)! )n ( l  + 2 + . . .  + 2n-2) 
n=1 

which equals infinity. Do not follow this strategy unless your initial capital is considerably 
greater than that of the casino. • 

(4) Example. De Moivre's martingale. About a century before the martingale was fash­
ionable amongst Paris gamblers, Abraham de Moivre made use of a (mathematical) martin­
gale to answer the following 'gambler's  ruin ' question. A simple random walk on the set 
{O, 1 ,  2, . . .  , N} stops when it first hits either of the absorbing barriers at 0 and at N; what is 
the probability that it stops at the barrier O? 

Write XI , X2 , . . .  for the steps of the walk, and Sn for the position after n steps, where 
So = k. Define Yn = (q / p) Sn where p = ]P(Xi = 1 ) ,  p + q = 1 ,  and 0 < p < 1 .  We claim 
that 

(5) lE(Yn+ ! I X I , X2 , . . .  , Xn ) = Yn for all n .  

I f  Sn equals 0 or  N then the process has stopped by  time n ,  implying that Sn+ ! = Sn and 
therefore Yn+ I = Yn . If on the other hand 0 < Sn < N, then 

lE(Yn+1 1 X I , X2 , . . .  , Xn ) = lE((q/p) Sn+Xn+1 I X ! , X2 , . . .  , Xn )  
= (q/p) Sn [p (q/p) + q (q/p) - I ] = Yn , 

and (5) is proved. It follows, by taking expectations of (5) , that lE(Yn+ , )  = lE(Yn ) for all n ,  
and hence lE I  Yn l  = lE l Yo l  = (q / p)k for all n .  In  particular Y is a martingale (with respect to 
the sequence X). 

Let T be the number of steps before the absorption of the particle at  either 0 or N. De 
Moivre argued as follows :  lE(Yn ) = (q/p)k for all n, and therefore lE(YT ) = (q/p)k . If 
you are willing to accept this remark, then the answer to the original question is a simple 
consequence, as follows .  Expanding lE(YT ) ,  we have that 
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where Pk 
therefore 

JP'(absorbed at 0 I So = k) . However, E(YT )  (q / p)k b y  assumption, and 

pk _ p N 
Pk = 

1 N where p = q / P - p 

(so long as p =1= 1 ) ,  in agreement with the calculation of Example (3 .9 .6) .  
This is  a very attractive method, which relies on the statement that E(YT )  = E(Yo) for a 

certain type of random variable T .  A major part of our investigation of martingales will be 
to determine conditions on such random variables T which ensure that the desired statements 
are true. • 

(6) Example. Markov chains. Let X be a discrete-time Markov chain taking values in the 
countable state space S with transition matrix P. Suppose that 1/1 : S � S is bounded and 
harmonic, which is to say that 

L Pij 1/l (j ) = 1/I (i ) for all i E S. 
jeS 

It  is easily seen that Y = {1/I (Xn ) : n :::: O} is a martingale with respect to X :  simply use the 
Markov property in order to perform the calculation :  

E (1/I (Xn+ ] ) I X l , X2 , . . .  , Xn } = E (1/I (Xn+] ) I Xn } = L PXn,} 1/I (j )  = 1/I (Xn ) .  
j eS  

More generally, suppose that 1/1 i s  a right eigenvector of P, which i s  to say that there exists 
)." (=1= 0) such that 

L Pij 1/l (j ) = ).,,1/I (i ) ,  i E S. 
jeS 

Then 

implying that )." -n 1/l (Xn ) defines a martingale so long as E I 1/I (Xn ) 1  < 00 for all n . • 

Central to the definition of a martingale is the idea of conditional expectation, a subject 
developed to some extent in Chapter 7. As described there, the most general form of conditional 
expectation is of the following nature. Let Y be a random variable on the probability space 
(Q , :F ,  JP') having finite mean, and let fJ, be a sub-a -field of :F .  The conditional expectation 
of Y given fJ" written E(Y I fJ, ) ,  is a fJ,-measurable random variable satisfying 

(7) E ( [ Y  - E(Y I fJ, ) ] /G } = 0 for all events G E fJ" 

where IG is the indicator function of G.  There is a corresponding general definition of a 
martingale. In preparation for this, we introduce the following terminology. Suppose that 
� = {:Fo ,  :Fl , . . .  } is a sequence of sub-a-fields of :F ;  we call � afiltration if :Fn � :Fn+l 
for all n . A sequence Y = { Yn : n :::: O} is said to be adapted to the filtration � if Yn is 
:Fn -measurable for all n . Given a filtration �, we normally write :Foo = limn---+oo :Fn for the 
smallest a -field containing :Fn for all n .  
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(8) Definition. Let :J:' be a filtration of the probability space (Q , :F, lP') , and let Y be a sequence 
of random variables which is adapted to :J:'. We call the pair (Y, :J:') = { (Yn ,  :Fn ) : n :::: O} a 
martingale if, for all n :::: 0, 

(a) E I Yn l  < 00, 
(b) E(Yn+l I :Fn ) = Yn . 

The former definition ( 1 )  is retrieved by choosing :Fn = a (Xo , X l , . . .  , Xn ) ,  the smallest 
a-field with respect to which each of the variables Xo , Xl , . . .  , Xn is measurable. We shall 
sometimes suppress reference to the filtration :J:', speaking only of a martingale Y .  

Note that, i f  Y i s  a martingale with respect to :J:',  then it i s  also a martingale with respect 
to � where fj,n = a (Yo ,  Yl , . . .  , Yn ) .  A further minor point is that martingales need not be 
infinite in extent: a finite sequence { (Yn ,  :Fn ) : 0 ::: n ::: N} satisfying the above definition is 
also termed a martingale. 

There are many cases of interest in which the martingale condition E(Yn+l I :Fn ) = Yn 
does not hold, being replaced instead by an inequality : E(Yn+ l I :Fn ) :::: Yn for all n , or 
E(Yn+l I :Fn ) ::: Yn for all n .  Sequences satisfying such inequalities have many of the 
properties of martingales, and we have special names for them. 

(9) Definition. Let :J:' be a filtration of the probability space (Q , :F, lP') , and let Y be a sequence 
of random variables which is adapted to :J:'.  We call the pair (Y, :J:') a submartingale if, for 
all n :::: 0, 

(a) E(Yn+) < 00, 
(b) E(Yn+l I :Fn ) :::: Yn , 

or a supermartingale if, for all n :::: 0, 
(c) E(Yn-) < 00, 
(d) E(Yn+ l I :Fn ) ::: Yn . 

Remember that X+ = max{O,  X }  and X - = - min{O, X } ,  so that X = X+ - X- and 
I X I  = X+ + X - . The moment conditions (a) and (c) are weaker than the condition that 
E I  Yn I < 00.  Note that Y is a martingale if and only if it is both a submartingale and a 
supermartingale . Also, Y is a submartingale if and only if - Y is a supermartingale. 

Sometimes we shall write that (Yn ,  :Fn ) is a (sub/super)martingale in cases where we mean 
the corresponding statement for (Y, :J:' ) .  

I t  can b e  somewhat tiresome to deal with sub(lsuper)martingales and martingales separately, 
keeping track of their various properties. The general picture is somewhat simplified by the 
following result, which expresses a submartingale as the sum of a martingale and an increasing 
'predictable ' process. We shall not make use of this decomposition in the rest of the chapter. 
Here is a piece of notation . We call the pair (S ,  :J:') = { (Sn ,  :Fn ) : n :::: O} predictable if Sn 
is :Fn- l -measurable for all n :::: 1 .  We call a predictable process (S,  :J:') increasing if So = 0 
and lP'(Sn ::: Sn+d = 1 for all n . 

(10) Theorem. Doob decomposition. A submartingale (Y, :J:') with finite means may be 
expressed in the form 

(11) 

where (M, :J:') is a martingale, and (S ,  :J:') is an increasing predictable process. This decom­
position is unique. 
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The process (S , !J:' ) in ( 1 1 )  is called the compensator of the submartingale (Y, !J:') .  Note 
that compensators have finite mean, since 0 :s Sn :s Yn+ - Mn , implying that 

(12) 

Proof. We define M and S explicitly as follows : Mo = Yo , So = 0, 

Mn+l - Mn = Yn+l  - E(Yn+ l  I Fn ) , Sn+l - Sn = E(Yn+ l  I Fn )  - Yn , 
for n 2: O. It is easy to check (exercise) that (M, !J:') and (S , !J:' ) satisfy the statement of 
the theorem. To see uniqueness, suppose that Yn = M� + S� is another such decomposition. 
Then 

Yn+ l  - Yn = (M�+ l - M� ) + (S�+ l  - S� ) 
= (Mn+l  - Mn )  + (Sn+l - Sn ) . 

Take conditional expectations given Fn to obtain S�+ 1 - S� = Sn+ 1 - Sn , n 2: O. However, 
Sb = So = 0, and therefore S� = Sn , implying that M� = Mn . (Most of the last few 
statements should be qualified by 'almost surely ' . ) • 

Exercises for Section 1 2. 1  

1. (i) If (Y, !F) is a martingale, show that lE(Yn ) = lE(YO) for all n .  
(ii) I f  (Y, !F) i s  a submartingale (respectively supermartingale) with finite means, show that lE(Yn ) :::: 

lE(YO) (respectively lE(Yn ) :"S lE(YO». 
2. Let (Y, !F) be a martingale, and show that lE(Yn+m I :Fn ) = Yn for all n, m :::: o. 
3. Let Zn be the size of the nth generation of a branching process with Zo = 1 ,  having mean family 
size JL and extinction probability TJ .  Show that ZnJL -n and TJ Zn define martingales . 

4. Let {Sn : n :::: OJ be a simple symmetric random walk on the integers with So = k. Show that Sn 
and S; -n  are martingales . Making assumptions similar to those of de Moivre (see Example ( 1 2. 1 .4» , 
find the probability of ruin and the expected duration of the game for the gambler'S ruin problem. 

S. Let (Y, !F) be a martingale with the property that lE(Y;) < 00 for all n .  Show that, for i :"S j :"S k, 
lE{(Yk - lj )Yd = 0, and lE{(Yk - Yj )2 I J=i j  = lE(yl l J=i )  - lE(l�l l J=i ) .  Suppose there exists K 

such that lE(Y;) :"S K for all n. Show that the sequence ( Yn j converges in mean square as n --+ 00 .  

6 .  Let Y be  a martingale and let u be  a convex function mapping JR to  JR. Show that (u (Yn ) : n :::: OJ  
i s  a submartingale provided that lE(u (Yn )+ ) < 00 for all n .  

Show that I Yn I ,  Y; , and Y: constitute submartingales whenever the appropriate moment condi­
tions are satisfied. 

7. Let Y be a submartingale and let u be a convex non-decreasing function mapping JR to JR. Show 
that (u (Yn ) : n :::: OJ is a submartingale provided that lE(u (Yn )+) < 00 for all n .  

Show that (subject to a moment condition) Yn+ constitutes a submartingale, but that I Yn I and Y; 
need not constitute submartingales. 

8. Let X be a discrete-time Markov chain with countable state space S and transition matrix P. 
Suppose that 1/f : S --+ JR is bounded and satisfies 2:.jES Pij 1/f (j ) :"S "A.1/f( i )  for some "A. > 0 and all 
i E S. Show that "A. -n 1/f (Xn ) constitutes a supermartingale. 

9. Let G n (s) be the probability generating function of the size Zn of the nth generation of a branching 
process, where Zo = 1 and var(Zj ) > O. Let Hn be the inverse function of the function Gn , viewed 
as a function on the interval [0, 1 ] ,  and show that Mn = (Hn (s ) j Zn defines a martingale with respect 
to the sequence Z . 
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12.2 Martingale differences and Hoeffding's inequality 

Much of the theory of martingales is concerned with their behaviour as n --+ 00, and par­
ticularly with their properties of convergence. Of supreme importance is the martingale 
convergence theorem, a general result of great power and with many applications. Before 
giving an account of that theorem (in the next section) , we describe a bound on the degree of 
fluctuation of a martingale. This bound is straightforward to derive and has many important 
applications. 

Let ( Y, fF) be a martingale. The sequence of martingale differences is the sequence D = 
{Dn : n :::: I }  defined by Dn = Yn - Yn- l ,  so that 

(1) 
n 

Yn = Yo + L Di . 
i= l 

Note that the sequence D is such that Dn is Fn -measurable, lE I  Dn I < 00,  and 

(2) lE(Dn+ l I Fn ) = 0 for all n . 

(3) Theorem. Hoeffding's ineqnality. Let (Y, fF) be a martingale, and suppose that there 
exists a sequence K 1 , K 2 , . . .  of real numbers such that lP( 1  Yn - Yn- l l  .::::: Kn ) = 1 for all n. 
Then 

lP( I Yn - Yo l :::: x) .::::: 2 exp( _ !x2 It Kl) . x > o. 
,= 1  

That i s  to say, if the martingale differences are bounded (almost surely) then there i s  only 
a small chance of a large deviation of Yn from its initial value Yo . 

Proof. We begin with an elementary inequality. If 1/1 > 0, the function g (d) = el/ld is convex, 
whence it follows that 

(4) 

Applying this to a random variable D having mean 0 and satisfying lP( I D I  .::::: 1 )  = 1 ,  we 
obtain 

(5) 

by a comparison of the coefficients of 1/I2n for n :::: O. 
Moving to the proof proper, it is a consequence of Markov's inequality, Theorem (7 .3 . 1 ) ,  

that 

(6) 

for e > O. Writing Dn = Yn - Yn- l , we have that 
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By conditioning on Fn- 1 , we obtain 

(7) lE(e8 (Yn-Yo ) I Fn- d = e8 (Yn-l -YO ) lE (e8Dn I Fn- d 
< e8 (Yn- 1 -Yo ) exp( l e2 K2) - 2 n ' 
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where we have used the fact that Yn- 1 - Yo is Fn_ 1 -measurable, in addition to (5) applied to 
the random variable Dn / Kn .  We take expectations of (7) and iterate to find that 

lE(e8 (Yn -Yo ) ::: lE(e8 (Yn- 1 -Yo ) exp(!e2 K:;> ::: exp( !e2 t K?) . 
1= 1 

Therefore, by (6), 

lP'(Yn - Yo ::::: x) ::: exp( -ex + !e2 t K?) 
1 = 1 

for all e > O. Suppose x > 0, and set e = x /,£7= 1 Ki
2 (this is the value which minimizes 

the exponent) ; we obtain 

The same argument is valid with Yn - Yo replaced by Yo - Yn , and the claim of the theorem 
follows by adding the two (identical) bounds together. • 

(8) Example. Large deviations. Let X l , X2 , . . .  be independent random variables, Xi hav­
ing the Bernoulli distribution with parameter p. We set Sn = Xl + X2 + . . .  + Xn and 
Yn = Sn - np to obtain a martingale Y .  It is a consequence of Hoeffding 's inequality that 

lP'( I Sn - np l ::::: xy'n) ::: 2 exp(- !x2/JL) for x > 0, 

where JL = max{p,  1 - pl .  This is an inequality of a type encountered already as Bernstein's 
inequality (2.2.4), and explored in greater depth in Section 5 . 1 1 . • 

(9) Example. Bin packing. The bin packing problem is a basic problem of operations 
research. Given n objects with sizes X l , X2 , . . .  , xn , and an unlimited collection of bins each 
of size 1 ,  what is the minimum number of bins required in order to pack the objects? In the 
randomized version of this  problem, we suppose that the objects have independent random 
sizes Xl ,  X2 , . . .  having some common distribution on [0, 1 ] .  Let Bn be the (random) number 
of bins required in order to pack X 1 , X2 ,  . . .  , Xn efficiently ; that is, Bn is the minimum number 
of bins of unit capacity such that the sum of the sizes of the objects in any given bin does not 
exceed its capacity. It may be shown that Bn grows approximately linearly in n, in that there 
exists a positive constant f3 such that n- 1 Bn � f3 a.s .  and in mean square as n � 00. We 
shall not prove this here, but note its consequence: 

(10) 
1 

- lE (Bn )  � f3 as n � 00.  
n 



478 12 .2 Martingales 

The next question might be to ask how close Bn is to its mean value E(Bn ) ,  and Hoeffding's 
inequality may be brought to bear here. For i .::::: n, let Yi = E(Bn I :F; ) ,  where :F; is the 
a -field generated by XI , X2 , . . .  , Xi . It is easily seen that (Y, g:) is a martingale, albeit one 
of finite length . Furthermore Yn = Bn , and Yo = E(Bn )  since :Fo is the trivial a -field {0 ,  Q} .  

Now, let Bn (i ) be  the minimal number of  bins required in  order to pack all the objects except 
the i th .  Since the objects are packed efficiently, we must have Bn (i ) .::::: Bn '::::: Bn (i ) + 1 . Taking 
conditional expectations given :F; - 1 and :F; ,  we obtain 

(11) 
E(Bn (i ) I :F;- I )  .::::: Yi- l .::::: E(Bn (i ) I :F;- I )  + 1 , 

E (Bn (i )  I :F;) .::::: Yi .::::: E(Bn (i ) I :F;) + 1 .  

However, E(Bn (i ) I :F;- I ) = E(Bn (i ) I :F; ) ,  since we are not required to pack the i th object, 
and hence knowledge of Xi is irrelevant. It follows from ( 1 1 )  that I Yi - Yi- I I .::::: 1 .  We may 
now apply Hoeffding 's inequality (3) to find that 

(12) 

For example, setting x = En ,  we see that the chance that Bn deviates from its mean by En (or 
more) decays exponentially in n as n -+ 00. Using ( 1 0) we have also that, as n -+ 00, 

(13) • 

(14) Example. Travelling salesman problem. A travelling salesman is required to visit 
n towns but may choose his route. How does he find the shortest possible route, and 
how long is it? Here is a randomized version of the problem. Let PI = (UI , VI ) ,  P2 = 
(U2 , V2) ,  . . .  , Pn = (Un , Vn )  be independent and uniformly distributed points in the unit 
square [0, 1 ]2 ; that is, suppose that UI , U2 , . . .  , Un , VI , V2 , . . .  , Vn are independent random 
variables each having the uniform distribution on [0, 1 ] .  It is required to tour these points using 
an aeroplane. If we tour them in the order Prr ( l ) , Prr (2) , . . .  , Prr (n) , for some permutation n 
of { I ,  2 ,  . . . , n } ,  the total length of the journey is 

n- l 
den ) = L I Prr (i+ l ) - Prr (i) 1 + I Prr (n) - Prr ( l ) I 

i= 1 

where I . I denotes Euclidean distance. The shortest tour has length Dn = minrr d (n ) . I t  turns 
out that the asymptotic behaviour of Dn for large n is given as follows :  there exists a positive 
constant r such that Dn / In -+ r a.s .  and in mean square. We shall not prove this, but note 
the consequence that 

(15) as n -+ 00. 

How close is Dn to its mean? As in the case of bin packing, this question may be answered 
in part with the aid of Hoeffding 's inequality. Once again, we set Yi = E(Dn I :F; )  for i .::::: n , 
where :F; is the a -field generated by PI , P2 , . . .  , Pi . As before, (Y, g:) is a martingale, and 
Yn = Dn , Yo = E(Dn ) · 
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Let Dn (i ) be the minimal tour-length through the points PI , P2 , . . .  , Pi- I , Pi+ l , . . .  , Pn , 
and note that lE(Dn Ci ) I :F;) = lE(Dn Ci ) I :F;- l ) .  The vital inequality is 

(16) 

where Zi is the shortest distance from Pi to one of the points Pi+l , Pi+2 , . . .  , Pn . It is 
obvious that Dn � Dn (i ) since every tour of all n points includes a tour of the subset 
PI , . . .  , Pi- I , Pi+ l ,  . . .  , Pn . To obtain the second inequalityof ( 1 6) ,  we argue as follows. 
Suppose that Pj is the closest point to Pi amongst the set {PHI , Pi+2 , . . .  , Pn } .  One way 
of visiting all n points is to follow the optimal tour of PI , . . .  , Pi- I , Pi+ 1 , . . .  , Pn , and on 
arriving at Pj we make a return trip to Pi . The resulting trajectory is not quite a tour, but it 
can be turned into a tour by not landing at Pj on the return but going directly to the next point; 
the resulting tour has length no greater than Dn Ci ) + 2Zi . 

We take conditional expectations of ( 1 6) to obtain 

and hence 

lE(Dn (i ) I :F;- l )  :s Yi- l :s lE(Dn Ci ) I :F;- l )  + 2lE(Zi I :F;- 1 ) ,  
lE (Dn Ci ) I :F;) :s Yi :s lE (Dn Ci ) I :F; ) + 2lE(Zi I :F; ) ,  

(17) l Yi - Yi- l l  :s 2 max {lE(Zi I :F;) ,  lE(Zi I :F;-d } , i :s  n - 1 . 

In order to estimate the right side here, let Q E [0, 1 ]2 , and let Zi (Q)  be the shortest distance 
from Q to the closest of a collection of n - i points chosen uniformly at random from the unit 
square. If Zi (Q) > x then no point lies within the circle C (x ,  Q) having radius x and centre 
at Q .  Note that -J2 is the largest possible distance between two points in the square . Now, 
there exists c such that, for all x E (0, -J2]' the intersection of C (x , Q) with the unit square 
has area at least cx2 , uniformly in Q .  Therefore 

(18) 

Integrating over x ,  we find that 

10-/2 . 10-/2 
2 '  C 

lE(Zi ( Q)) :'.S ( 1  - cx2)n-1 dx :s e-cx (n-I )  dx < ---. o 0 � 
for some constant C ;  (exercise) . Returning to ( 1 7) ,  we deduce that the random variables 
lE(Zi I :F; ) and lE(Zi I :F;-d are smaller than C/�, whence I Yi - Yi- l l :s  2C/� 
for i :s n - 1. For the case i = n ,  we use the trivial bound I Yn - Yn- l l :s 2-J2, being twice 
the length of the diagonal of the square. 

Applying Hoeffding's inequality, we obtain 

(19) lP'( IDn - lEDn l � x) :s 2 exp (_ x2
1 ) 2(8 + I:7:1 4C2/ i )  

:s 2 exp(-Ax2j log n ) ,  x >  0, 
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for some positive constant A .  Combining this with ( 1 5) , we find that 

for some positive constant B and all large n .  • 

(20) Example. Markov chains. Let X = {Xn : n :::: O} be an irreducible aperiodic Markov 
chain on the finite state space S with transition matrix P. Denote by 1C the stationary distribution 
of X, and suppose that Xo has distribution 1C ,  so that X is stationary. Fix a state s E S, and let 
N (n) be the number of visits of X I , X 2 , . . .  , Xn to s .  The sequence N is a delayed renewal 
process and therefore n- l N(n)  � lrs as n --+ 00. The convergence is rather fast, as the 
following (somewhat overcomplicated) argument indicates. 

Let :Fo = {0, Q} and, for 0 < m :s n ,  let :Fm = a (XI , X2 , . . .  , Xm ) .  Set Ym = 
E(N(n)  I :Fm )  for m :::: 0, so that (Ym ,  :Fm )  is a martingale. Note that Yn = N(n) and 
Yo = E(N(n» = nlrs by stationarity. 

We write N(m ,  n) = N(n) - N(m) ,  0 :s m :s n, the number of visits to s by the 
subsequence Xm+l , Xm+2 , . . .  , Xn . Now 

Ym = E (N(m) I :Fm) + E (N(m ,  n) I :Fm) = N(m) + E (N(m ,  n) I Xm) 

by the Markov property. Therefore, if  m :::: 1 ,  

Ym - Ym- l = [N(m) - N(m - 1 ) ]  + [E (N(m ,  n )  I Xm) - E (N(m - 1 ,  n )  I Xm- l ) ] 
= E (N(m - 1 ,  n) I Xm) - E (N(m - 1 ,  n )  I Xm- l )  

since N (m)  - N(m - 1 )  = DXm , s ,  the Kronecker delta. It follows that 

I Ym - Ym- l l  :s max IE (N(m - 1 ,  n) I Xm = t) - E (N(m - 1 ,  n) I Xm- I = u) 1 t , u eS 
= max I Dm (t ,  u) 1 t , u eS 

where, by the time homogeneity of the process, 

(21) Dm (t ,  u) = E (N(n - m + 1) I Xl = t) - E (N(n - m + 1) I Xo = u) . 

It is easily seen that 

E (N(n - m + 1 )  I Xl = t) :s Dts + E(Ttu )  + E (N(n - m + 1 )  I Xo = u) , 

where E(Txy ) is the mean first-passage time from state x to state y ;  just wait for the first 
passage to u, counting one for each moment which elapses. Similarly 

Hence, by (2 1 ) ,  I Dm (t ,  u) 1 :s 1 + max{E(Ttu ) ,  E(Tut ) } ,  implying that 

(22) I Ym - Ym- l l :s 1 + J-i 
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where It = max{IE(Txy ) : x ,  y E S} ;  note that It < 00 since S is finite.  Applying Hoeffding's 
inequality, we deduce that 

Setting x = nE , we obtain 

(23) E > 0, 

a large-deviation estimate which decays exponentially fast as n � 00. Similar inequalities 
may be established by other means ,  more elementary than those used above. • 

Exercises for Section 1 2.2  

1 .  Knapsack problem. I t  i s  required to  pack a knapsack to  maximum benefit. Suppose you have n 
objects, the i th object having volume Vi and worth Wi , where Vl , V2 , . · · , Vn , Wl , W2 , . ' "  Wn are 
independent non-negative random variables with finite means, and Wi :::: M for all i and some fixed 
M. Your knapsack has volume c, and you wish to maximize the total worth of the objects packed in 
it. That is, you wish to find the vector Z l , Z2 , . . . , Zn of O's and l ' s such that 'Ll Zi Vi :::: c and which 
maximizes 'Ll Zi Wi . Let Z be the maximal possible worth of the knapsack's contents, and show that 
lP'( I Z  - EZ I ::: x) :::: 2 exp{-x2 / (2nM2 ) } for x >  O. 

2. Graph colouring. Given n vertices Vl , V2 , . . .  , Vn , for each 1 :::: i < j :::: n we place an edge 
between Vi and Vj with probability p; different pairs are joined independently of each other. We call 
Vi and Vi neighbours if they are joined by an edge. The chromatic number X of the ensuing graph is 
the minimal number of pencils of different colours which are required in order that each vertex may 
be coloured differently from each of its neighbours. Show that lP'( lx - EX I ::: x) :::: 2 exp{ - ix2 / n }  
for x >  O. 

12.3 Crossings and convergence 

Martingales are of immense value in proving convergence theorems, and the following famous 
result has many applications. 

(1) Martingale convergence theorem. Let (Y, fJ:') be a submartingale and suppose that 
lE(Y,t) ::s M for some M and all n. There exists a random variable Y 00 such that Yn � yOlO 
as n � 00. We have in addition that: 

(i) yOlO has finite mean if JEIYo l  < 00, and 
(ii) Yn .2,. Y 00 if the sequence {Yn : n 2:: O} is uniformly integrable. 

It follows of course that any submartingale or supermartingale (Y, fJ:') converges almost 
surely if it satisfies IE I Yn I :s M. 

The key step in the classical proof of this theorem is 'Snell 's upcrossings inequality ' .  
Suppose that y = {Yn : n :::: O }  is a real sequence, and [a , b ]  is a real interval. An up­
crossing of [a , b] is defined to be a crossing by y of [a , b] in the upwards direction. More 
precisely, we define Tl = min{n : Yn :s a } ,  the first time that Y hits the interval (-00,  a ] ,  and 
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T2 = min{n > Tl : Yn � b } ,  the first subsequent time when Y hits [b ,  (0) ; we cal1 the interval 
[ Tl , T2 ] an upcrossing of [a , b ] .  In addition, let 

T2k- l = min{n > T2k-2 : Yn ::s a } ,  T2k = min{n > T2k- l : Yn � b } ,  

for k � 2 ,  s o  that the upcrossings o f  [a , b ]  are the intervals [T2k- l , T2k ] for k � 1 .  Let 
Un (a , b; y) be the number of up crossings of [a , b] by the subsequence yo , Yl , . . .  , Yn , and let 
U (a , b; y) = limn---+oo Un (a , b; y) be the total number of such upcrossings by y .  
(2) Lemma. If U (a ,  b ;  y) < 00 for all rationals a and b satisfying a < b, then limn---+oo Yn 
exists (but may be infinite). 
Proof. If A = lim infn---+oo Yn and /1 = lim sUPn---+oo Yn satisfy A < /1 then there exist rationals 
a ,  b such that A < a < b < /1. Now Yn ::s a for infinitely many n, and Yn � b similarly, 
implying that U (a ,  b; y) = 00, a contradiction . Therefore A = /1 .  • 

Suppose now that (Y, :J:') is a submartingale, and let Un (a , b ;  Y) be the number of up cross­
ings of [a , b] by Y up to time n .  
(3) Theorem. Upcrossings inequality. If a < b then 

EU ( b ' Y) < 
E«Yn - a)+) 

n a " - b . - a 

Proof. Setting Zn = (Yn - a)+ , we have by Exercise ( 1 2 . 1 .7) that (Z, :J:') is a non-negative 
submartingale . Upcrossings by Y of [a , b] correspond to upcrossings by Z of [0, b - a] ,  so 
that Un (a , b ;  Y)  = Un (0, b - a ;  Z) . 

Let [T2k- l , T2k ] ,  k � 1 ,  be the upcrossings by Z of [0, b - a ] ,  and define the indicator 
functions 

Ii = 
{ I if i E (T2k- l , T2k ] for some k, o otherwise . 

Note that Ii is Fi- l -measurable, since 

{ Ii = I } = U { T2k- l ::s i - I } \ { T2k ::s i - I } , 
k 

an event which depends on Yo , Yl , . . . , Yi- l only. Now 

(4) (b - a) Un (O, b - a; Z) ::S E(i= (Zi - Zi- I ) I;) , 
1 = 1 

since each upcrossing of [0, b - a]  contributes an amount of at least b - a to the summation. 
However 

(5) E( Zi - Zi-d Ii ) = E(E[(Zi - Zi-d Ii I Fi- 1 J) = E(Ii [E(Zi I Fi-d - Zi- I l) 
::s E[E(Zi I Fi-d - Zi- l ] = E(Zj )  - E(Zi- l ) 

where we have used the fact that Z is a submartingale to obtain the inequality. Summing over 
i ,  we obtain from (4) that 

(b - a )Un (O, b - a ;  Z) ::s E(Zn ) - E (Zo ) ::s E(Zn )  
and the lemma i s  proved. • 
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Proof of Theorem (1). Suppose (Y, �) is a submartingale and E(Yn+) ::s M for all n .  We 
have from the upcrossings inequality that, if a < b , 

so  that U (a , b ; Y)  = limn---+oo Un (a , b ; Y)  satisfies 

. M + la l 
EU(a , b; Y) = hm EUn (a ,  b ;  Y) ::s ------'-----'-n---+oo b - a 

for all a < b. Therefore U (a , b; Y) < 00 a.s .  for all a < b .  Since there are only countably 
many rationals, it follows that, with probability 1, U (a , b; Y)  < 00 for all rational a and b . By 
Lemma (2) , the sequence Yn converges almost surely to some limit Y 00 ' We argue as follows 
to show that lP'( 1 Y 00 I < 00) = 1 .  Since I Yn I = 2Yn+ - Yn and E(Yn I Fo) :::: Yo , we have that 

By Fatou 's  lemma, 

(6) E ( I Yoo l l Fo) = E(lim inf 1 Yn l l Fo) ::s lim inf E ( I Yn l l Fo) ::s 2Z - Yo n---+oo n---+oo 

where Z = lim infn---+oo E(Yn+ I Fo) .  However E(Z) ::s M by Fatou's  lemma, so that Z < 00 
a.s . ,  implying that E ( I Yoo l l Fo) < 00 a. s .  Hence lP' ( 1 Yoo I < 00 I Fo) = 1 ,  and therefore 

lP'( 1 Yoo I < 00) = E [lP' ( 1 Yoo I < 00 I Fo) ]  = 1 .  

If E I Yo l < 00 ,  we may take expectations of (6) to obtain E I Yoo l ::s 2M - E(Yo) < 00 .  That 
uniform integrability is enough to ensure convergence in mean is a consequence of Theorem 
(7 . 10 .3) .  • 

The following is an immediate corollary of the martingale convergence theorem. 

(7) Theorem. If(Y, �) is either a non-negative supermartingale or a non-positive submartin­
gale, then Y 00 = limn---+oo Yn exists almost surely. 
Proof. If Y is a non-positive submartingale then E(Yn+) = 0, whence the result follows from 
Theorem ( 1 ) .  For a non-negative supermartingale Y ,  apply the same argument to - Y .  • 

(8) Example. Random walk. Consider de Moivre 's  martingale of Example ( 1 2 . 1 .4), namely 
Yn = (q / p ) Sn where Sn is the position after n steps of the usual simple random walk. The 
sequence { Yn } is a non-negative martingale, and hence converges almost surely to some finite 
limit Y as n � 00. This is not of much interest if p = q , since Yn = 1 for all n in this case . 
Suppose then that p i= q . The random variable Yn takes values in the set {pk : k = 0, ± 1 ,  . . .  } 
where p = q / p . Certainly Yn cannot converge to any given (possibly random) member of this 
set, since this would necessarily entail that Sn converges to a finite limit (which is obviously 
false) . Therefore Yn converges to a limit point of the set, not lying within the set. The only 
such limit point which is finite is 0, and therefore Yn � ° a.s .  Hence, Sn � - 00 a.s .  if p < q , 
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and Sn -+ 00 a.s .  if p > q .  Note that Yn does not converge in mean, since E(Yn )  = E(Yo) =1= 0 
for all n .  • 

(9) Example. Doob's martingale (though some ascribe the construction to Levy). Let Z be 
a random variable on (Q , F, lJD) such that E I Z I  < 00. Suppose that :J:' = {Fo ,  FI , . . .  } is 
a filtration, and write Foo = limn---+oo Fn for the smallest a-field containing every Fn . Now 
define Yn = E(Z I Fn ) .  It is easily seen that (Y, :J:') is a martingale . First, by Jensen's  
inequality, 

and secondly 

since Fn S; Fn+l .  Furthermore { Yn }  is a uniformly integrable sequence, as shown in Example 
(7 . 10 . 1 3) .  It follows by the martingale convergence theorem that Yoo = limn---+oo Yn exists 
almost surely and in mean. 

It is actually the case that Y 00 = E(Z I Foo ) ,  so that 

(10) E(Z I Fn ) -+ E(Z I Foo ) a.s .  and in mean. 

To see this,  one argues as follows. Let N be a positive integer. First, Yn I A -+ Y 00 fA a.s .  for all 
A E FN . Now { Yn IA : n :::: N} is uniformly integrable, and therefore E(Yn IA )  -+ E(Y oo lA )  
for all A E FN . O n  the other hand E(Yn IA )  = E(YN IA )  = E(ZIA )  for all n :::: N and 
all A E FN , by the definition of conditional expectation . Hence E(ZIA )  = E(Y oo lA)  for 
all A E FN . Letting N -+ 00 and using a standard result of measure theory, we find that 
E«Z - Y oo ) IA )  = 0 for all A E Foo , whence Y 00 = E(Z I Foo) .  

There i s  an important converse to these results . 

(11) Lemma. Let (Y, :J:') be a martingale. Then Yn converges in mean if and only if there 
exists a random variable Z with finite mean such that Yn = E(Z I Fn ) .  If Yn � Y 00 , then 
Yn = E(Y 00 I Fn ) .  

If  such a random variable Z exists , we say that the martingale (Y, :J:') is closed. 
Proof. In the light of the previous discussion, it suffices to prove that, if (Y, :J:') is a martingale 
which converges in mean to Y 00 , then Yn = E(Y 00 I Fn ) .  For any positive integer N and event 

A E FN , it is the case that E(Yn IA )  -+ E(Y oo lA ) ;  just note that Yn fA � Y oo fA since 

On the other hand, E(Yn fA )  = E(YN fA ) for n :::: N and A E FN , by the martingale property. 
It follows that E(Yoo fA )  = E(YN fA )  for all A E FN , which is to say that YN = E(Yoo I FN ) 
as required. • • 

(12) Example. Zer(H)ne law (7.3.12). Let Xo , Xl , . . .  be independent random variables, 
and let T be their tail a -field; that is to say, T = nn Jfn where Jfn = a (Xn ,  Xn+I , . . .  ) .  
Here is a proof that, for all A E T ,  either lJD(A) = 0 or lJD(A) = 1 .  

Let A E T and define Yn = E(lA I Fn ) where Fn = a (Xl , X2 , . . .  , Xn ) .  Now A E T S; 
Foo = limn---+oo Fn , and therefore Yn -+ E(lA I Foo) = IA a.s .  and in mean, by ( 1 1 ) .  On 
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the other hand Yn = E(lA I :Fn ) = J.P'(A) ,  since A (E T) is independent of all events in :Fn . 
Hence J.P'(A) = fA almost surely, which is to say that fA is almost surely constant. However, 
fA takes values 0 and 1 only, and therefore either J.P'(A) = 0 or J.P'(A) = 1 .  • 

This completes the main contents of this section. We terminate it with one further result 
of interest, being a bound related to the upcrossings inequality. For a certain type of process, 
one may obtain rather tight bounds on the tail of the number of upcrossings. 

(13) Theorem. Dubins's inequality. Let (Y, IF) be a non-negative supermartingaie. Then 

(14) 

for 0 < a < b and j :::: O. 

Summing ( 1 4) over j ,  we find that 

(15) EUn (a ,  b ;  Y)  :s _
a

-E (min{ l ,  Yo/a }) , 
b - a  

an inequality which may be compared with the upcrossings inequality (3 ) .  

Proof. This i s  achieved by  an adaptation of  the proof of  the upcrossings inequality (3 ) ,  and 
we use the notation of that proof. Fix a positive integer j .  We replace the indicator function 
Ii by the random variable 

if i E (T2k- l , T2k ] for some k :s j ,  

otherwise. 

Next we let Xo , Xl , . . .  be given by Xo = min{ 1 ,  Yo/a } ,  

(16) 

If T2j :s n ,  then 

n 
Xn = Xo + L ]i (Yi - Yi- l ) ,  n :::: 1 .  

i= l 

j 

Xn :::: Xo + L a - l (b/a )k- I (YT2k - YT2k- l ) ' 
k= l 

However, Y T2k :::: b and Y T2k+ 1 :s a ,  so that 

(17) 

implying that 

If Yo :s a then TI = O and Xo - a - 1 YT1 = 0; on the other hand, if Yo > a then Xo - a - l YT1 = 
1 - a - I YT1 > O. In either case it follows that 

(18) 
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Now Y is a non-negative sequence, and hence Xn :::: Xo - a- I  YT1 :::: 0 by ( 1 6) and ( 1 7) . Take 
expectations of ( 1 8) to obtain 

(19) 

and it remains to bound JE(Xn )  above. Arguing as in (5) and using the supermartingale 
property, we arrive at 

n 
JE(Xn ) = JE(Xo) + L JE(1i (Yi - Yi- l ») :::; JE(Xo) . 

i= 1 
The conclusion of the theorem follows from ( 1 9) . • 

(20) Example. Simple random walk. Consider de Moivre 's  martingale Yn = (q / p)Sn of 
Examples ( 1 2 . 1 .4) and (8) , with p < q .  By Theorem ( 1 3) , lP'(Un (a ,  b; Y) :::: j )  :::; (a/b)j . An 
upcrossing of [a , b] by Y corresponds to an upcrossing of [log a ,  log b] by S (with logarithms 
to the base q / p ) . Hence 

lP'(Un (O , r ;  S) :::: j) = lP'{ Un ( l , (q /p/ ;  Y) :::: j } :::; (p/q/j , j :::: O. 
Actually equality holds here in the limit as n -+ 00: lP' (U (O , r ;  S) :::: j ) = (p/qyj for positive 
integers r ;  see Exercise (5 . 3 . 1 ) . • 

Exercises for Section 1 2 .3  

1 .  Give a reasonable definition of  a downcrossing of  the interval [a , b] by  the random sequence 
Yo , Yl , · ·  . .  
(a) Show that the number of downcrossings differs from the number of upcrossings by at most 1 .  
(b) If (Y, :F) i s  a submartingale, show that the number Dn (a , b ;  Y )  of downcrossings of [a , b ]  by Y 

up to time n satisfies 
E{ (l': - b)+ } EDn (a , b ; Y) s ;- a  . 

2. Let (Y, :F) be a supermartingale with finite means, and let Un (a , b; Y) be the number of upcross­
ings of the interval [a , b] up to time n. Show that 

E{(Yn - a)- }  EUn (a ,  b ;  Y) S . b - a  
Deduce that EUn (a , b ;  Y) S a/ (b - a) if Y is non-negative and a 2: O. 

3. Let X be a Markov chain with countable state space S and transition matrix P. Suppose that X is 
irreducible and persistent, and that 1/f : S -+ S is a bounded function satisfying LjES Pij 1/f (j )  s 1/f (i ) 
for i E S .  Show that 1/f is a constant function. 

4. Let Zl , Z2 , . . .  be independent random variables such that: 

with probability !n-2 , 
with probability I - n-2 , 
with probability in-2 , 

where al = 2 and an = 4 Lj:l aj . Show that Yn = Ll=1 Zj defines a martingale. Show that 
Y = lim Yn exists almost surely, but that there exists no M such that EI Yn I s M  for all n .  
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12.4 Stopping times 

We are all called upon on occasion to take an action whose nature is fixed but whose timing 
is optional. Commonly occurring examples include getting married or divorced, employing a 
secretary, having a baby, and buying a house. An important feature of such actions is that they 
are taken in the light of the past and present, and they may not depend on the future. Other 
important examples arise in considering money markets . The management of portfolios is 
affected by such rules as : (a) sell a currency if it weakens to a predetermined threshold, (b) buy 
government bonds if the exchange index falls below a given level, and so on. (Such rules are 
often sufficiently simple to be left to computers to implement, with occasionally spectacular 
consequencest . )  

A more mathematical example is provided by the gambling analogy. A gambler pursues a 
strategy which we may assume to be based upon his experience rather than his clairvoyance. 
That is to say, his decisions to vary his stake (or to stop gambling altogether) depend on the 
outcomes of the game up to the time of the decision, and no further. A gambler is able to 
follow the rule ' stop when ahead' but cannot be expected to follow a rule such as ' stop just 
before a loss ' . 

Such actions have the common feature that, at any time, we have sufficient information 
to decide whether or not to take the action at that time. The usual way of expressing this 
property in mathematical terms is as follows. Let (Q , :F, JP') be a probability space, and let 
:J:' = {:Fo ,  :F" . . .  } be a filtration . We think of :Fn as representing the information which is 
available at time n, or more precisely the smallest a -field with respect to which all observations 
up to and including time n are measurable . 

(1) Definition. A random variable T taking values in {O, 1 ,  2, . . .  } U {(X)}  is called a stopping 
time (with respect to the filtration :J:') if { T  = n }  E :Fn for all n ::: O .  

(2) 

Note that stopping times T satisfy 

{ T  > n }  = { T :::: n } C  E :Fn for all n ,  

since :J:' is  a filtration . They are not required to  be  finite, but may take the value 00 . Stopping 
times are sometimes called Markov times . They were discussed in Section 6 . 8  in the context 
of birth processes. 

Given a filtration :J:' and a stopping time T,  it is useful to introduce some notation to 
represent information gained up to the random time T. We denote by :Fr the collection of all 
events A such that A n { T  :::: n }  E :Fn for all n .  It is easily seen that :Fr is a a-field, and we 
think of :FT as the set of events whose occurrence or non-occurrence is known by time T .  

(3) Example. The martingale (12. 1.3). A fair coin i s  tossed repeatedly ; let T be  the time of 
the first head. Writing Xi for the number of heads on the i th toss, we have that 

{ T  = n }  = {Xn = 1 ,  Xj = 0 for 1 :::: j < n }  E :Fn 

where :Fn = a (X J , X2 , . . .  , Xn ) .  Therefore T is a stopping time. In this case T is finite 
almost surely. • 

tAt least one NYSE crash has been attributed to the use of simple online stock-dealing systems programmed 
to sell whenever a stock price falls to a given threshold. Such systems can be subject to feedback, and the rules 
have been changed to inhibit this. 
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(4) Example. First passage times. Let !J:' be a filtration and let the random sequence X be 
adapted to !J:',  so that Xn is Fn -measurable. For each (sufficiently nice) subset B of lR define 
the first passage time of X to B by TB = min {n : Xn E B }  with TB = 00 if Xn ¢. B for all n .  
I t  i s  easily seen that TB i s  a stopping time. • 

Stopping times play an important role in the theory of martingales, as illustrated in the 
following examples . First, a martingale which is stopped at a random time T remains a 
martingale, so long as T is a stopping time. 

(5) Theorem. Let (f, !J:') be a submartingale and let T be a stopping time (with respect to 
!J:'). Then (Z ,  !J:'), defined by Zn = frAn , is a submartingale. 

Here, as usual, we use the notation x /\ y = min {x , y } .  If (f, !J:') is a martingale, then it is 
both a submartingale and a supermartingale, whence fr/\n constitutes a martingale, by (5) .  

Proof. We may write 

(6) 
n- l 

Zn = L fi I{r=t } + fn I{r::c:n } , 
t=O 

whence Zn is Fn -measurable (using (2» and 

n 
IE(Z;t ) ::s L lE(f/ ) < 00.  

t=O 

Also, from (6), Zn+l  - Zn = (fn+ l - fn ) I{T >n) , whence, using (2) and the submartingale 
property, 

• 

One strategy open to a gambler in a casino is to change the game (think of the gambler as 
an investor in stocks, if you wish) .  If he is fortunate enough to be playing fair games, then he 
should not gain or lose (on average) at such a change. More formally, let (X, !J:') and (f, !J:') 
be two martingales with respect to the filtration !J:'. Let T be a stopping time with respect to 
!J:' ;  T is the switching time from X to f ,  and X T is the 'capital ' which is carried forward. 

(7) Theorem. Optional switching. Suppose that XT = fr on the event {T  < oo}. Then 
ifn < T ,  
ifn :::: T ,  

defines a martingale with respect to !J:'. 

Proof. We have that 

(8) 

each summand is Fn -measurable, and hence Zn is Fn -measurable. Also IE I Zn l  ::s IE I Xn l  + 
lE I  fn I < 00. By the martingale property of X and f ,  

(9) Zn = IE(Xn+ l I Fn ) I{n <T } + lE(fn+ l I Fn ) I{n::C:T } 

= IE (Xn+ 1 I{n <T } + fn+1 I{n::C:T } I Fn ) , 
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since T is a stopping time. Now 

(10) Xn+ I /{n <T } + Yn+ I /{n::: T j = Zn+ l + Xn+ l /{n+ l=T} - Yn+ l /{n+ l=T j 
= Zn+ l + (XT - YT ) /{n+ I=T ) 
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whence, by (9) and the assumption that XT = YT on the event {T < oo}, we have that 
Zn = E(Zn+ 1  I Fn ) ,  so that (Z, IF) is a martingale. • 

'Optional switching' does not disturb the martingale property. 'Optional sampling'  can be 
somewhat more problematical. Let (Y, IF) be a martingale and let TI , T2 , . . .  be a sequence 
of stopping times satisfying Tl .::::: T2 .::::: . . .  < 00. Let Zo = Yo and Zn = YTn , so that the 
sequence Z is obtained by ' sampling' the sequence Y at the stopping times Tj .  It is natural to 
set Jen = FTn ' and to ask whether (Z, 3f) is a martingale. The answer in general is no. To 
see this, use the simple example when Yn is the excess of heads over tails in n tosses of a fair 
coin, with Tl = min {n : Yn = I } ;  for this example EYo = ° but EYT! = l .  The answer is, 
however, affirmative if the Tj are bounded. 

(11) Optional sampling theorem. Let (Y, IF) be a submartingale. 
(a) 1fT is a stopping time and there exists a deterministic N « (0) such thatlP'(T .::::: N) = 1 ,  

then E(Y!) < 00 and E (YT I Fo) :::: Yo . 
(b) If TI .::::: T2 .::::: . . . is a sequence of stopping times such that lP'(Tj .::::: Nj ) = 1 for 

some deterministic real sequence Nj , then (Z, 3f), defined by (Zo , Jeo) = (Yo ,  Fo), 
(Zj , Jej )  = (Y:r" F:r, ), is a submartingale. 

If (Y, IF) is a martingale, then it is both a submartingale and a supermartingale; Theorem 
( 1 1 )  then implies that E(YT I Fo) = Yo for any bounded stopping time T, and furthermore 
(Y:r" F:r, ) is a martingale for any increasing sequence TI , T2 , . . .  of bounded stopping times. 

Proof. Part (b) may be obtained without great difficulty by repeated application of part (a), 
and we therefore confine outselves to proving (a) . Suppose lP'(T .::::: N) = l .  Let Zn = YT An ,  
so that (Z , IF) i s  a submartingale, by (5) .  Therefore E(Zt) < 00 and 

(12) E(ZN I Fo) :::: Zo = Yo ,  
and the proof i s  finished b y  observing that ZN = YT /\N = YT a.s .  • 

Certain inequalities are of great value when studying the asymptotic properties of martin­
gales. The following simple but powerful 'maximal inequality ' is an easy consequence of the 
optional sampling theorem. 

(13) Theorem. Let (Y, IF) be a martingale. For x > 0, 

(14) lP'( max Ym :::: x) .::::: E(Yn+) and lP'( max I Ym l  :::: x) .::::: E I Yn l . O�m�n x O�m�n X 

Proof. Let x > 0, and let T = min {m : Y m :::: x } be the first passage time of Y above the 
level x .  Then T 1\ n is a bounded stopping time, and therefore E (Yo ) = E(YT/\n ) = E(Yn ) 
by Theorem ( I l a) and the martingale property. Now E(YT/\n ) = E(YT I{T�n }  + Yn l{T>n j ) .  
However, 
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since YT � x ,  and therefore 

(15) 

whence 
xlP'(T ::s n) ::s E(Yn I{T::::n } ) ::s E(Y:) 

as required for the first part of ( 1 4) .  As for the second part, just note that (- Y, !J:') is a 
martingale, so that 

( ) E(Y- ) lP' max {-Ym } � x ::s __ 
n

_ O::::m::::n x for x > 0, 

which may be added to the first part. • 

We shall explore maximal inequalities for submartingales and supermartingales in the 
forthcoming Section 1 2.6 .  

Exercises for Section 1 2 .4 

1. If TI and T2 are stopping times with respect to a filtration :F, show that TI + T2 , max ( TI , T2 } ,  
and min ( TI , T2 } are stopping times also. 

2. Let X I , X 2 , . . .  be a sequence of non-negative independent random variables and let N Ct) = 

max{n : X l + X2 + . . .  + Xn :::: t } .  Show that NCt) + I is a stopping time with respect to a suitable 
filtration to be specified. 

3. Let (f, !F) be a submartingale and x > O. Show that 

4. Let (f, !F) be a non-negative supermartingale and x > O. Show that 

lP' ( max fm ::: x) :::: �E(fo ) .  O::::m::::n x 

5. Let (f, !F) be a submartingale and let S and T be stopping times satisfying 0 :::: S :::: T :::: N for 
some deterministic N.  Show that Efo :::: Ef s :::: EfT :::: Ef N . 
6. Let {Sn } be a simple random walk with So = 0 such that 0 < P = lP'(S! = 1 )  < � .  Use de 
Moivre's  martingale to show that E(suPm Sm ) :::: pl( !  - 2p) .  Show further that this inequality may 
be replaced by an equality. 

7. Let 9="be a filtration. For any stopping time T with respect to :F, denote by TT the collection of 
all events A such that, for all n , A n I T :::: n } E Tn . Let S and T be stopping times. 
(a) Show that TT is a a -field, and that T is measurable with respect to this a -field. 
(b) If A E Ts , show that A n IS :::: T} E TT . 
(c) Let S and T satisfy S :::: T .  Show that Ts � TT . 



1 2 .5 Optional stopping 49 1 

12.5 Optional stopping 

If you stop a martingale (Y, 9=') at a fixed time n ,  the mean value E(Yn )  satisfies E(Yn )  = E(Yo ) .  
Under what conditions i s  this true i f  you stop after a random time T ;  that is, when i s  it the case 
that E(YT ) = E(Yo )?  The answer to this question is very valuable in studying first-passage 
properties of martingales (see ( 1 2. 1 .4) for example) . It would be unreasonable to expect such 
a result to hold generally unless T is required to be a stopping time. 

Let T be a stopping time which is finite (in that lP'(T < 00) = 1 ) ,  and let (Y, 9=')  be a 
martingale. Then T /\ n --+ T as n --+ 00, so that YT /\n --+ YT a .s .  It follows (as in Theorem 
(7. 10 .3» that E(Yo) = E(YT/\n ) --+ E(YT ) so long as the family { YT/\n : n :::: O} is uniformly 
integrable. 

The following two theorems provide useful conditions which are sufficient for the conclu­
sion E(Yo) = E(YT ) .  

(1) Optional stopping theorem. Let (Y, $' )  be a martingale and let T be a stopping time. 
Then B(YT) = JE(Yo) if: 

(a) lP'(T < (0) = 1, 
(b) E IYT I  < 00, and 
(c) E(Yn l{T>n}) --+ 0 as n -+ 00. 

(2) Theorem. Let (Y, F) be a martingale and let T be a stopping time. If the Yn are uniformly 
integrable and P'(T < (0) = 1 then YT = JE(Yoo I :FT) and Yo = E(YT I .1"0). ln particular 
B(Yo) = B(YT). 
Proof of (1). It is easily seen that YT = YT /\n + (YT - Yn ) I{T>n j . Taking expectations and 
using the fact that E(YT /\n ) = E(Yo) (see Theorem ( 1 2 .4 . 1 1» , we find that 

(3) 

The last term tends to zero as n --+ 00, by assumption (c) . As for the penultimate term, 

00 
E(YT I{T >n j ) = L E(YT I/T=kj ) 

k=n+ ! 

is, by assumption (b) ,  the tail of the convergent series E(YT )  = Lk E(YT I/T=kj ) ;  therefore 
E(YT I{T >nj ) --+ 0 as n --+ 00, and (3) yields E(YT )  = E(Yo) in the limit as n --+ 00. • 
Proof of (2). Since (Y, 9=') is uniformly integrable, we have by Theorems ( 1 2.3 . 1 )  and 
( 1 2. 3 . 1 1 ) that the limit Y 00 = limn---+oo Yn exists almost surely, and Yn = E(Y 00 I :Fn ) .  
It follows from the definition ( 1 2 . 1 .7) of conditional expectation that 

(4) 

Now, if A E :FT then A n {T = n } E :Fn , so that 

E(YT IA )  = L E(Yn lAn/T=n j ) = L E(Yoo IAn/T=nj ) = E(Yoo IA ) ,  
n n 

whence Y T = E(Y 00 I :FT ) .  Secondly, since :Fo � :FT , 

E(YT I :Fo) = E (E(Y 00 I :FT ) I :Fo) = E(Y 00 I :Fo) = Yo . • 
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(5) Example. Markov chains. Let X be an irreducible persistent Markov chain with count­
able state space S and transition matrix P, and let 1/1 : S ---+ lR be a bounded function satisfying 

L Pij 1/l (j ) = 1/I (i ) for all i E S. 
j E S  

Then 1/1 (Xn ) constitutes a martingale. Let Ti be the first passage time of X to the state i ,  that 
is, Ti = min {n : Xn = i } ;  it is easily seen that Ii is a stopping time and is (almost surely) 
finite. Furthermore, the sequence {1/I (Xn ) } is bounded and therefore uniformly integrable. 
Applying Theorem (2), we obtain E(1/I (XT» = E(1/I (Xo»,  whence E(1/I (Xo» = 1/I(i )  for all 
states i .  Therefore 1/1 is a constant function. • 

(6) Example. Symmetric simple random walk. Let Sn be the position of the particle after n 
steps and suppose that So = O. Then Sn = I:7=1 Xi where XI , X2 , . . . are independent and 
equally likely to take each of the values + 1 and - 1 .  It is easy to see as in Example ( 1 2. 1 .2) 
that {Sn } is a martingale. Let a and b be positive integers and let T = min {n : Sn = -a or 
Sn = b} be the earliest time at which the walk visits either -a or b .  Certainly T is a stopping 
time and satisfies the conditions of Theorem ( 1 ) .  Let Pa be the probability that the particle 
visits -a before it visits b .  By the optional stopping theorem, 

(7) E (ST ) = (-a)Pa + b ( l  - Pa) ,  E (So ) = 0;  

therefore Pa = b/(a + b) ,  which agrees with the earlier result of equation ( 1 .7 .7) when the 
notation is translated suitably. The sequence { Sn } is not the only martingale available. Let 
{ Yn } be given by Yn = S?; - n ;  then { Yn } is a martingale also. Apply Theorem ( 1 )  with T 
given as before to obtain E (T ) = abo • 

(8) Example. De Moivre's martingale (12.1 .4). Consider now a simple random walk {Sn } 
with 0 < So < N, for which each step is rightwards with probability P where 0 < P = l -q < 
1 .  We have seen that Yn = (q / p) s" defines a martingale, and furthermore the first passage 
time T of the walk to the set {O , N} is a stopping time. It is easily checked that conditions 
( l a)-( 1 c) of the optional stopping theorem are satisfied, and hence E«q / p) SI )  = E«q / p)SO ) .  
Therefore Pk = lP'(ST = 0 I So = k) satisfies Pk + (q / p)N ( 1  - Pk ) = (q / p)k , whence Pk 
may be calculated as in Example ( 1 2. 1 .4) .  • 

When applying the optional stopping theorem it is sometimes convenient to use a more 
restrictive set of conditions. 

(9) Theorem. Let (Y, IF) be a martingale, and let T be a stopping time. Then E (YT ) = E(Yo) 
if the following hold: 

(a) lP'(T < (0) = 1, ET < 00, and 
(b) there exists a constant c such that E ( I Yn+ l  - Yn I I  Fn ) ::s c for all n < T. 

Proof. By the discussion prior to ( 1 ) , i t  suffices to show that the sequence { YT /\n : n :::: O} 
is uniformly integrable. Let Zn = I Yn - Yn- l l for n :::: 1 ,  and W = Z I + Z2 + . . .  + ZT . 
Certainly 1 fT /\n I ::s I Yo l  + W for all n, and it is enough (by Example (7 . 1 0.4» to show that 
E(W) < 00. We have that 

(10) 
00 

W = L Zi I{T?:i J · 
i= 1 
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Now 
E(ZJ{T�i } l .r;j- l ) = I{T�i }E(Zi I .r;j-d ::s c/{T�i } , 

since { T  � i }  = {T  ::s i - l }c E .r;j-l . Therefore E(ZJ{T�i } ) ::s clP'(T � i ) ,  giving by ( 1 0) 
that 

00 
(11) E(W) ::s c L lP'(T � i) = cE(T) < 00. • 

i= 1 

(12) Example. Wald's equation (10.2.9). Let X I ,  X2 , . . .  be independent identically dis­
tributed random variables with finite mean JL, and let Sn = L:7=1 Xi . It is easy to see 
that Yn = Sn - nJL constitutes a martingale with respect to the filtration {Fn } where Fn = 
a(YI , Y2 , ·  . . , Yn ) .  Now 

We deduce from (9) that E(YT )  = E(Yo) = 0 for any stopping time T with finite mean, 
implying that 

(13) E(ST ) = JLE(T) , 

a result derived earlier in the context of renewal theory as Lemma ( 1 0.2 .9) .  
If the Xi have finite variance a2 , i t  is also the case that 

(14) if E(T) < 00. 

It i s  possible to prove this by applying the optional stopping theorem to the martingale Zn = 
Y; - na2 , but this is not a simple application of (9). It may also be proved by exploiting 
Wald's identity ( 1 5) ,  or more simply by the method of Exercise ( 1 0 .2 .2) .  • 

(15) Example. Wald's identity. This time, let X I ,  X2 , . . .  be independent identically dis­
tributed random variables with common moment generating function M (t) = E( et x) ;  suppose 
that there exists at least one value of t (# 0) such that I ::s M(t) < 00, and fix t accordingly. 
Let Sn = XI + X2 + . . .  + Xn , define 

(16) Yo = 1 , 
etSn 

y - -- for n � 1 ,  n - M(t )n 

and let Fn = a (X I ,  X2 , . . .  , Xn ) .  It is clear that (Y, !J:') is a martingale. When are the 
conditions of Theorem (9) valid? Let T be a stopping time with finite mean, and note that 

(17) E( I Yn+ l - Yn l I Fn ) = YnE (/ etX - 1 /) ::s �E(etX + M(t)) = 2Yn . M(t) M(t) 

Suppose that T is such that 

(18) I Sn I ::s C for n < T, 
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where C is a constant. Now M(t ) :::: 1 ,  and 

etSn e 1 t l C  1': = -- < -- < e 1 t l C for n < T, n 
M(t )n - M(t )n -

giving by ( 1 7) that condition (9b) holds. In summary, if T is a stopping time with finite mean 
such that ( 1 8) holds, then 

(19) E {etST M(t ) -T } = 1 whenever M(t ) :::: 1 ,  

an equation usually called Wald's identity. 
Here is an application of ( 1 9) .  Suppose the Xi have strictly positive variance, and let 

T = min{n : Sn S -a or Sn :::: b} where a ,  b > 0; T is the 'first exit time' from the 
interval (-a , b) . Certainly I Sn l S max {a , b } if n < T .  Furthermore ET < 00, which 
may be seen as follows .  By the non-degeneracy of the Xi , there exist M and E > 0 such that 
lP'( I SM I  > a +b) > E .  If any of the quantities I SM I , I S2M - SM I , · · ·  , I SkM - S(k- l JM I exceed 
a+b then the process must have exited (-a , b) by time kM. Therefore lP'(T :::: kM) S ( l -E)k , 
implying that 

00 00 
E(T)  = L lP'(T :::: i )  s M L lP'(T :::: kM) < 00 .  

i= 1 k=O 

We conclude that ( 1 9) is valid. In many concrete cases of interest, there exists e (I 0) such 
that M(e)  = 1 .  Applying ( 1 9) with t = e, we obtain E(eI1ST ) = 1 ,  or 

where 

and therefore 

(20) 

1'/alP'(ST S -a) + 1'/blP'(ST :::: b) = 1 

1'/b - 1 
lP'(ST S -a) = , 

1'/b - 1'/a 

1 - 1'1 
lP'(ST :::: b) = · fa . 

1'/b - 1'/a 

When a and b are large, it is reasonable to suppose that 1'/a � e-l1a and 1'/b � el1b , giving the 
approximations 

(21) 
el1b - 1 

lP'(ST S -a) � I1b -11 ' e - e a 
1 - e-l1a 

lP'(ST :::: b) � I1b -11 · e - e a 

These approximations are of course exact if S is a simple random walk and a and b are positive 
integers . • 

(22) Example. Simple random walk. Suppose that {Sn } is a simple random walk whose 
steps {X; }  take the values 1 and - 1  with respective probabilities p and q (= 1 - p). For 
positive integers a and b ,  we have from Wald's  identity ( 1 9) that 
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where T is the first exit time of (-a ,  b) as before, and M(t) = pet + q e-t . 
Setting M (t) = s- I , we obtain a quadratic for et , and hence et = )1.] (s ) or et = A2 (s) 

where 
1 - )1 - 4pqs2 A2 (S) = . 2ps 

Substituting these into equation (23),  we obtain two linear equations in the quantities 

(24) 

with solutions 

which we add to obtain the probability generating function of T, 

(25) 

Suppose we let a -+ 00, so that T becomes the time until the first passage to the point b . 
From (24), PI (S ) -+ O as a  -+ 00 if 0 < s < 1 ,  and a quick calculation gives P2 (S) -+ Fb (S) 
where ( 1 - )1 - 4PqS2 ) b Fb (S) = 

2qs 

in agreement with Theorem (5 . 3 .5) .  Notice that Fb ( 1 ) = (min{ l ,  pjq } )b . 

Exercises for Section 1 2.5  

• 

1. Let (Y, !F) be a martingale and T a stopping time such that P(T < 00) = 1 .  Show that E(YT )  = 
E(YO) if either of the following holds : 
(a) E(suPn I YTAn l )  < 00, (b) E( l YTAn I 1 +0 ) :::: c for some c, 1) > 0 and all n .  

2 .  Let (Y, !F) be  a martingale. Show that (YT An , :Fn ) i s  a uniformly integrable martingale for any 
finite stopping time T such that either: 
(a) E I YT I < oo and E( l Yn I I{T >n} ) ---+ O as n ---+ 00, or 
(b) { Yn j is uniformly integrable. 

3. Let (Y, !F) be a uniformly integrable martingale, and let S and T be finite stopping times satisfying 
S :::: T. Prove that YT = E(Yoo I :FT ) and that Ys = E(YT I :Fs ) ,  where Yoo is the almost sure limit 
as n ---+ 00 of Yn . 

4. Let {Sn : n 2: OJ be a simple symmetric random walk with 0 < So < N and with absorbing 
barriers at 0 and N. Use the optional stopping theorem to show that the mean time until absorption is 
E{So(N - SO) } ·  

5 .  Let {Sn : n 2: O J  b e  a simple symmetric random walk with So = O. Show that 

COS{A[Sn - i (b - a) ] } 
Yn = ----���----(cos A)n 

constitutes a martingale if cos A =1= O. 
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Let a and b be positive integers . Show that the time T until absorption at one of two absorbing 
barriers at -a and b satisfies 

( 
-T ) cos { i A (b - a) }  

E {COS A} = , 
cos { i A (b + a) }  

O < A <  �. 
b + a  

6. Let { Sn : n :::: O} be a simple symmetric random walk on the positive and negative integers, with 
So = O. For each of the three following random variables, determine whether or not it is a stopping 
time and find its mean: 

U = min {n :::: 5 : Sn = Sn-S + 5 } ,  V = U - 5 ,  W = min {n : Sn = 1 ) .  

7. Let Sn = a + ��= 1 Xr be a simple symmetric random walk. The walk stops at the earliest time T 
when it reaches either of the two positions O or K where 0 < a < K .  Show that Mn = ��=o Sr - j- S; 
is a martingale and deduce that E (��=o Sr ) = j- (K2 - a2)a + a . 
8. Gambler's ruin. Let Xi be independent random variables each equally likely to take the values 
± 1 ,  and let T = min {n : Sn E {-a ,  b } } .  Verify the conditions of the optional stopping theorem 
( 1 2.5 . 1 )  for the martingale S� - n and the stopping time T .  

12.6 The maximal inequality 

In proving the convergence of a sequence Xl , X2 , . . .  of random variables, it is often useful 
to establish an inequality of the form 

lP'(max{Xl ' X2 , . . .  , Xn } 2: x ) .:::: An (x ) ,  

and such an inequality is sometimes called a maximal inequality. The bound An (x) usually 
involves an expectation. Examples of such inequalities include Kolmogorov 's inequality in 
the proof of the strong law of large numbers , and the Doob-Kolmogorov inequality (7 . 8 .2) 
in the proof of the convergence of martingales with bounded second moments . Both these 
inequalities are special cases of the following maximal inequality for submartingales. In order 
to simplify the notation of this section, we shall write X� for the maximum of the first n + 1 
members of a sequence Xo , X l , . . .  , so that X� = max{Xi : 0 .:::: i .:::: n } .  
( 1 )  Theorem. Maximal inequality. 

(a) If (Y, !J:' ) is a submartingaZe, then 
lE (Y+) 

lP'(Y: 2: x) .:::: __ n_ for x >  o . 
x 

(b) If (Y, !J:') is a supermartingaZe and lE I Yo I < 00, then 

lP'(Y: 2: x) .:::: lE(Yo) + lE(Yn-) for x > o .  
x 

These inequalities may be improved somewhat. For example, a closer look at the proof in 
case (a) leads to the inequality 

(2) * 1 + lP'(Yn 2: x)  .:::: -lE(Yn I{y,i >x} ) for x > o. 
x -
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Proof. This is very similar to that of Theorem ( 1 2.4. 1 3) .  Let T = min{n : Yn � x }  where 
x > 0, and suppose first that (Y, !J:') is a submartingale. Then (Y+ , !J:') is a non-negative 
submartingaie with finite means by Exercise ( 1 2 . 1 .7) ,  and T = min{n : Yn+ � x }  since x > o.  
Applying the optional sampling theorem ( 1 2 .4 . 1 1b) with stopping times TJ = T 1\ n ,  T2 = n ,  
we  obtain E(YfAn ) .::: E(Yn+) .  However, 

whence, as required, 

(3) 

E(YfAn ) = E(Yf I{T:::n } ) + E(Yn+ I{T >n} ) 
� xlP'(T .::: n) + E(Yn+ I{T >n} ) 

xlP'(T .::: n) .::: E(Yn+ ( l  - I{T>n } » ) 
= E(Yn+ I{T:::n } ) .::: E(Yn+) · 

Suppose next that (Y, !J:') is a supermartingale. By optional sampling E(Yo) � E(YT An ) . 
Now 

E(YTl\n ) = E(YT I{T:::n } + Yn I{T>n } ) 
� xlP'(T .::: n) - E(Yn-) ,  

whence xlP'(T .::: n )  .::: E(Yo) + E(Yn-) .  • 
Part (a) of the maximal inequality may be used to handle the maximum of a submartin­

gale, and part (b) may be used as follows to handle its minimum. Suppose that (Y, !J:') is a 
submartingale with finite means. Then (- Y, !J:') is a supermartingale, and therefore 

(4) lP'( min Yk '::: -x) .::: E(Yn+) - E(Yo) 
for x > 0,  O:::k:::n x 

by ( lb) .  Using ( l a) also, we find that 

( ) 2E(Y+) - E(Yo) 3 
lP' max I Yk l  � x .::: n .::: - sup E I Yk l .  O:::k:::n x x k 

Sending n to infinity (and hiding a minor 'continuity ' argument) , we deduce that 

(5) lP'(sup I Yk l  � x) .::: � sup E I Yk l , for x > o.  
k x k 

A slightly tighter conclusion is valid if (Y, !J:') is a martingale rather than merely a sub­
martingale. In this case, ( I Yn I ,  :Fn ) is a submartingale, whence ( l a) yields 

(6) lP'(sup I Yk l � x) .::: -.!:. sup E I Yk l , for x > o. 
k x k 

(7) Example. Doob-Kolmogorov inequality (7.8.2). Let (Y, !J:') be a martingale such that 
E(Y;) < 00 for all n .  Then (Y; ,  Fn )  is a submartingale, whence 

(8) 
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for x > 0, in agreement with (7 . 8 .2) .  This is the major step in the proof of the convergence 
theorem (7. 8 . 1 )  for martingales with bounded second moments . • 

(9) Example. Kolmogorov's inequality. Let X I , X 2 , . . .  be independent random variables 
with finite means and variances . Applying the Doob-Kolmogorov inequality (8) to the mar­
tingale Yn = Sn - lE(Sn )  where Sn = X l + X2 + . . .  + Xn , we obtain 

(10) lP'( max I Sk - lE (Sk ) 1 2: x) :s � var(Sn ) for x > O. 
I �k�n X 

This powerful inequality is the principal step in the usual proof of the strong law of large 
numbers (7 .5 . 1 ) .  See Problem (7 . 1 1 .29) for a simple proof not using martingales .  • 

The maximal inequality may be used to address the question of convergence in rth mean 
of martingales. 

(11) Theorem. Let r > 1, and let (Y, !J:') be a martingale such that sUPn lE I Y� 1  < 00. Then 
Yn � Y 00 where Y 00 is the (almost sure) limit of Yn . 

This is not difficult to prove by way of Fatou 's lemma and the theory of uniform integrability. 
Instead, we shall make use of the following inequality. 

(12) Lemma. Let r > 1, and let (Y, !J:') be a non-negative submartingale such that lE (Y� ) < 
00 for all n. Then 

(13) 

Proof. Certainly Yn :s Y; , and therefore the first inequality is trivial . Turning to the second, 
note first that 

lE((y;n :s lE( (Yo + YI + . . . + Yn r) < 00.  

Now, integrate by  parts and use the maximal inequality (2) to obtain 

lE((y;n = 1000 rx r- I lP'(Y; 2: x) dx :s 1000 rx r-2lE (Yn I{ y,i :::x } ) dx 

= lE (Yn ( Y; rx r- l dX) = _r_ lE(yn (y;r- I ) . 10 r - 1 

We have by Holder's inequality that 

lE(yn (y;r- l ) :s [lE(y�) ] I /r [lE ((Y;n] (r- l ) /r . 
Substituting this, and solving, we obtain 

[lE(y;n] l/r :s r � 
1 

[lE (y: ) ] I /r . • 

Proof of Theorem (11). Using the moment condition, Y 00 = limn---+ 00 Yn exists almost surely. 
Now ( I Yn l , Tn ) is a non-negative submartingale, and hence lE(suPk I Yk n < 00 by Lemma ( 1 2) 
and monotone convergence (5 .6 . 1 2) .  Hence { Y{ : k 2: O} is uniformly integrable (Exercise 

(7 . 1 0 .6)) ,  implying by Exercise (7 . 1 0.2) that Yk � Y 00 as required. • 
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12.7 Backward martingales and continuous-time martingales 
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The ideas of martingale theory find expression in several other contexts , of which we consider 
two in this section.  The first of these concerns backward martingales. We call a sequence 
f1, = HJ,n : n ::: O} of a-fields decreasing if fJ,n 2 fJ,n+ 1  for all n . 
(1) Definition. Let f1, be a decreasing sequence of a -fields and let Y be a sequence of random 
variables which is adapted to f1,. We call (Y, f1,) a backward (or reversed) martingale if, for 
all n ::: 0, 

(a) lE I Yn I < 00, 
(b) lE(Yn I fJ,n+ l ) = Yn+ l . 
Note that { (Yn , fJ,n ) : n = 0, 1 , 2 , . . . } is a backward martingale if and only if the reversed 

sequence { (Yn , fJ,n ) : n = . . .  , 2 , 1 ,  O} is a martingale, an observation which explains the use 
of the term. 

(2) Example. Strong law of large numbers. Let XI , X2 , . . .  be independent identically 
distributed random variables with finite mean. Set Sn = XI + X2 + . . .  + Xn and let 
fJ,n = a (Sn , Sn+ l , . . . ) .  Then, using symmetry, 

(3) 

since Sn+ l = lE(Sn+ l I Sn+ j )  = (n + l )lE(X I I Sn+ j ) . Therefore Yn = Sn /n satisfies 
lE(Yn I fJ,n+ j )  = Yn+ I ,  whence (Y, f1,) is a backward martingale . We shall see soon that 
backward martingales converge almost surely and in mean, and therefore there exists Y 00 such 
that Yn --+ Y 00 a.s .  and in mean. By the zero-one law (7 .3 . 1 5) , Y 00 is almost surely constant, 
and hence Y 00 = lE(X j )  almost surely. We have proved the strong law of large numbers . • 

(4) Backward-martingale convergence theorem. Let (Y, f1,) be a backward martingale. 
Then Yn converges to a limit Y 00 almost surely and in mean. 

It is striking that no extra condition is necessary to ensure the convergence of backward 
martingales. 

Proof. Note first that the sequence . . .  , Yn , Yn- l , . . . , Yl , Yo is a martingale with respect to 
the sequence . . .  , fJ,n , fJ,n- l , . . .  , fJ, I , fJ,o , and therefore Yn = lE(Yo I fJ,n ) for all n .  However, 
lE l Yo l  < 00, and therefore { Yn } is uniformly integrable by Example (7 . 1 0. 1 3) . It is therefore 
sufficient to prove that Yn converges almost surely. The usual way of doing this is via an 
upcrossings inequality. Applying ( 1 2 . 3 . 3 ) to the martingale Yn , Yn- I , . . . , Yo , we obtain that 

lEU ( b '  Y) < E « Yo - a ) +) n a " - b - a 
where Un (a , b ; Y) is the number of up crossings of [a , b] by the sequence Yn , Yn- I , . . .  , Yo .  
We let n --+ 00, and follow the proof of the martingale convergence theorem ( 1 2 .3 . 1 )  to obtain 
the required result. • 

Rather than developing the theory of backward martingales in detail, we confine ourselves 
to one observation and an application .  Let (Y, f1,) be a backward martingale, and let T be 
a stopping time with respect to f1,; that is , {T = n } E fJ,n for all n. If T is bounded, 
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say IP'(T :'S N) = 1 for some fixed N, then the sequence ZN , ZN- I , . . .  , Zo defined by 
Zn = YTvn is a martingale with respect to the appropriate sequence of a -fields (remember 
that x v y = max {x , y } ) .  Hence, by the optional sampling theorem ( 1 2.4. 1 1  a) , 

(5) 

(6) Example. Ballot theorem (3.10.6). Let X l , X2 , . . .  be independent identically dis­
tributed random variables taking values in {O, 1 , 2 ,  . . .  }, and let Sn = XI + X2 + . . .  + Xn . 
We claim that 

(7) IP' (Sk � k for some 1 :'S k :::; N I SN = b) = min{ l ,  bl N} ,  

whenever b i s  such that IP'(SN = b) > O. I t  i s  not immediately clear that this implies the 
ballot theorem, but look at it this way. In a ballot, each of N voters has two votes ; he or she 
allocates both votes either to candidate A or to candidate B . Let us write Xi for the number 
of votes allocated to A by the i th voter, so that Xi equals either 0 or 2 ;  assume that the Xi are 
independent. Now Sk � k for some 1 :'S k :::; N if and only if B is not always in the lead. 
Equation (7) implies 

(8) IP' ( B always leads I A receives a total of 2a votes) 
= 1 - IP' ( Sk � k for some 1 :'S k :'S N I Sn = 2a) 
= 1 _ 2a = P - q 

N p + q 

if 0 :'S a < � N, where p = 2N - 2a is the number of votes received by B ,  and q = 2a is the 
number received by A .  This is the famous ballot theorem discussed after Corollary (3 . 1 0.6) .  

In order to prove equation (7), let fJ,n = a (Sn , Sn+ l , . . .  ) ,  and recall that (Sn l n ,  fJ,n ) is a 
backward martingale. Fix N, and let 

T = { �ax{k : Sk � k and 1 :::; k :'S N}  i f  this exists , 

otherwise. 

This may not look like a stopping time, but it is .  After all, for 1 < n :'S N, 

{T = n} = {Sn � n, Sk < k for n < k :'S N} , 

an event defined in terms of Sn , Sn+ l , . . .  and therefore lying in the a -field fJ,n generated by 
these random variables . By a similar argument, { T  = 1 }  E fJ, 1 . 

We may assume that SN = b < N, since (7) is obvious if b � N. Let A = {Sk � k 
for some 1 :'S k :::; N } .  We have that SN < N; therefore, if A occurs , it must be the case 
that ST � T and ST+ 1  < T + 1 .  In this case XT+ 1  = ST+ 1  - ST < 1 ,  so that XT+ 1  = 0 
and therefore ST I T = 1 .  On the other hand, if A does not occur then T = 1 ,  and also 
ST = Sl = 0, implying that ST I T  = O. It follows that ST I T  = fA if SN < N, where fA is 
the indicator function of A .  Taking expectations, we obtain 

lE (� ST I SN = b) = IP'(A I SN = b) if b < N. 
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Finally, we apply (5) to the backward martingale (Sn /n ,  fJ,n ) to obtain 

The last two equations may be combined to give (7) .  

501  

• 

In contrast to the theory of backward martingales, the theory of continuous-time martingales 
is hedged about with technical considerations. Let (Q , :F ,  JP') be a probability space. A 
filtration is a family � = {Ft : t :::: O} of sub-o- -fields of :F satisfying Fs � Ft whenever 
s :s t. As before, we say that the (continuous-time) process Y = { Y (t)  : t :::: O} is adapted 
to � if Y (t )  is Ft -measurable for all t. If Y is adapted to �, we call (Y, �) a martingale if 
lEI Y (t) I < 00 for all t, and lE(Y (t) I Fs) = Y (s ) whenever s :s t .  A random variable T taking 
values in [0, 00] is called a stopping time (with respect to the filtration �) if { T :s t }  E Ft 
for all t :::: O. 

Possibly the most important type of stopping time is the first passage time T (A)  = inf{t  : 
Y (t)  E A } for a suitable subset A of JR. Unfortunately T (A) is not necessarily a stopping 
time. No problems arise if A is closed and the sample paths n (w) = { (t ,  Y (t ;  w) )  : t :::: O} of 
Y are continuous, but these conditions are over-restrictive. They may be relaxed at the price 
of making extra assumptions about the process Y and the filtration �. It is usual to assume 
in addition that: 

(a) (Q , :F, JP') is complete, 
(b) :Fa contains all events A of :F satisfying JP'(A ) = 0, 
(c) � is right-continuous in that Ft = Ft+ for all t :::: 0, where Ft+ = noa Ft+E '  

We shall refer to these conditions as the 'usual conditions ' .  Conditions (a) and (b) pose little 
difficulty, since an incomplete probability space may be completed, and the null events may 
be added to :Fa . Condition (c) is not of great importance if the process Y has right-continuous 
sample paths, since then Y (t)  = limE-I-a Y (t + €) is Ft+-measurable. 

Here are some examples of continuous-time martingales. 

(9) Example. Poisson process. Let {N(t)  : t :::: O} be a Poisson process with intensity ).. , 
and let Ft be the 0- -field generated by {N (u ) : 0 :s u :s t } .  It is easily seen that 

U (t)  = N(t) - At ,  

V (t)  = U (t) 2 - At ,  

W (t) = exp[-8 N(t) + At ( 1  - e-e ) ] ,  

constitute martingales with respect to � .  
There i s  a converse statement. Suppose N = {N(t)  : t :::: O}  i s  an integer-valued non­

decreasing process such that, for all 8 , 

W (t) = exp[ -8N(t) + At ( l - e-e ) ]  

i s  a martingale. Then, i f  s < t ,  

lE (exp { -8 [N(t) - N(s) l } I Fs) = lE - exp[-).. (t - s ) ( l - e-e ) ]  Fs 
( W (t) I ) 

W(s) 
= exp[ -).. (t - s ) ( 1  - e-e ) ]  
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by the martingale condition. Hence N has independent increments, N (t ) - N (s ) having the 
Poisson distribution with parameter A (t - s ) .  • 

(10) Example. Wiener process. Let {W (t ) : t 2: O} be a standard Wiener process with 
continuous sample paths,  and let :Ft be the a -field generated by { W (u) : 0 ::s u ::s t } .  It is 
easily seen that W(t ) ,  W (t )2 - t, and exp[e W (t ) - !e2t] constitute martingales with respect 
to !J:'.  Conversely it may be shown that, if Wet) and W(t)2 - t are martingales with continuous 
sample paths ,  and W (0) = 0, then W is a standard Wiener process; this is sometimes called 
'Levy 's  characterization theorem' . • 

Versions of the convergence and optional stopping theorems are valid in continuous time. 

(11) Convergence theorem. Let (Y, !J:') be a martingale with right-continuous sample paths. 
lf JE I Y (t) 1 ::s M for some M and all t, then Yoo = limHoo Y et) exists almost surely. If, in 
addition, (Y, !J:') is uniformly integrable then Y (t ) � Y 00 '  

Sketch proof. For each m 2: 1 ,  the sequence { (Y (n2-m ) , Fn2-m ) : n 2: O } constitutes a 
discrete-time martingale. Under the conditions of the theorem, these martingales converge as 
n -+ 00 . The right-continuity property of Y may be used to fill in the gaps. • 

(12) Optional stopping theorem. Let (Y, !J:') be a uniformly integrable martingale with 
right-continuous sample paths. Suppose that S and T are stopping times such that S ::s T. 
Then JE(Y (T) I Fs) = Y (S) . 

The idea of the proof is to 'discretize '  Y as in the previous proof, use the optional stopping 
theorem for uniformly integrable discrete-time martingales, and then pass to the continuous 
limit. 

Exercises for Section 1 2. 7  

1. Let X b e  a continuous-time Markov chain with finite state space S and generator G. Let 11 = 
{'1 (i ) : i E S } be a root of the equation GlI' = O. Show that '1 (X (t » constitutes a martingale with 
respect to :Ft = O" ({X (u) : u ::: t ) ) .  

2 .  Let N b e  a Poisson process with intensity A and N(O) = 0 ,  and let Ta = min {t : N(t) = a } ,  
where a i s  a positive integer. Assuming that E{ exp( 1/f Ta ) }  < 00 for sufficiently small positive 1/f ,  use 
the optional stopping theorem to show that var(Ta )  = aA -2 . 
3. Let Sm = L�=I X" m ::: n ,  where the X, are independent and identically distributed with finite 
mean. Denote by UI , U2 , . . .  , Un the order statistics of n independent variables which are uniformly 
distributed on (0, t ) ,  and set Un+ 1  = t .  Show that Rm = Sm/Um+ l , 0 ::: m ::: n ,  is a backward 
martingale with respect to a suitable sequence of O" -fields, and deduce that 

lP'(Rm :::: 1 for some m ::: n I Sn = y) ::: min{y / t ,  I } .  
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12.8 Some examples 

(1) Example. Gambling systems. In practice, gamblers do not invariably follow simple 
strategies, but they vary their manner of play according to a personal system. One way of 
expressing this is as follows. For a given game, write Yo , Y] , . . .  for the sequence of capitals 
obtained by wagering one unit on each play;  we allow the Yi to be negative. That is to say, 
let Yo be the initial capita!, and let Yn be the capital after n gambles each involving a unit 
stake. Take as filtration the sequence $"' given by Fn = a (Yo ,  Yl , . . .  , Yn ) .  A general betting 
strategy would allow the gambler to vary her stake. If she bets Sn on the nth play, her profit 
is Sn (Yn - Yn- l ) ,  since Yn - Yn- l is the profit resulting from a stake of one unit. Hence the 
gambler's  capital Zn after n plays satisfies 

(2) 
n 

Zn = Zn- l + Sn (Yn - Yn-d = Yo + L Si (Yi - Yi-d , 
i= ] 

where Yo is the gambler's initial capital. The Sn must have the following special property. The 
gambler decides the value of Sn in advance of the nth play, which is to say that Sn depends 
only on Yo , Y] , . . .  , Yn- l ,  and therefore Sn is Fn- ] -measurable. That is, (S, $"') must be a 
predictable process. 

The sequence Z given by (2) is called the transform of Y by S .  If Y is a martingale, we 
call Z a martingale transform. 

Suppose (Y, $"') is a martingale. The gambler may hope to find a predictable process 
(S, $"') (called a system) for which the martingale transform Z (of Y by S) is no longer a 
martingale. She hopes in vain, since all martingale transforms have the martingale property. 
Here is a version of that statement. 

(3) Theorem. Let (S, $"') be a predictable process, and let Z be the transform of Y by S. 
Then: 

(a) if ( Y, $"') is a martingale, then (Z,  $"') is a martingale so long as E I Zn I < 00 for all n, 
(b) if (Y, $"') is a submartingale and in addition Sn 2: 0 for all n, then (Z, $"') is a sub­

martingale so long as E(Z;i ) < 00 for all n. 

Proof. From (2), 

E(Zn+l  I Fn ) - Zn = E [Sn+l (Yn+ l  - Yn ) I Fn ] 
= Sn+l [E(Yn+ l I Fn ) - Yn ] . 

The last term is zero if Y is a martingale, and is non-negative if Y is a submartingale and 
Sn+ ] 2: o. • 

A number of special cases are of value. 
(4) Optional skipping. At each play, the gambler either wagers a unit stake or skips the round; 
S equals either 0 or I .  
(5) Optional stopping. The gambler wagers a unit stake on each play until the (random) time 
T, when she gambles for the last time. That is, 

{ I  if n ::: T,  
Sn = 0 if n > T, 
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and Zn = YT!\n .  Now { T  = n }  = {Sn = 1 ,  Sn+l = O} E Fn , so that T is a stopping 
time. It is a consequence of (3) that (YTl\n ,  Fn ) is a martingale whenever Y is a martingale, 
as established earlier. 
(6) Optional starting. The gambler does not play until the (T + l ) th play, where T is a 
stopping time. In this case Sn = 0 for n ::: T .  • 

(7) Example. Likelihood ratios. Let Xl , X2 , . . .  be independent identically distributed 
random variables with common density function f .  Suppose that it is known that f ( - )  is 
either p( . ) or q ( . ) , where p and q are given (different) densities; the statistical problem is to 
decide which of the two is the true density. A common approach is to calculate the likelihood 
ratio 

p(Xl )p (X2) · · ·  p(Xn )  
Yn = �������� q (Xdq (X2) · · · q (Xn ) 

(assume for neatness for q (x ) > 0 for all x) ,  and to adopt the strategy : 

(8) decide p if Yn � a ,  decide q i f  Yn < a ,  

where a i s  some predetermined positive level .  
Let Fn = a (Xl , X2 , . . . , Xn ) .  If f = q , then 

E(Yn+l I Fn ) = YnE = Yn --q (x ) dx = Yn (p(Xn+d ) 1
00 

p(x )  
q (Xn+d -00 q (x )  

since p i s  a density function. Furthermore 

It follows that (Y, !F) is a martingale, under the assumption that q is the common density 
function of the Xi . By an application of the convergence theorem, the limit Y 00 = limn ..... oo Yn 
exists almost surely under this assumption. We may calculate Y 00 explicitly as follows: 

� (P(Xd ) 10g Yn = � log -- , 
i= l q (Xi ) 

the sum of independent identically distributed random variables . The logarithm function is 
concave, so that 

E (lOg (P(Xd ) ) < log (E (P(X I ) ) ) = 0 
q (Xl ) q (Xl ) 

by Jensen's  inequality, Exercise (5 .6 . 1 ) .  Applying the strong law of large numbers (7.5 . 1 ) , 
we deduce that n- 1 log Yn converges almost surely to some point in [-00, 0) , implying that 
Yn � Y 00 = O. (This is a case when the sequence Yn does not converge to Y 00 in mean, and 
Yn i= E(Y 00 I Fn ) . ) 

The fact that Yn � 0 tells us that Yn < a for all large n, and hence the decision rule (8) 
gives the correct answer (that is, that f = q) for all large n. Indeed the probability that the 
outcome of the decision rule is ever in error satisfies lP(Yn � a for any n � 1 )  ::: a - I , by the 
maximal inequality ( 1 2 .6 .6) .  • 
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(9) Example. Epidemics. A village contains N + 1 people, one of whom is suffering from 
a fatal and infectious illness. Let S(t) be the number of susceptible people at time t (that is, 
living people who have not yet been infected) , let 1 (t) be the number of infectives (that is, 
living people with the disease), and let D(t) = N + 1 - S(t) - 1 (t ) be the number of dead 
people. Assume that (S(t) ,  1 (t ) ,  D (t» is a (trivariate) Markov chain in continuous time with 
transition rates 

( . d) 
{ (S - 1 , i + 1 , d) at rate Asi , 

s , I ,  -+ 
( . 1 d 1 )  . S , 1 - , + at rate ILl ; 

that is to say, some susceptible becomes infective at rate Asi ,  and some infective dies at rate 
J-ii ,  where s and i are the numbers of susceptibles and infectives. This is the model of (6. 1 2 .4) 
with the introduction of death. The three variables always add up to N + 1 ,  and therefore we 
may suppress reference to the dead, writing (s , i )  for a typical state of the process .  Suppose 
we can find t = {1/f (s , i) : 0 .:::: s + i .:::: N + I }  such that Gt' = 0, where G is the generator 
of the chain; think of t as a row vector. Then the transition semigroup Pt = etG satisfies 

whence it is easily seen (Exercise ( 1 2.7 . 1 »  that Y(t) = 1/f(S(t) ,  I (t » defines a continuous­
time martingale with respect to the filtration Ft = 0" ( { S (u ), 1 (u ) : 0 .:::: u .:::: t }) . 

Now Gt' = 0 if and only if 

(10) As i1/f (s - 1 ,  i + 1 ) - (As i + J-ii )1/f (s , i )  + J-ii 1/f (s , i - I ) = 0 

for all relevant i and s . If we look for a solution of the form 1/f (s ,  i )  = a(s )f3 (i ) ,  we obtain 

(11) Asa (s - l )f3 (i + 1 ) - (AS + J-i)a (s)f3 (i ) + J-ia (s)f3 (i - 1 ) = O. 

Viewed as a difference equation in the f3 (i ) ,  this suggests setting 

(12) f3 (i ) = Bi for some B .  

With this choice and a little calculation, one finds that 

(13) 
N 

a s = n ( ABk - J-i ( 1  - B » ) 
( ) 

AB2k 
k=s+l 

will do . With such choices for a and f3 ,  the process 1/f (S(t) , 1 (t» = a(S(t» f3 (I (t» constitutes 
a martingale. 

Two possibilities spring to mind. Either everyone dies ultimately (that is, S(t ) = 0 before 
l (t) = 0) or the disease dies off before everyone has caught it (that is, I (t )  = 0 before 
S(t) = 0) . Let T = inf{ t : S(t) / (t) = O} be the time at which the process terminates. 
Clearly T is a stopping time, and therefore 

E (1/f(S(T) , I (T») = 1/f(S(O) , 1 (0» = a (N)f3 ( l )  = B ,  
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which is to say that 

(14) E (BI (T) fI ( ABk �;;� - B) )) = B 
k=S(T)+ l 

for all B . From this equation we wish to determine whether S(T) = 0 or J (T) = 0, 
corresponding to the two possibilities described above. 

We have a free choice of B in ( 1 4) ,  and we choose the following values. For 1 ::'S r ::'S N, 
define Br = J-L/(Ar + J-L) , so that Ar Br - J-L( 1 - Br ) = O. Substitute B = Br in ( 1 4) to obtain 

(15) E (B;(T) -N fI (k : r )) = Br 
k=S(T)+ ) 

(remember that J (T)  = 0 if S(T) =1= 0). Put r = N to get JP'(S(T) = N) = B N . More 
generally, we have from ( 1 5 )  that Pj = JP'(S(T) = j )  satisfies 

(16) 
N - r (N - r ) (N - r - 1 )  (N - r) ! r !  PN + N B  PN- l + 

N(N _ 1 ) B2 PN-2 + . . .  + N-r Pr = Br ,  r r N ! � 

for 1 ::'S r ::'S N. From these equations, PO = JP'(S(T) = 0) may in principle be calculated . •  

(17) Example. Our final two examples are relevant to mathematical analysis. Let f : 
[0, 1 ]  -+ R be a (measurable) function such that 

(18) fa l 
I f (x ) 1 dx < 00; 

that i s ,  f i s  integrable. We shall show that there exists a sequence Un : n :::: O} of  step 
functions such that fn (x ) -+ f (x )  as n -+ 00, except possibly for an exceptional set of values 
of x having Lebesgue measure O .  

Let X be uniformly distributed on [0 ,  1 ] ,  and define Xn by 

(19) Xn = k2-n if k2-n ::'S X < (k + l ) rn 

where k and n are non-negative integers. It is easily seen that Xn t X as n -+ 00, and 
furthermore 2n (Xn - Xn- ) )  equals the nth term in the binary expansion of X .  

Define Y = f (X) and Yn = E(Y I Fn ) where Fn = a (Xo , Xl , . . .  , Xn ) .  Now E l f (X) 1 < 
00 by ( 1 8) ,  and therefore (Y, 9=') is a uniformly integrable martingale (see Example ( 1 2 .3 .9)) .  
It follows that 

(20) Yn -+ Y 00 = E(Y I Foo) a .s .  and in mean, 

where Foo = a (Xo , X ) , X2 , . . .  ) = a (X) .  Hence Yoo = E(f (X) I X) = f (X) , and in 
addition 

Xn+2-n 
(21)  Yn = E(Y I Fn ) = E(Y I Xo , X l , . . .  , Xn )  = ( f (u)2n du = fn (X) 

JXn 
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where fn : [0, 1 ] -+ � is the step function defined by 

Xn +2-n 
fn (x) = 2n 1 f eu ) du , 

Xn 

507 

Xn being the number of the form k2-n satisfying Xn .:::: x < Xn + 2-n . We have from (20) that 
fn (X) -+ f (X) a.s .  and in mean, whence fn (x) -+ f (x) for almost all x ,  and furthermore 

fo l I fn (x ) - f (x) 1 dx -+ 0 as n -+ 00. • 

(22) Example. This time let f : [0, 1 ] -+ � be Lipschitz continuous, which is to say that 
there exists C such that 

(23) I f (x )  - f (y) 1 .:::: C lx - y l for all x ,  y E [0, 1 ] .  

Lipschitz continuity is  of course somewhere between continuity and differentiability : Lipschitz­
continuous functions are necessarily continuous but need not be differentiable (in the usual 
sense). We shall see, however, that there must exist a function g such that 

f(x)  - f(O) = foX 
g (u ) du , x E [0, 1 ] ;  

the function g i s  called the Radon-Nikodym derivative of f (with respect to Lebesgue mea­
sure) . 

As in the last example, let X be uniformly distributed on [0 ,  1 ] , define Xn by ( 1 9), and let 

(24) 

It may be seen as follows that (Z,  �) is a martingale (with respect to the filtration Fn 
a (Xo , X l , . . .  , Xn ) ) . First, we check that E(Zn+ 1 I Fn ) = Zn . To this end note that, 
conditional on Xo , X l , . . .  , Xn , it is the case that Xn+ 1 is equally likely to take the value Xn 
or the value Xn + 2-n- l . Therefore 

E(Zn+1 I Fn ) = !2n+ I [J (Xn + Tn- I ) - f (Xn ) ] 
+ ! 2n+ I [J(Xn + Tn) - f(Xn + Tn- I ) ] 

= 2n [f (Xn + 2-n ) - f (Xn ) ] = Zn . 

Secondly, by the Lipschitz continuity (23) of f, it is the case that I Zn I .:::: C, whence (Z ,  �) 
is a bounded martingale. 

Therefore Zn converges almost surely and in mean to some limit Zoo, and furthermore Zn = 
E(Zoo I Fn ) by Lemma ( 1 2 . 3 . 1 1 ) .  Now Zoo is Foo-measurable where Foo = limn---> oo Fn = 
a (Xo , X l , X2 , · . .  ) = a (X) ,  which implies that Zoo is a function of X, say Zoo = g(X) .  As 
in equation (2 1 ) , the relation 
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becomes 

This is an ( 'almost sure ' )  identity for Xn , which has positive probability of taking any value 
of the form k2-n for 0 :'S k < 2n . Hence 

whence, by summing, 

f (x )  - f (O) = fox 
g (u ) du 

for all x of the form k2-n for some n 2: 1 and 0 :'S k < 2n . The corresponding result for 
general x E [0, 1 ]  is obtained by taking a limit along a sequence of such 'dyadic rationals '  . •  

12.9 Problems 

1. Let Zn be the size of the nth generation of a branching process with immigration in which the 
mean family size is J-t (=I=- 1 )  and the mean number of immigrants per generation is m .  Show that 

Yn = J-t-n Zn - m ---
{ I - J-tn } 

I - J-t 

defines a martingale. 

2. In an age-dependent branching process, each individual gives birth to a random number of off­
spring at random times. At time 0, there exists a single progenitor who has N children at the subsequent 
times B J ::; B2 ::; . . .  ::; BN ; his family may be described by the vector (N, Bj , B2 , " " BN) '  Each 
subsequent member x of the population has a family described similarly by a vector (N(x ) ,  B J (x ) ,  . . .  , 
BN(x) (x» having the same distribution as (N, Bl , . . . , BN) and independent of all other individuals' 
families. The number N (x) is the number of his offspring, and B; (x ) is the time between the births 
of the parent and the i th offspring. Let { Bn , r : r :::: I }  be the times of births of individuals in the nth 
generation. Let Mn «() ) = L:r e-()Bn ,r , and show that Yn = Mn (e )/lE(MJ (e » n defines a martingale 
with respect to :Fn = O' ({Bm , r : m ::; n ,  r :::: I } ) ,  for any value of e such that lEMJ (e ) < 00. 

3. Let (Y, :F) be a martingale with lEYn = 0 and lE(Y; ) < 00 for all n . Show that 

x >  O. 

4. Let (Y, :F) be a non-negative submartingale with Yo = 0, and 1et {en } be a non-increasing sequence 
of positive numbers . Show that 

x >  O. 

Such an inequality is sometimes named after subsets of Hajek, Renyi, and Chow. Deduce Kol­
mogorov's  inequality for the sum of independent random variables . [Hint: Work with the martingale 
Zn = cn Yn - L:k=l qlE(Xk I :Fk-d + L:k=l (q-l - q)Yk- l where Xk = Yk - Yk- J · J 
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5. Suppose that the sequence {Xn : n :::: I }  of random variables satisfies E(Xn I X I , X2 , . . .  , Xn- d 
= 0 for all n, and also L� I E ( I Xk n /  k' < 00 for some r E [ 1 , 2] . Let Sn = LI= 1 Zi where 
Zi = Xi i i ,  and show that 

11" ( max I Sm+k - Sm l :::: x) :"S �E( I Sm+n - Sm l r ) ,  l �k�n xr x >  o. 

Deduce that Sn converges a .s .  as n --+ 00, and hence that n - l Ll Xk � O. [Hint: In the case 
1 < r :"S 2, prove and use the fact that h (u)  = l u l r satisfies h (v) - h (u )  .::: (v - u)h ' (u ) + 2h ((v - u)/2) .  
Kronecker's lemma i s  useful for the last part.] 

6. Let X I , X 2 , . . .  be independent random variables with 

Let YI = X I and for n :::: 2 

{ I with probability (2n) - I , 
Xn = 0 with probability 1 - n - I , 

- 1  with probability (2n ) - I . 

Yn = 
{ Xn if Yn- I = 0, 

nYn- l l Xn I if Yn- l =1= O. 

Show that Yn is a martingale with respect to J:'n = a (Yl ' Y2 , . . .  , Yn ) .  Show that Yn does not converge 
almost surely. Does Yn converge in any way? Why does the martingale convergence theorem not 
apply? 

7. Let X I ,  X2 , . . .  be independent identically distributed random variables and suppose that M(t) = 

E(e t X I )  satisfies M (t) = 1 for some t > O. Show that lI"(Sk :::: x for some k) .::: e -tx for x > 0 and 
such a value of t ,  where Sk = XI + X2 + . . .  + Xk . 
8. Let Zn be the size of the nth generation of a branching process with family-size probability 
generating function G(s ) ,  and assume Zo = 1 .  Let � be the smallest positive root of G (s )  = s . 
Use the martingale convergence theorem to show that, if 0 < � < 1 ,  then lI"(Zn --+ 0) = � and 
lI"(Zn --+ (0) = 1 - � . 
9. Let (Y, fF) be a non-negative martingale, and let Y; = max {Yk : 0 :"S k :"S n } .  Show that 

[Hint: a log+ b :"S  a log+ a + b/e if a ,  b :::: 0, where log+ x = max{O, log x } . ]  

10. Let X = {X ( t )  : t :::: O} be  a birth-death process with parameters Ai , J1,i , where Ai = 0 if  and 
only if i = O. Define h (O) = 0, h ( 1 )  = 1 ,  and 

j - l 

h (j )  = 1 + L J1,1 J1,2 ' "  J1,i
, 

i= l A 1 A2 ' " Ai 

Show that h (X (t» constitutes a martingale with respect to the filtration :Ft = a ({X (u) : 0 :"S u :"S t ) ) ,  
whenever Eh (X (t» < 00 for all t .  (You may assume that the forward equations are satisfied.) 

Fix n ,  and let m < n ; let n (m) be the probability that the process is absorbed at 0 before it reaches 
size n, having started at size m. Show that n (m) = 1 - {h (m) / h (n) } .  
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11. Let (Y, g:'J be a submartingale such that E(Yn+) � M for some M and all n .  
(a) Show that Mn = limm--->oo E(Yn++m I :Fn ) exists (almost surely) and defines a martingale with 

respect to !F. 
(b) Show that Yn may be expressed in the form Yn = Xn - Zn where (X, g:'J is a non-negative 

martingale, and (Z , g:'J is a non-negative supermartingale. This representation of Y is sometimes 
termed the 'Krickeberg decomposition' .  

(c) Let (Y, g:'J be a martingale such that E I Yn l � M for some M and all n .  Show that Y may be 
expressed as the difference of two non-negative martingales . 

12. Let £Yn be the assets of an insurance company after n years of trading. During each year it 
receives a total (fixed) income of £ P in premiums. During the nth year it pays out a total of £Cn in 
claims. Thus Yn+ ! = Yn + P - Cn+ ! . Suppose that C} .  C2 , ' "  are independent N(/-t, (2) variables 
and show that the probability of ultimate bankruptcy satisfies 

{ 2(P - /-t)Yo } 
lP' (Yn � o for some n ) � exp - a2 . 

13. P61ya's urn. A bag contains red and blue balls , with initially r red and b blue where rb > O. A 
ball is drawn from the bag, its colour noted, and then it is returned to the bag together with a new ball 
of the same colour. Let Rn be the number of red balls after n such operations. 
(a) Show that Yn = Rn / (n + r + b) is a martingale which converges almost surely and in mean. 
(b) Let T be the number of balls drawn until the first blue ball appears, and suppose that r = b = 1 .  

Show that E{ (T + 2)- 1 } = � .  
(c) Suppose r = b = 1 ,  and show that lP'(Yn :::: i for some n)  � � .  
14. Here i s  a modification of the last problem. Let {An : n :::: I }  be a sequence of random variables, 
each being a non-negative integer. We are provided with the bag of Problem ( 1 2.9. 1 3) ,  and we add 
balls according to the following rules . At each stage a ball is drawn from the bag, and its colour noted; 
we assume that the distribution of this colour depends only on the current contents of the bag and not 
on any further information concerning the An . We return this ball together with An new balls of the 
same colour. Write Rn and Bn for the numbers of red and blue balls in the urn after n operations, and 
let :Fn = a ({ Rb Bk : 0 � k � n } ) .  Show that Yn = Rn /(Rn + Bn ) defines a martingale. Suppose 
Ro = Bo = 1 ,  let T be the number of balls drawn until the first blue ball appears, and show that 

( 1 + AT ) 1 E T = - , 
2 + L:i=l Ai 2 

so long as L:n (2 + L:i=l  Ai )  - 1 
= 00 a.s .  

15. Labouchere system. Here is a gambling system for playing a fair game. Choose a sequence 
X l , x2 , . . .  , Xn of positive numbers. 

Wager the sum of the first and last numbers on an evens bet. If you win, delete those two numbers; 
if you lose, append their sum as an extra term xn+ 1 (= X I + Xn ) at the right-hand end of the sequence. 

You play iteratively according to the above rule. If the sequence ever contains one term only, you 
wager that amount on an evens bet. If you win, you delete the term, and if you lose you append it to 
the sequence to obtain two terms. 

Show that, with probability 1 ,  the game terminates with a profit of L:7 Xi , and that the time until 
termination has finite mean. 

This looks like another clever strategy. Show that the mean size of your largest stake before 
winning is infinite. (When Henry Labouchere was sent down from Trinity College, Cambridge, in 
1 852, his gambling debts exceeded £6000.) 
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16. Here is a martingale approach to the question of determining the mean number of tosses of a coin 
before the first appearance of the sequence HHH. A large casino contains infinitely many gamblers 
G } ,  G2 , . . .  , each with an initial fortune of $ 1 .  A croupier tosses a coin repeatedly. For each n ,  
gambler G n  bets a s  follows. Just before the nth toss h e  stakes his $ 1  o n  the event that the nth toss 
shows heads . The game is assumed fair, so that he receives a total of $ p - 1 if he wins, where p is the 
probability of heads. If he wins this gamble, then he repeatedly stakes his entire current fortune on 
heads, at the same odds as his first gamble. At the first subsequent tail he loses his fortune and leaves 
the casino, penniless. Let Sn be the casino's profit (losses count negative) after the nth toss .  Show 
that Sn is a martingale. Let N be the number of tosses before the first appearance of HHH; show that 
N is a stopping time and hence find E(N). 

Now adapt this scheme to calculate the mean time to the first appearance of the sequence HTH. 

17. Let { (Xb Yk ) : k :::: I } be a sequence of independent identically distributed random vectors such 
that each Xk and Yk takes values in the set { - I ,  0, 1 , 2, . . .  }. Suppose that E (Xl ) = E(Yl ) = 0 
and E(X I YI ) = e, and furthermore X I and Yl have finite non-zero variances. Let Uo and Vo 
be positive integers, and define (Un+ l , Vn+ l ) = (Un ,  Vn ) + (Xn+ l ,  Yn+ l ) for each n :::: O. Let 
T = min{n : Un Vn = O} be the first hitting time by the random walk (Un ,  Vn ) of the axes of ]R2 . 
Show that E(T) < 00 if and only if e < 0, and that E(T) = -E(Uo VO)/e in this case. [Hint: You 
might show that Un Vn - en is a martingale.] 

18. The game 'Red Now' may be played by a single player with a well shuffled conventional pack of 
52 playing cards. At times n = 1 , 2, . . .  , 52 the player turns over a new card and observes its colour. 
Just once in the game he must say, just before exposing a card, "Red Now". He wins the game if the 
next exposed card is red. Let Rn be the number of red cards remaining face down after the nth card 
has been turned over. Show that Xn = Rn / (52 - n) ,  0 ::; n < 52, defines a martingale. Show that 
there is no strategy for the player which results in a probability of winning different from � .  
19. A businessman has a redundant piece of equipment which he advertises for sale, inviting "offers 
over £1000". He anticipates that, each week for the foreseeable future, he will be approached by 
one prospective purchaser, the offers made in week 0, 1 ,  . . .  being £ 1000Xo , £ 1 000X 1 ,  . . . , where 
Xo , X I , . . .  are independent random variables with a common density function f and finite mean. 
Storage of the equipment costs £ 1000e per week and the prevailing rate of interest is a (> 0) per 
week. Explain why a sensible strategy for the businessman is to sell in the week T, where T is a 
stopping time chosen so as to maximize 

T 
{L(T) = E{ ( 1  + a) -T XT - L ( I  + a) -

n e } . 

n= 1 

Show that thi s  problem is equivalent to maximizing E{ ( l + a ) -T ZT } where Zn = Xn + e / a . 
Show that there exists a unique positive real number y with the property that 

ay = iOO lP'(Zn > y) dy , 

and that, for this value of y ,  the sequence Vn = ( 1  + a ) -n max {Zn ,  y } constitutes a supermartingale. 
Deduce that the optimal strategy for the businessman is to set a target price r (which you should 
specify in terms of y) and sell the first time he is offered at least this price. 

In the case when f (x)  = 2x -3 for x :::: 1, and e = a = 910 '  find his target price and the expected 
number of weeks he will have to wait before selling. 

20. Let Z be a branching process satisfying Zo = 1 ,  E(Z I ) < 1 ,  and lP'(Zl :::: 2) > O. Show that 
E(suPn Zn ) ::; TJ/ (TJ - 1 ) ,  where TJ is the largest root of the equation x = G (x)  and G is the probability 
generating function of Z I . 
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21. Matching. In a cloakroom there are K coats belonging to K people who make an attempt to 
leave by picking a coat at random. Those who pick their own coat leave, the rest return the coats and 
try again at random. Let N be the number of rounds of attempts until everyone has left. Show that 
lEN = K and var(N) ::: K. 
22. Let W be a standard Wiener process, and define 

Show that M(t) is a martingale, and deduce that the expected area under the path of W until it first 
reaches one of the levels a (> 0) or b « 0) is - �ab(a + b) . 

23. Let W = (Wl ,  W2 , " " Wd) be a d-dimensional Wiener process, the Wi being independent 
one-dimensional Wiener processes with Wi (0) = 0 and variance parameter (12 = d- 1 . Let R(t)2 = 

Wl (t)2 + W2 (t)2 + . . .  + Wd (t)2 , and show that R(t)2 - t is a martingale. Deduce that the mean 
time to hit the sphere of Rd with radius a is a2 . 

24. Let W be a standard one-dimensional Wiener process, and let a ,  b > O. Let T be the earliest 
time at which W visits either of the two points -a, b. Show that lP'(W(T) = b) = a/(a + b) and 
lE(T) = abo In the case a = b, find lE (e-s T ) for s > O. 
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Diffusion processes 

Summary. An elementary description of the Wiener process (Brownian motion) 
is presented, and used to motivate an account of diffusion processes based on 
the instantaneous mean and variance. This leads to the forward and backward 
equations for diffusions. First-passage probabilities of the Wiener process 
are explored using the reflection principle. Interpretations of absorbing and 
reflecting barriers for diffusions are presented. There is a brief account of 
excursions, and of the Brownian bridge. The Ito calculus is summarized, and 
used to construct a class of diffusions which are martingales.  The theory of 
financial mathematics based on the Wiener process is described, including 
option pricing and the Black-Scholes formula. Finally, there is a discussion 
of the links between diffusions, harmonic functions, and potential theory. 

13.1 Introduction 

Random processes come in many types .  For example, they may run in discrete time or 
continuous time, and their state spaces may also be discrete or continuous. In the main, we 
have so far considered processes which are discrete either in time or space ; our purpose in this 
chapter is to approach the theory of processes indexed by continuous time and taking values 
in the real line R Many important examples belong to this category : meteorological data, 
communication systems with noise, molecular motion, and so on. In other important cases, 
such random processes provide useful approximations to the physical process in question: 
processes in population genetics or population evolution, for example. 

The archetypal diffusion process is the Wiener process W of Example (9 .6 . 1 3 ) ,  a Gaussian 
process with stationary independent increments . Think about W as a description of the motion 
of a particle moving randomly but continuously about R There are various ways of defining 
the Wiener process, and each such definition has two components . First of all, we require 
a distributional property, such as that the finite-dimensional distributions are Gaussian, and 
so on. The second component, not explored in Chapter 9, is that the sample paths of the 
process {W(t ; w) : t :::: OJ ,  thought of as random functions on the underlying probability 
space (Q , :F, JP') , are almost surely continuous . This assumption is important and natural, and 
of particular relevance when studying first passage times of the process .  
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Similar properties are required of a diffusion process, and we reserve the term 'diffusion' 
for a process {X (t) : t :::: O} having the strong Markov property and whose sample paths are 
almost surely continuous. 

13.2 Brownian motion 

Suppose we observe a container of water. The water may appear to be motionless, but this is 
an illusion. If we are able to approach the container so closely as to be able to distinguish indi­
vidual molecules then we may perceive that each molecule enjoys a motion which is unceasing 
and without any apparent order. The disorder of this movement arises from the frequent oc­
casions at which the molecule is repulsed by other molecules which are nearby at the time. 
A revolutionary microscope design enabled the Dutch scientist A. van Leeuwenhoek ( 1 632-
1 723) to observe the apparently random motion of micro-organisms dubbed 'animalcules ' , but 
this motion was biological in cause . Credit for noticing that all sufficiently tiny particles enjoy 
a random movement of physical origin is usually given to the botanist R. Brown ( 1 773-1 858) .  
Brown studied in 1 827 the motion of tiny particles suspended in water, and he lent his  name 
to the type of erratic movement thus observed. It was a major thrust of mathematics in the 
20th century to model such phenomena, and this has led to the mathematical object termed 
the 'Wiener process '  , an informal motivation for which is presented in this section. 

Brownian motion takes place in continuous time and continuous space . Our first attempt 
to model it might proceed by approximating to it by a discrete process such as a random walk. 
At any epoch of time the position of an observed particle is constrained to move about the 
points { (a o ,  b8 , co ) : a ,  b ,  c = 0, ± I ,  ±2 ,  . . .  } of a three-dimensional 'cubic ' lattice in which 
the distance between neighbouring points is 0 ; the quantity 0 is a fixed positive number which 
is very small . Suppose further that the particle performs a symmetric random walk on this 
lattice (see Problem (6. 1 3 .9) for the case 0 = I )  so that its position Sn after n jumps satisfies 

lP'(Sn+ l = Sn + Of" )  = i if f" = (± I ,  0 ,  0) , (0 , ± I ,  0) , (0, 0 ,  ± 1 ) .  

Let u s  concentrate on the x coordinate of the particle, and write Sn = (S� , S; , S� ) . Then 

n 
S� - SJ = L Xi 

i= 1  

a s  i n  Section 3 .9, where {Xi } i s  an independent identically distributed sequence with 

P(X, � k�) � { : if k = - I ,  

if k = + l ,  

if k = O. 

We are interested in the displacement S� - SJ when n is large ; the central limit theorem 
(5 . 1 0.4) tells us that the distribution of this displacement is approximately N(O, 1no2) .  Now 
suppose that the jumps of the random walk take place at time epochs r, 2r,  3 r ,  . . .  where 
r > 0; r is the time between jumps and is very small, implying that a very large number of 
jumps occur in any 'reasonable ' time interval. Observe the particle after some time t (> 0) 
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has elapsed. B y  thi s  time it has experienced n = It IT J jumps, and so its x coordinate S l (t) 
is such that S l (t) - Sl (0) is approximately N(O, 1 t82 IT ) .  At this stage in the analysis we 
let the inter-point distance 8 and the inter-jump time T approach zero ; in so doing we hope 
that the di screte random walk may approach some limit whose properties have something in 
common with the observed features of Brownian motion.  We let 8 {- 0 and T (- 0 in such a 
way that �82 I T remains constant, since the variance of the distribution of S I (t) - S I (0) fails 
to settle down to a non-trivial limit otherwise . Set 

(1) 

where a2 is a positive constant, and pass to the limit to obtain that the distribution of S l (t) -
Sl (0) approaches N(O, a2 t ) . We can apply the same argument to the y coordinate and to the z 
coordinate of the particle to deduce that the particle 's position S(t) = (S\t) , S2 (t) , S3 (t» at 
time t is such that the asymptotic distribution of the coordinates of the displacement S(t) - S(O) 
is multivariate normal whenever 8 , T (- 0, and ( I ) holds; furthermore, it is not too hard to see 
that S I (t) , S2 (t) , and S3 (t ) are independent of each other. 

We may guess from the asymptotic properties of this random walk that an adequate model 
for Brownian motion will involve a process X = {X(t) : t � O} taking values in ]R3 with a 
coordinate representation X(t) = (X l (t ) ,  X2 (t) , X3 (t» such that: 

(a) X(O) = (0, 0, 0) , say, 
(b) X I , X2 , and X3 are independent and identically distributed processes, 
(c) X l (s + t) - X l (s ) is N(O, a2 t) for any s, t � 0, 
(d) Xl has independent increments in thatX I (v)-X I (u) andX 1 (t )-X 1 (s ) are independent 

whenever u ::s v ::s s ::s t .  
We have not yet shown the existence of  such a process X; the foregoing argument only 

indicates certain plausible distributional properties without showing that they are attainable . 
However, properties (c) and (d) are not new to us and remind us of the Wiener process of 
Example (9 .6 . 1 3 ) ;  we deduce that such a process X indeed exists , and is given by X(t) = 
(W i (t) , W2 (t) , W3 (t» where W i ,  W2, and W3 are independent Wiener processes. 

This conclusion is gratifying in that it demonstrates the existence of a random process 
which seems to enjoy at least some of the features of Brownian motion . A more detailed and 
technical analysis indicates some weak points of the Wiener model . This is beyond the scope 
of this text, and we able only to skim the surface of the main difficulty. For each w in the 
sample space Q, {X(t ; w) : t � O} is a sample path of the process along which the particle 
may move. It can be shown that, in some sense to be discussed in the next section, 

(a) the sample paths are continuous functions of t ,  
(b) almost all sample paths are nowhere differentiable functions of  t .  

Property (a) is physically necessary, but (b) i s  a property which cannot be  shared by  the 
physical phenomenon which we are modelling, since mechanical considerations, such as 
Newton's laws, imply that only particles with zero mass can move along routes which are 
nowhere differentiable. As a model for the local movement (over a short time interval) of 
particles, the Wiener process is poor; over longer periods of time the properties of the Wiener 
process are indeed very similar to experimental results . 

A popular improved model for the local behaviour of Brownian paths is the so-called 
Ornstein-Uhlenbeck process. We close this section with a short account of this .  Roughly, it is 
founded on the assumption that the velocity of the particle (rather than its position) undergoes 
a random walk; the ensuing motion is damped by the frictional resistance of the fluid. The 
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result is a 'velocity process ' with continuous sample paths;  their integrals represent the sample 
paths of the particle itself. Think of the motion in one dimension as before, and write Vn for 
the velocity of the particle after the nth jump. At the next jump the change Vn+l - Vn in the 
velocity is assumed to have two contributions:  the frictional resistance to motion, and some 
random fluctuation owing to collisions with other particles . We shall assume that the former 
damping effect is directly proportional to Vn , so that Vn+ l = Vn + Xn+l ; this is the so-called 
Langevin equation. We require that: 

E(Xn+ l I Vn ) = -f3 Vn 

var(Xn+ l  I Vn ) = a2 
: frictional effect, 

: collision effect, 

where f3 and a2 are constants . The sequence { Vn }  is no longer a random walk on some 
regular grid of points , but it can be shown that the distributions converge as before, after 
suitable passage to the limit. Furthermore, there exists a process V = { V (t) : t � O } with 
the corresponding distributional properties, and whose sample paths tum out to be almost 
surely continuous. These sample paths do not represent possible routes of the particle, but 
rather describe the development of its velocity as time passes . The possible paths of the particle 
through the space which it inhabits are found by integrating the sample paths of V with respect 
to time. The resulting paths are almost surely continuously differentiable functions of time. 

13.3 Diffusion processes 

We say that a particle is 'diffusing ' about a space ]R.n whenever it experiences erratic and 
disordered motion through the space; for example, we may speak of radioactive particles 
diffusing through the atmosphere, or even of a rumour diffusing through a population. For the 
moment, we restrict our attention to one-dimensional diffusions, for which the position of the 
observed particle at any time is a point on the real line; similar arguments will hold for higher 
dimensions .  Our first diffusion model is the Wiener process .  

(1) Definition. A Wiener process W = {Wet) : t :::: O}. starting from W(O) = w, say, is a 
real-valued Gaussian process such that: 

(a) W has independent increments (see Lemma (9.6 . 16»), 
(b) W(s + t) - W(s) is distributed as N(O, q2t) for all s, t � 0 where a2 is a positive 

constant. 
(c) the sample paths of W are continuous. 
Clearly ( 1  a) and ( 1  b) specify the finite-dimensional distributions (fdds) of a Wiener process 

W, and the argument of Theorem (9.6. 1 )  shows there exists a Gaussian process with these 
fdds .  In agreement with Example (9 .6 . 1 3 ) ,  the autocovariance function of W is given by 

c (s ,  t) = E ( [W (s ) - W(O) ] [W (t) - W(O) ]) 

which is to say that 

(2) 

= E ( [W (s ) - W(O)f + [W (s ) - W(O) ] [W(t) - W (s ) l) 
if O .:s s  .:s t , 

c (s ,  t) = a2 min{s ,  t }  for all s ,  t � O. 
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The process W i s  called a standard Wiener process if a2 = 1 and W (0) = O .  If W is 
non-standard, then WI (t) = (W(t) - W(O) )ja is standard. The process W is said to have 
' stationary ' independent increments since the distribution of W (s + t) - W (s ) depends on t 
alone. A simple application of Theorem (9.6.7) shows that W is a Markov process. 

The Wiener process W can be used to model the apparently random displacement of 
Brownian motion in any chosen direction. For this reason, W is sometimes called 'Brownian 
motion' , a term which we reserve to describe the motivating physical phenomenon. 

Does the Wiener process exist? That is to say, does there exist a probability space (Q , F, lP') 
and a Gaussian process W thereon, satisfying (1 a, b ,  c)? The answer to this non-trivial question 
is of course in the affirmative, and we defer to the end of this section an explicit construction 
of such a process. The difficulty lies not in satisfying the distributional properties ( l a, b) but 
in showing that this may achieved with continuous sample paths.  

Roughly speaking, there are two types of statement to be made about diffusion processes 
in general, and the Wiener process in particular. The first deals with sample path properties, 
and the second with distributional properties. 

Figure 1 3 . 1  is a diagram of a typical sample path . Certain distributional properties of 
continuity are immediate. For example, W is 'continuous in mean square ' in that 

E([W(s + t) - W(s)f) -+ 0 as t -+ 0; 

this follows easily from equation (2). 
Let us turn our attention to the distributions of a standard Wiener process W. Suppose we 

are given that W (s) = x, say, where s ::: 0 and x E R Conditional on this, W (t) is distributed 
as N (x , t - s) for t ::: s , which is to say that the conditional distribution function 

F (t , Y / s , x) = lP'(W(t) :'S Y I W(s) = x ) 
has density function 

(3) 

which is given by 

o 
f (t , Y / s , x )  = - F (t , Y / s ,  x )  

oy  

(4) 
1 ( (y - X )2) 

f (t , y / s , x ) =  
v'2n (t _ s)

exp -
2(t - s)  

, -00 < y < 00. 

This is a function of  four variables, but just grit your teeth. I t  is easy to check that f is the 
solution of the following differential equations. 

(5) Forward diffusion equation: 

(6) Iiackward diffusion equation: 

8/ 1 82/ 
at  = 2 ayZ ' 
af 1 a2f 
as = .-2" 8x2 • 

We ought to specify the boundary conditions for these equations, but we avoid this at the 
moment. Subject to certain conditions, (4) is the unique density function which solves (5) or 
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Figure 1 3 . 1 .  A typical realization of a Wiener process W .  This is  a scale drawing of a 
sample path of W over the time interval [0, 1 ] .  Note that the path is continuous but very 
spiky. This picture indicates the general features of the path only; the dense black portions 
indicate superimposed fluctuations which are too fine for this method of description. Any 
magnification of part of the path would reveal fluctuations of order comparable to those of the 
original path . This picture was drawn with the aid of a computer, using nearly 90,000 steps of 
a symmetric random walk and the scaling method of Section 1 3 .2.  

t 
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(6) . There is a good reason why (5) and (6) are called the forward and backward equations. 
Remember that W is a Markov process, and use arguments similar to those of Sections 6 .8  
and 6 .9 .  Equation (5 )  i s  obtained by  conditioning W(t + h)  on  the value of  W(t) and letting 
h -i- 0; (6) is obtained by conditioning W(t) on the value of W(s + h) and letting h -i- O. 
You are treading in Einstein 's footprints as you perform these calculations .  The derivatives in 
(5) and (6) have coefficients which do not depend on x ,  y ,  s, t ;  this reflects the fact that the 
Wiener process is homogeneous in space and time, in that :  

(a) the increment W(t) - W(s) is independent of W(s) for all t 2: s, 
(b) the increments are stationary in time. 

Next we turn our attention to diffusion processes which lack this homogeneity. 
The Wiener process is a Markov process, and the Markov property provides a method for 

deriving the forward and backward equations. There are other Markov diffusion processes to 
which this method may be applied in order to obtain similar forward and backward equations ; 
the coefficients in these equations will not generally be constant. The existence of such 
processes can be demonstrated rigorously, but here we explore their distributions only. Let 
D = {D(t) : t 2: O} denote a diffusion process. In addition to requiring that D has (almost 
surely) continuous sample paths, we need to impose some conditions on the transitions of 
D in order to derive its diffusion equations; these conditions take the form of specifying the 
mean and variance of increments D(t + h) - D(t) of the process over small time intervals 
(t , t + h ) .  Suppose that there exist functions a (t , x ) ,  b (t , x )  such that: 

lP' ( I D (t + h) - D(t) 1 > E I D(t) = x ) = o(h) for all E > 0, 

lE (D(t + h)  - D(t) I D(t) = x ) = a (t , x)h + o(h ) ,  

lE ( [D(t + h)  - D(t)f I D(t) = x ) = b ( t ,  x ) h  + o(h ) .  

The functions a and b are called the ' instantaneous mean ' (or 'drift ' )  and 'instantaneous 
variance' of D respectively. Subject to certain other technical conditions (see Feller 1 97 I , pp . 
332-335) , if s .s t then the conditional density function of D(t )  given D(s)  = x ,  

a 
f (t , y I s , x )  = ay lP' (D(t) .s y I D(s) = x ) , 

satisfies the following partial differential equations. 

(7) Forward equation: 

(8) Backward equation: 

It is a noteworthy fact that the density function f is specified as soon as the instantaneous 
mean a and variance b are known; we need no further information about the distribution of 
a typical increment. This is very convenient for many applications, since a and b are often 
specified in a natural manner by the physical description of the process. 

(9) Example. The Wiener process. If increments of any given length have zero means and 
constant variances then 

a (t , x ) = O, b (t , x ) = a2 , 
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for some 0'2 > O. Equations (7) and (8) are of the form of (5) and (6) with the inclusion of a 
factor 0'2 . • 

(10) Example. The Wiener process with drift. Suppose a particle undergoes a type of 
one-dimensional Brownian motion, in which it experiences a drift at constant rate in some 
particular direction . That is to say, 

a (t , x ) = m , b (t , x ) = a2 , 

for some drift rate m and constant a2 . The forward diffusion equation becomes 

at at 1 2 a
2 t - = -m - + -a -­

at ay 2 ay2 

and it follows that the corresponding diffusion process D is such that D(t) = a W(t) + mt 
where W is a standard Wiener process. • 

(11) The Ornstein-Uhlenbeck process. Recall the discussion of this process at the end 
of Section 1 3 .2 .  It experiences a drift towards the origin of magnitude proportional to its 
dislacement. That is to say, 

and the forward equation is 

a (t , x )  = -f3x ,  b (t , x )  = 0'2 , 

at a 1 2 a
2 t - = f3 - (yf) + -a - . 

at ay 2 ay2 

See Problem ( 1 3 . 8 .4) for one solution of this equation. • 

(12) Example. Diffusion approximation to the branching process. Diffusion models are 
sometimes useful as continuous approximations to discrete processes. In Section 1 3 .2 we saw 
that the Wiener process approximates to the random walk under certain circumstances ; here 
is another example of such an approximation. Let { Zn }  be the size of the nth generation of 
a branching process, with Zo = 1 and such that lE(Zl ) = J-i and var(Zd = 0'2 . A typical 
increment Zn+ l - Zn has mean and variance given by 

lE(Zn+ l - Zn I Zn = x) = (J-i - 1 )x ,  

var(Zn+l - Zn I Zn = x)  = a2x ;  

these are directly proportional to the size of Zn . Now, suppose that the time intervals be­
tween successive generations become shorter and shorter, but that the means and variances of 
the increments retain this proportionality ; of course, we need to abandon the condition that 
the process be integer-valued. This suggests a diffusion model as an approximation to the 
branching process, with instantaneous mean and variance given by 

a (t ,  x) = ax , b ( t ,  x )  = bx , 
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and the forward equation of such a process is 

(13) 
af a 1 a2 
- = -a - (yf) + - b - (yf) . at ay 2 ay2 
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Subject to appropriate boundary conditions, this equation has a unique solution ; this may be 
found by taking Laplace transforms of ( 1 3) in order to find the moment generating function 
of the value of the diffusion process at time t .  • 

(14) Example. A branching diffusion process. The next example is a modification of the 
process of (6. 1 2 . 1 5) which modelled the distribution in space of the members of a branching 
process .  Read the first paragraph of (6. 1 2. 1 5) again before proceeding with this example. It 
is often the case that the members of a population move around the space which they inhabit 
during their lifetimes .  With this in mind we introduce a modification into the process of 
(6. 1 2 . 1 5) .  Suppose a typical individual is born at time s and at position x. We suppose that 
this individual moves about R until its lifetime T is finished, at which point it dies and divides, 
leaving its offspring at the position at which it dies. We suppose further that it moves according 
to a standard Wiener process W, so that it is at position x + W(t) at time s + t whenever 
o ::::: t ::::: T. We assume that each individual moves independently of the positions of all the 
other individuals .  We retain the notation of (6. 1 2 . 1 5) whenever it is suitable, writing N for 
the number of offspring of the initial individual , W for the process describing its motion ,  and 
T for its lifetime. This individual dies at the point W(T) .  

We n o  longer seek complete information about the distribution o f  the individuals around 
the space, but restrict ourselves to a less demanding task. It is natural to wonder about the 
rate at which members of the population move away from the place of birth of the founding 
member. Let M (t) denote the position of the individual who is furthest right from the origin 
at time t. That is, 

M(t) = sup {x : Zl (t , x) > O} 

where Z I (t , x) is the number of l iving individuals at time t who are positioned at points in 
the interval [x , 00). We shall study the distribution function of M(t) 

F(t , x )  = IP'(M(t) ::::: x) ,  

and we proceed roughly as before, noting that 

(15) F(t , x )  = 1000 
IP'(M(t ) ::::: x I T = s)!T (s) ds 

where !T is the density function of T. However, 

IP'(M(t ) ::::: x I T = s) = IP'(W(t ) ::::: x) if s > t , 

whilst, if s ::::: t, use of conditional probabilities gives 

IP'(M(t) ::::: x I T = s) 
00 100 

= L IP'(M(t) ::::: x I T = s, N = n ,  W(s) = w)IP'(N = n) fw(s) (w) dw 
n=O -00 
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where fw(s) is the density function of W(s) . However, if s .:::: t ,  then 

lP'(M(t) .:::: x I T = s, N = n, W(s) = w) = [lP'(M(t - s) ,:::: x - w)f , 

and so ( 1 5) becomes 

(16) F(t , x )  = [:o i:-oo GN [F(t - s , X - w)] fW(s) (w)/T (s) dw ds 

+ lP'(W(t ) .:::: x) 100 
/T(s) ds . 

We consider here only the Markovian case when T is exponential ly distributed, so that 

Multiply throughout ( 1 6) by e/Lt , substitute t - s = u and x - w = v within the integral , and 
differentiate with respect to t to obtain 

Now differentiate the same equation twice with respect to x ,  remembering that fw(s) (w) 
satisfies the diffusion equations and that 8 (v ) = fw(o) (x - v) needs to be interpreted as the 
Dirac 8 function at the point v = x to find that 

(17) 

Many eminent mathematicians have studied this equation ; for example, Kolmogorov and 
Fisher were concerned with it in connection with the distribution of gene frequencies.  It is 
difficult to extract precise information from ( 1 7) .  One approach is to look for solutions of the 
form F (t , x) = 1/f (x - ct) for some constant c to obtain the following second-order ordinary 
differential equation for 1/f : 

(18) 1/f" + 2c1/f' + 2J-iH (1/f) = 0 

where H (1/f) G N (1/f) - 1/f . Solutions to ( 1 8) yield information about the asymptotic 
distribution of the so-called ' advancing wave ' of the members of the process. • 

Finally in this section, we show that Wiener processes exist. The difficulty is the re­
quirement that sample paths be continuous .  Certainly there exist Gaussian processes with 
independent normally distributed increments as required in ( l a, b) ,  but there is no reason in 
general why such a process should have continuous sample paths .  We shall show next that 
one may construct such a Gaussian process with this extra property of continuity. 
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Let us restrict ourselves for the moment to the time interval [0, 1 ] , and suppose that X is a 
Gaussian process on [0, 1 ] with independent increments , such that X (0) = 0, and X (s + t) -
X (s ) is N(O, t) for s ,  t � O. We shall concentrate on a certain countable subset Q of [0, 1 ] ,  
namely the set of 'dyadic rationals ' ,  being the set o f  points of the form m2-n for some n � 1 
and 0 .::: m .::: 2n . For each n � 1 ,  we define the process Xn (t) by Xn (t) = X (t) if t = m2-n 
for some integer m ,  and by linear interpolation otherwise; that is to say, 

ifm2-n < t < (m+ 1 )2-n . Thus Xn is a piecewise-linear and continuous function comprising 
2n line segments. Think of Xn+ 1 as being obtained from Xn by repositioning the centres of 
these line segments by amounts which are independent and normally distributed. It is clear 
that 

(19) Xn (t) --+ X(t) for t E Q, 

since, i f t  E Q, then Xn (t) = X (t) for all iarge n .  The first step i s  t o  show that the convergence 
in ( 1 9) is (almost surely) uniform on Q, since this will imply that the limit function X is (almost 
surely) continuous on Q. Now 

(20) 
n 

Xn (t) = L Zj (t) 
j= 1  

where Zj (t) = Xj (t) - Xj_ 1  (t) and Xo (t) = O .  This series representation for Xn converges 
uniformly on Q if 

(21) 
00 
L sup I Zj (t) 1 < 00 .  
j= 1  t E Q  

We note that Zj (t) = 0 for values o f  t having the form m2-j where m i s  even. I t  may be  seen 
by drawing a diagram that 

and therefore 

(22) 

Now 

sup I Zj (t) 1 = max { I Zj (mTj ) 1 : m = 1 , 3 , . . .  , 2j - I } 
t E Q  

Zj (Tj ) = X (Tj ) - HX(O) + X (Tj+I )] 
= HX(Tj ) - X (O)] - HX(2-}+ I )  - X (Tj )] , 

and therefore EZj (2-j ) = 0 and, using the independence of increments, var(Zj (2-j» 
2 -j - I ; a similar calculation is valid for Z} (m2 -j ) for m = 1 ,  3 ,  . . .  , 2j - 1 .  It follows by 
the bound in Exercise (4.4.8) on the tail of the normal distribution that, for all such m ,  

. ) 1 2 2J 
lP'( IZj (mTJ ) 1 > x .::: x2}/2 e-x , x >  O. 
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Setting x = cJj2-j log 2, we obtain from (22) that 

lP'(sup I Zj (t ) 1 > x) ::s 2
j - 1 �. 

t E Q  c } log 2 

Choosing c > 1 ,  the last tenn is summable in j ,  implying by the Borel-Cantelli lemma 
(7.3 . l Oa) that 

J 
j log 2 

sup I Zj (t ) 1 > c --. -
t E Q  2J 

for only finitely many values of j (almost surely) .  Hence 

L sup I Zj (t ) 1 < (Xl almost surely , 
j t E Q  

and the argument prior t o  (2 1 )  yields that X i s  (almost surely) continuous o n  Q .  
We have proved that X has (almost surely) continuous sample paths on  the set of  dyadic 

rationals;  a similar argument is valid for other countable dense subsets of [0, 1 ] .  It is quite 
another thing for X to be continuous on the entire interval [0, 1 ] ,  and actual ly this need not be 
the case. We can , however, extend X by continuity from the dyadic rationals to the whole of 
[0, 1 ] : for t E [0, 1 ] ,  define 

Y et ) = lim X es ) ,  
s-+t 
S E Q  

the limit being taken a s  s approaches t through the dyadic rationals .  Such a limit exists almost 
surely for all t since X is almost surely continuous on Q. It is not difficult to check that the 
extended process Y is indeed a Gaussian process with covariance function cov( Y (s ) ,  Y (t)) = 

min{s ,  t } , and, most important, the sample paths of Y are (almost surely) continuous. 
Finally we remove the 'almost surely ' from the last conclusion. Let Q' be the subset of 

the sample space Q containing all w for which the corresponding path of Y is continuous 
on lR. We now restrict ourselves to the smaller sample space Q', with its induced a -field 
and probability measure. Since lP'(Q') = 1 ,  this change is invisible in all calculations of 
probabilities .  Conditions ( l a) and ( l b) remain valid in the restricted space. 

This completes the proof of the existence of a Wiener process on [0, 1 ] .  A similar argument 
can be made to work on the time interval [0, (Xl),  but it is easier either: (a) to patch together 
continuous Wiener processes on [n , n + 1 ] for n = 0, 1 ,  . . .  , or (b) to use the result of Problem 
(9.7 . 1 8c) .  

Exercises for Section 1 3 .3  

1. Let X = {X Ct) : t :::: O} be  a simple birth-death process with parameters An = nA and fl-n = nfl-. 
Suggest a diffusion approximation to X. 

2. Bartlett's equation. Let D be a diffusion with instantaneous mean and variance a Ct , x ) and 
b et , x) ,  and let M (t , e ) = IB.:(e8D(t ) , the moment generating function of D(t) .  Use the forward 
diffusion equation to derive Bartlett 's equation: 

- = ea t - M + -e b t - M aM ( a  ) 1 2 ( a )  at ' ae 2 ' ae 



where we interpret 

if g (t , x) = L�O Yn (t)xn . 
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3. Write down Bartlett's equation in the case of the Wiener process D having drift m and instanta­
neous variance 1, and solve it subject to the boundary condition D (O) = O. 

4. Write down Bartlett's equation in the case of an Omstein-UhIenbeck process D having instan­
taneous mean a (t , x) = -x and variance b (t , x) = 1 ,  and solve it subject to the boundary condition 
D(O) = O. 

5. Bessel process. If WI (t) , W2 (t) , W3 (t) are independent Wiener processes, then R(t) defined as 
R2 = Wt + Wi + Wl is the three-dimensional Bessel process. Show that R is a Markov process. Is 
this result true in a general number n of dimensions? 

6. Show that the transition density for the Bessel process defined in Exercise (5) is 

a 
J(t, y I s , x) = 

a
/' (R(t) s y I R(s )  = x ) 

y/x { ( Y - X)2 ) ( 
= exp - - exp 

,J2rr(t - s)  2 ( t  - s )  
(Y + X)2 ) }

. 
2(t - s )  

7 .  I f  W i s  a Wiener process and the function g : IR ---+ IR is continuous and strictly monotone, show 
that g(W) is a continuous Markov process .  

8. Let W be a Wiener process .  Which of the following define martingales ? 
(a) eO" W(t ) , (b) cW(t/c2) ,  (c) tW (t) - Jd W(s) ds . 

9. Exponential martingale, geometric Brownian motion. Let W be a standard Wiener process 
and define S(t) = eat +b W(t) . Show that: 
(a) S is a Markov process, 
(b) S is a martingale (with respect to the filtration generated by W) if and only if a + �b2 = 0, and 

in this case E(S(t)) = I .  
10. Find the transition density for the Markov process of Exercise (9a) . 

13.4 First passage times 

We have often been interested in the time which elapses before a Markov chain visits a 
specified state for the first time, and we continue this chapter with an account of some of the 
corresponding problems for a diffusion process. 

(1) 

Consider first a standard Wiener process W .  The process WI given by 

WI (t) = Wet + T) - WeT) ,  t 2: 0, 

is a standard Wiener process for any fixed value of T and, conditional on WeT) ,  WI is 
independent of {W(s) : s < T } ;  the Poisson process enjoys a similar property, which in 
Section 6 .8 we called the 'weak Markov property ' .  It is a very important and useful fact that 
this holds even when T is a random variable, so long as T is a stopping time for W. We 
encountered stopping times in the context of continuous-time martingales in Section 1 2 .7 .  
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(2) Definition. Let :Ft be the smallest a-field with respect to which W(s) is measurable for 
each s .::: t .  The random variable T is called a stopping time for W if {T .::: t }  E :Ft for all t .  

We say that W has the ' strong Markov property' in  that this independence holds for all 
stopping times T .  Why not try to prove this? Here, we make use of the strong Markov property 
for certain particular stopping times T .  

(3) Definition. The first passage time T (x ) to the point x E lR i s  given by 

T (x )  = inf{t : W(t) = x } .  

The continuity of sample paths i s  essential in order that this definition make sense: a Wiener 
process cannot jump over the value x ,  but must pass through it. The proof of the following 
lemma is omitted. 

(4) Lemma. The random variable T (x )  is a stopping time for W. 

(5) Theorem. The random variable T (x ) has density function 

t :::: O .  

Clearly T (x ) and T ( -x ) are identically distributed. For the case when x = 1 we en­
countered this density function and its moment generating function in Problems (5 . 1 2. 1 8) 
and (5 . 1 2. 1 9) ;  it is easy to deduce that T (x )  has the same distribution as Z-2 where Z is 
N(O, x -2 ) .  In advance of giving the proof of Theorem (5), here is a result about the size of 
the maximum of a Wiener process . 

(6) Theorem. The random variable M(t) = max{W(s) : 0 .::: s .::: t }  has the same distribu­
tion as 1 W (t) I . Thus M (t) has density function 

fM(t) (m) = /2 exp (_ m2 ) , m :::: O . v ;t  2t 

You should draw your own diagrams to illustrate the translations and reflections used in 
the proofs of this section. 

Proof of (6) . Suppose m > 0, and observe that 

(7) T (m) .::: t if and only if M(t) :::: m .  

Then 

lP' (M(t) :::: m ) = lP' (M(t) :::: m ,  W(t) - m :::: 0) + lP'(M(t) :::: m ,  W(t) - m < 0) . 
However, by (7), 

lP' (M(t) :::: m, W(t) - m < 0) = lP' (W(t) - W(T (m» < 0 1 T (m) .::: t)lP'(T (m) .::: t) 
= lP'(W(t) - W(T (m» :::: 0 1 T (m) .::: t)lP'(T(m) .::: t) 
= lP' (M(t) :::: m ,  W(t) - m :::: 0) 
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since Wet) - W(T (m)) is symmetric whenever t :::: T (m) by the strong Markov property; 
we have used sample path continuity here, and more specifically that lP'(W (T (m))  = m) = 1 .  
Thus 

lP'(M(t) :::: m) = 2lP'(M(t ) :::: m ,  Wet) :::: m ) = 2lP' (W(t) :::: m ) 
since Wet) .:::: M(t ) .  Hence lP'(M(t) :::: m) = lP'( I W(t) 1 :::: m) and the theorem is proved on 
noting that I W (t) 1 is the absolute value of an N(O, t) variable. • 
Proof of (5) . This follows immediately from (7) , since if x > 0 then 

lP'(T (x )  .:::: t) = lP'(M(t) :::: x ) = lP'( I W(t ) 1 :::: x ) 

by the substitution y = x2t/m2 . 

= 
{21°O 

exp (_ m2 ) 
dm Y m  x 2t 

( Ix l  ( x2 ) 
= 10 J2ny3 exp - 2y dy 

• 
We are now in a position to derive some famous results about the times at which W returns 

to its starting point, the origin. We say that ' W has a zero at time t '  if W (t) = 0, and we write 
cos- I for the inverse trigonometric function, sometimes written arc cos. 

(8) Theorem. Suppose 0 .:::: to < tl . The probability that a standard Wiener process W has 
a zero in the time interval (to , tj ), is (2/n) cos- 1 .JtO/tl . 

Proof. Let E(u ,  v) denote the event 

E(u ,  v) = {wet) = 0 for some t E (u , v) } .  

Condition on W(to) to obtain 

lP'(E (to , tl ) )  = L: lP'(E (to , t J ) I W(to) = w) fo (w) dw 

= 2 L: lP' (E (to , tj ) I W(to) = w) fo (w) dw 

by the symmetry of  W, where fo is the density function of  W(to ) .  However, i f  a > 0 ,  
lP'(E(to , t J ) I W(to )  = -a) = lP'(T (a) < tl - to I W(O) = 0) 

by the homogeneity of W in time and space. Use (5) to obtain that 

lP'(E(to , t] ) )  = 21: I:o
-to 

h(a) (t) fo (-a) dt da 

= -- t - ,  a exp _ _ a2 
-- da dt 

1 I t1 -tO 3 100 [ 1 ( t + to ) J 
n vTo t=O a=O 2 t to 

vTo (1 -tO dt 
= --;- 10 (t + to )./t 

2 
- I (il--; = ; tan y � - l  

2 
= - cos- I ..jtO/tl n 

by the substitution t = tos2 

as required. • 
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The result of (8) indicates some remarkable properties of the sample paths of W. Set to = 0 
to obtain 

lP'(there exists a zero in (0, t) I W(O) = 0) = 1 for all t > 0, 
and it follows that 

T (O) = inf {t > 0 :  W(t) = O} 

satisfies T (O) = 0 almost surely. A deeper analysis shows that, with probability 1 ,  W has 
infinitely many zeros in any non-empty time interval [0, t ] ;  it is no wonder that W has non­
differentiable sample paths ! The set Z = {t : W(t) = O} of zeros of W is rather a large set; in 
fact it turns out that Z has Hausdorff dimension 1 (see Mandelbrot ( 1 983) for an introduction 
to fractional dimensionality) .  

The proofs of Theorems (5), (6) , and (8) have relied heavily upon certain symmetries of the 
Wiener process; these are similar to the symmetries of the random walk of Section 3 . 1 0. Other 
diffusions may not have these symmetries, and we may need other techniques for investigating 
their first passage times . We illustrate this point by a glance at the Wiener process with drift. 
Let D = {D(t ) : t ::: O} be a diffusion process with instantaneous mean and variance given 
by 

a (t , x) = m ,  b (t , x)  = 1 ,  

where m is a constant. It is easy to check that, if D(O) = 0, then D(t) is distributed as 
N(mt , t ) .  It is not so easy to find the distributions of the sizes of the maxima of D, and we 
take this opportunity to display the usefulness of martingales and optional stopping. 

(9) Theorem. Let U (t )  = e-2mD(t) . Then U = {U (t) : t ::: O} is a martingale. 

Our only experience to date of continuous-time martingales is contained in Section 1 2.7 .  

Proof. The process D is Markovian, and so U is a Markov process also. To check that the 
continuous-martingale condition holds, it suffices to show that 

(10) lE(U (t + s) I U (t » ) = U (t) for all s , t ::: O. 

However, 

(1 1) 
lE(U (t + s) I U (t ) = e-2md) = lE(e-2mD(t+s ) I D(t) = d) 

= lE (exp { -2m [D(t + s) - D(t) ]  - 2md } I D(t) = d) 
= e-2mdlE(exp{ -2m [D(t + s) - D (t ) ] } ) 
= e-2mdlE(e-2mD(s) 

because D is Markovian with stationary independent increments . Now, lE(e-2mD(s) = 

M ( -2m) where M is the moment generating function of an N (ms ,  s) variable; this func­
tion M is given in Example (5 . 8 .5) as M(u) = emsu+�su2 . Thus lE(e-2mD(s) = 1 and so ( 10) 
follows from ( 1 1 ) .  • 

We can use this martingale to find the distribution of first passage times, just as we did in 
Example ( 1 2 .5 .6) for the random walk. Let x ,  y > 0 and define 

T (x ,  -y) = inf { t : either D (t )  = x or D(t) = -y } 
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to be the first passage time of D to the set {x , -y } .  It is easily shown that T (x ,  -y) is a 
stopping time which is almost surely finite. 

(12) Theorem. lE (U[T (x , -y) J) = I for all x , y > O. 

Proof. This is just an application of a version of the optional stopping theorem ( 1 2.7 . 1 2) .  The 
process U is a martingale and T (x , -y) is a stopping time. Therefore 

lE (U[T (x ,  -y) J) = lE(U (O» = 1 .  

(13) Corollary. If m < 0 and x > 0, the probability that D ever visits the point x is 

Proof. By Theorem ( 1 2), 

lP' (D(t) = x for some t) = e2mx . 

1 = e-2mxlP'(D[T (x ,  -y) ]  = x ) + e2my { I - lP' (D[T (x ,  -y) ]  = x ) } . 

Let y -+ 00 to obtain 
lP'(D[T (x ,  -y) ]  = x ) -+ e2mx 

so long as m < O. Now complete the proof yourself. 

• 

• 

The condition of Corollary ( 1 3) ,  that the drift be negative, is natural; it is clear that if m > 0 
then D almost surely visits all points on the positive part of the real axis . The result of ( 1 3 ) 
tells us about the size of the maximum of D also, since if x > 0, 

{max D(t) :::: x } = {D(t) = x for some t } , t2::0 

and the distribution of M = max {D(t ) : t :::: O} is easily deduced. 

(14) Corollary. Ifm < 0 then M is exponentially distributed with parameter -2m. 

Exercises for Section 1 3 .4 

1. Let W be a standard Wiener process and let X (t) = exp { iB W(t) + �e2t }  where i = .J=T. Show 
that X is a martingale with respect to the filtration given by :Ft = rr ({W (u) : u s tD . 
2. Let T be the (random) time at which a standard Wiener process W hits the 'barrier' in space-time 
given by y = at+b where a < 0, b 2: 0; that is, T = inf {t : W(t) = at+b} .  Use the result of Exercise 
( l ) to show that the moment generating function of T is given by JB: (e"'T ) = exp { -b ( Va2 - 21/1 +a) } 
for 1/1 < �a2 . You may assume that the conditions of the optional stopping theorem are satisfied. 

3. Let W be a standard Wiener process, and let T be the time of the last zero of W prior to time t .  
Show that lP'(T S u) = (2/n) sin- i ..fiiTi, 0 s u s  t .  
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13.5 Barriers 

Diffusing particles are rarely allowed to roam freely, but are often restricted to a given part 
of space; for example, Brown's pollen particles were suspended in fluid which was confined 
to a container. What may happen when a particle hits a barrier? As with random walks, two 
simple types of barrier are the absorbing and the reflecting, although there are various other 
types of some complexity. 

We begin with the case of the Wiener process. Let W > 0, let W be a standard Wiener 
process, and consider the shifted process w + W(t) which starts at w .  The Wiener process 
Wa absorbed at 0 is defined to be the process given by 

(1) a { w + W(t) if t < T , W (t) -
O · f  T 1 t :::: , 

where T = inf {t : w + W(t) = O} is the hitting time of the position O. The Wiener process 
Wr reflected at 0 is defined as the process Wr(t) = I w + W(t) I .  

Viewing the diffusion equations ( 1 3 . 3 . 7)-( 1 3 . 3 . 8) as forward and backward equations, it 
is clear that Wa and Wr satisfy these equations so long as they are away from the barrier. 
That is to say, Wa and Wr are diffusion processes . In order to find their transition density 
functions, we might solve the diffusion equations subject to suitable boundary conditions. For 
the special case of the Wiener process, however, it is simpler to argue as follows.  

(2) Theorem. Let f (t ,  y) denote the density function of the random variable W(t) , and let 
Wa and Wr be given as above. 

(a) The density function of wa(t) is 

fa (t , y) = f (t ,  y - w) - f(t ,  y + w) ,  y > o .  

(b) The density function of Wr (t) is 

(3) 

f'(t ,  y) = f (t ,  y - w) + f (t ,  y + w) ,  y > O. 

The function f (t , y) is the N(O, t ) density function, 

1 1 2 f (t ,  y) = � exp(- oz y I t ) .  '\I 2nt  

Proof. Let I be  a subinterval of  (0, (0) , and let Jf = {x E R : -x E I }  be the reflection of I 
in the point O. Then 

J1D (Wa(t) E I) = J1D ( {w + W(t) E I }  n { T  > t l) 
= J1D(w + W(t) E I) - J1D( {w + W(t) E I }  n { T  ::s t l) 
= J1D(w + W(t) E I) - J1D (w + W(t) E Ir) 

using the reflection principle and the strong Markov property. The result fol lows. 
The result of part (b) is immediate from the fact that Wr (t) = I w + W(t) l .  • 
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We tum now to the absorption and reflection of a general diffusion process. Let D = 
{D(t) : t :::: O} be a diffusion process; we write a and b for the instantaneous mean and 
variance functions of D, and shall suppose that b (t , x )  > 0 for all x (:::: 0) and t .  We make a 
further assumption, that D is regular in that 

(4) lP' (D (t ) = y for some t I D (O) = x ) = 1 for all x , y :::: O. 

Suppose that the process starts from D (O) = d say, where d > O. Placing an absorbing 
barrier at 0 amounts to killing D when it first hits O. The resulting process Da is given by 

if T > t , 

if T :'S t , 

where T = inf{t : D (t ) = O} ; this formulation requires D to have continuous sample paths. 
Viewing the diffusion equations ( 1 3 . 3 .7)-( 1 3 .3 . 8) as forward and backward equations, it 

is clear that they are satisfied away from the barrier. The presence of the absorbing barrier 
affects the solution to the diffusion equations through the boundary conditions . 

Denote by r Ct , y) the density function of Da(t ) ;  we might write rCt ,  y) = rCt , y 1 0, d) 
to emphasize the value of Da(o) . The boundary condition appropriate to an absorbing barrier 
at 0 is 

(5) rCt , O) = 0 for all t .  

It i s  not completely obvious that (5) i s  the correct condition, but the fol lowing rough argument 
may be made rigorous. The idea is that, if the particle is near to the absorbing barrier, then 
small local fluctuations, arising from the non-zero instantaneous variance, will carry it to the 
absorbing barrier extremely quickly. Therefore the chance of it being near to the barrier but 
unabsorbed is extremely small . 

A slightly more rigorous justification for (5) is as follows.  Suppose that (5) does not hold, 
which is to say that there exist E, TJ > 0 and 0 < u < v such that 

(6) fa Ct , y) > TJ for 0 < y :'S E, u :'S  t :'S v .  

There i s  probability at least TJ dx that 0 < Da(t) :'S dx  whenever u :'S t :'S v and 0 < dx :'S E .  
Hence the probability of  absorption in the time interval (t , t + d t )  i s  at least 

(7) 

The instantaneous variance satisfies b (t , x) :::: f3 for 0 < x :'S E, U :'S t :'S v, for some 
f3 > 0, implying that DaCt + dt) - Da (t) has variance at least f3 dt, under the condition that 
o < Da(t) :'S dx . Therefore, 

for some y , 8 > O. Substituting dx = y "fJi in (7) ,  we obtain lP'(t < T < t +dt) :::: (TJy8 )"fJi, 
implying by integration that lP'(u < T < v) = 00, which is clearly impossible. Hence (5) 
holds. 
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(8) Example. Wiener process with drift. Suppose that a (t , x) = m and b (t , x) = 1 for all 
t and x . Put an absorbing barrier at ° and suppose D(O) = d > 0. We wish to find a solution 
g (t ,  y) to the forward equation 

(9) 
ag ag 1 a2g 
at = -m 

ay 
+ "2 ay2 ' y > 0, 

subject to the boundary conditions 

( 10) 

(1 1) 

g (t ,  0) = 0, 
g (O, y) = Od (y) , 

t � 0, 
Y � 0, 

where Od is the Dirac 0 function centred at d. We know from Example ( 1 3 . 3 . 1 0) ,  and in any 
case it is easy to check from first principles, that the function 

(12) 
1 ( y - x - mt)2 ) 

g (t , y I x ) = � exp -
'V 27ft 2t 

satisfies (9) , for all possible ' sources ' x .  Our target is to find a linear combination of such 
functions g ( . , . I x ) which satisfies ( 1 0) and ( 1 1 ) .  It turns out that 

(13) r(t , y) = g (t ,  Y I d) - e-2mdg (t ,  y I -d) , y > 0, 
is such a function; assuming the solution is unique (which i t  is ) ,  this is therefore the density 
function of Da(t ) .  We may think of it as a mixture of the function g ( . , . I d) with source d 
together with a corresponding function from the ' image source' -d, being the reflection of d 
in the barrier at 0. 

It is a small step to deduce the density function of the time T until the absorption of the 
particle. At time t ,  either the process has been absorbed, or its position has density function 
given by ( 1 3) .  Hence 

tXJ (m t + d) d (m t - d) 
lJD(T ::s t ) = 1 - 10 r(t , y) dy = 1 - <P ----;;r- + e-2m <P ----;;r-

by ( 1 2) and ( 1 3 ) ,  where <P is the N(O, 1 ) distribution function.  Differentiate with respect to t 
to obtain 

(14) 

It is easily seen that 

d ( d + mt)2 ) 
!r (t) = .. hnt3 

exp -
2t 

, t  > 0. 

{ I  if m ::s 0, 
lJD(absorption takes place) = lJD(T < 00) = 

e-2md if m > 0. • 

Turning to the matter of a reflecting barrier, suppose once again that D is a regular diffusion 
process with instantaneous mean a and variance b, starting from D(O) = d > 0. A reflecting 
barrier at the origin has the effect of disallowing infinitesimal negative jumps at the origin 
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and replacing them by positive jumps .  A formal definition requires careful treatment of the 
sample paths, and this is omitted here. Think instead about a reflecting barrier as giving rise 
to an appropriate boundary condition for the diffusion equations. Let us denote the reflected 
process by Dr , and let r (t , y) be its density function at time t. The reflected process lives on 
[0, 00) , and therefore 

1000 r(t , y) dy = 1 for all t .  

Differentiating with respect to t and using the forward diffusion equation, w e  obtain at the 
expense of mathematical rigour that 

a 100 0 = - r(t , y) dy a t 0 
100 ar 100 

(
a 1 a2 

) = - dy = -- (ar) + - - (br) dy o a t 0 ay 2 ay2 

[ r I a r JOO ( r I a r ) I = -af + -- (bf ) = af - -- (bf )  . 2 ay 0 2 ay y=O 

This indicates that the density function r(t ,  y) of Df (t) is obtained by solving the forward 
diffusion equation 

ag a 1 a2 
at = - ay (ag) + "2 ay2 (bg) 

subject to the boundary condition 

(15) (ag - �i. (bg») 1 = 0  for t :::: O, 2 ay y=o 
as well as the initial condition 

(16) g (O, y) = Od (y) for y :::: O . 

(17) Example. Wiener process with drift. Once again suppose that a (t ,  x )  = m and 
b(t , x) = 1 for all x ,  t .  This time we seek a linear combination of the functions g given 
in ( 1 2) which satisfies equations ( 1 5) and ( 1 6) .  It turns out that the answer contains an image 
at -d together with a continuous line of images over the range ( -00, -d) . That is to say, the 
solution has the form 

r(t , y) = g (t ,  Y I d) + Ag (t ,  y I -d) + i: B(x )g (t ,  y I x)  dx 

for certain A and B(x ) .  Substituting this into equation ( 1 5) ,  one obtains after some work that 

(18) • 
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Exercise for Section 1 3 .5 

1. Let D be a standard Wiener process with drift m starting from D(O) = d > 0, and suppose that 
there is a reflecting barrier at the origin. Show that the density function F (t ,  y) of D(t) satisfies 
F (t , y) ---+ 0 as t ---+ 00 if m � 0, whereas F (t ,  y) ---+ 2 lm le -

2 lm ly for y > 0, as t ---+ 00 if m < O. 

13.6 Excursions and the Brownian bridge 

This section is devoted to properties of the Wiener process conditioned on certain special 
events . We begin with a question concerning the set of zeros of the process .  Let W = {W et ) : 
t :::: O} be a Wiener process with W(O) = w,  say, and with varlance-parameter a2 

= 1 .  What 
is the probability that W has no zeros in the time interval (0, v] given that it has none in the 
smaller interval (0, u ] ?  The question is not too interesting if w =1= 0, since in this case the 
probability in question is just the ratio 

(1)  
lP(no zeros in (0 , v] I W(O) = w) 
lP(no zeros in (0, u] I W(O) = w) 

each term of which is easily calculated from the distribution of maxima ( 1 3  .4.6) . The difficulty 
arises when w = 0, since both numerator and denominator in ( 1 )  equal O. In this case, it may 
be seen that the required probability is the limit of ( 1 )  as w -+ O. We have that this limit 
equals limw--->o {gw (v) /gw (u) }  where gw (x )  is the probability that a Wiener process starting 
at w fails to reach 0 by time x .  Using symmetry and Theorem ( 1 3 .4.6), 

whence gw (v)/gw (u) -+ Ju/v as w -+ 0, which we write as 

(2) lP(W =1= 0 on (0, v] I W =1= 0 on (0, u] , W (O) = 0) = Ju/v ,  0 < u .:::: v .  

A similar argument results in 

(3) lP(W > 0 on (0, v] I W > 0 on (0, u] , W (O) = 0) = Ju/v ,  0 < u .:::: v ,  

by  the symmetry of  the Wiener process .  
An 'excursion' of W is a trip taken by W away from O. That is to say, if W(u) = W(v) = 0 

and Wet) =1= 0 for u < t < v, then the trajectory of W during the time interval [u , v] is called 
an excursion of the process ;  excursions are positive if W > 0 throughout (u , v) ,  and negative 
otherwise. For any time t > 0, let t - Z (t ) be the time of the last zero prior to t ,  which is 
to say that Z(t )  = sup{s : Wet - s) = OJ ; we suppose that W(O) = O. At time t, some 
excursion is in progress whose current duration is Z(t ) . 
(4) Theorem. Let Y et ) = .JZ(t) sign{ W(t ) } ,  and :Ft = a ({ Y (u) : 0 .:::: u .:::: t } ) . Then (Y, !J:') 
is a martingale, called the excursions martingale. 
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Proof. Clearly Z(t) :::: t ,  so that EI Y (t) 1 :::: ..;t. It suffices to prove that 

(5) E (Y (t) i .'Fs) = Y (s) for s < t . 
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Suppose s < t ,  and let A be the event that W(u) = 0 for some u E [s ,  t ] .  With a slight abuse 
of notation,  

E (Y (t) i .'Fs)  = E (Y (t )  i .'Fs ,  A)lP'(A I .'Fs) + E (Y (t) i .'Fs ,  AC)lP'(AC I .'Fs) . 
Now, 

(6) E (Y (t )  i .'Fs ,  A) = 0 
since, on the event A ,  the random variable Y (t )  is symmetric. On the other hand, 

(7) E (Y (t )  i .'Fs ,  AC) = Jt - s + Z(s) sign {W (s ) }  
since, given .'Fs and A c ,  the current duration of  the excursion at time t i s  ( t  - s) + Z(s ) ,  and 
sign{W (t ) }  = sign{W  (s) } .  Furthermore lP'(A C I .'Fs) equals the probability that W has strictly 
the same sign on (s - Z(s ) ,  t] given the corresponding event on (s - Z(s ) ,  s ] , which gives 

Z(s) 
by (3 ) .  t - s + Z(s) 

Combining this with equations (6 )  and (7) ,  we obtain E(Y(t) I .'Fs) = Y (s) as  required. • 

(8) Corollary. The probability that the standard Wiener process W has a positive excursion 
of total duration at least a before it has a negative excursion of total duration at least b is 
./h/(va + ./h). 

Proof. Let T = inf{t : Y (t ) :::: va or  Y (t )  :::: -./h} , the time which elapses before W 
records a positive excursion of duration at least a or a negative excursion of duration at least 
b. It may be shown that the optional stopping theorem for continuous-time martingales is 
applicable, and hence E(Y (T» = E(Y (0» = O. However, 

E(Y(T» = :rr:va - ( 1  - :rr: )./h 

where :rr: is the required probability. • 
We turn next to the Brownian bridge. Think about a sample path of W on the time interval 

[0, 1 ]  as the shape of a random string with its left end tied to the origin . What does it look like 
if you tie down its right end also? That is to say, what sort of process is {W  (t ) : 0 :::: t :::: I }  
conditioned on the event that W( I )  = O ?  This new process i s  called the ' tied-down Wiener 
process' or the 'Brownian bridge' .  There are various ways of studying it, the most obvious of 
which is perhaps to calculate the fdds of W conditional on the event { W ( 1 )  E (- TJ, TJ) } ,  and 
then take the limit as TJ {- O. This is easily done, and leads to the next theorem. 

(9) Theorem. Let B = {B (t )  : 0 :::: t :::: I }  be a process with continuous sample paths and 
the samefdds as {W (t) : 0 :::: t :::: I }  conditioned on W(O) = W(1 )  = O. The process B is a 
diffusion process with instantaneous mean a and variance b given by 
(10) 

x a (t , x )  = - -- , b (t , x )  = 1 ,  x E R 0 :::: t :::: 1 .  1 - t 
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Note that the Brownian bridge has the same instantaneous variance as W, but its instanta­
neous mean increases in magnitude as t -+ 1 and has the effect of guiding the process to its 
finishing point B( 1 )  = 0. 
Proof. We make use of an elementary calculation involving conditional density functions. 
Let W be a standard Wiener process, and suppose that ° :::: u :::: v. It is left as an exercise 
to prove that, conditional on the event { W(v) = y } ,  the distribution of W(u) is normal with 
mean yu/v and variance u (v - u)/v .  In particular, 

(11 )  

(12) 

yu 
lE (W(u) I W(O) = 0 ,  W(v) = y) = - ,  

V ( YU ) 2 u (v - u) 
lE (W(u)2 1 W(O) = 0, W(v) = y) = --;; + 

v 
. 

Returning to the Brownian bridge B ,  after a little reflection one sees that it is Gaussian and 
Markov, since W has these properties. Furthermore the instantaneous mean is given by 

xh lE (B(t + h)  - B(t )  I B(t )  = x ) = - -

1 - t 

by ( 1 1 )  with y = -x , u = h ,  v = 1 - t ;  similarly the instantaneous variance is given by the 
following consequence of ( 1 2) :  

lE ( I B (t + h)  - B(t ) 1 2 1 B(t )  = x) = h + o(h ) .  

An elementary calculation based o n  equations ( 1 1 )  and ( 1 2) shows that 

(13) cov (B(s ) ,  B (t» ) = min{s ,  t }  - s t ,  0 :::: s ,  t :::: 1 .  

Exercises for Section 1 3 .6 

• 

1. Let W be a standard Wiener process. Show that the conditional density function of W et) ,  given 

that W(u) > O f  or O < u < t , is g (x) = (x / t)e-x
2/ (2t) , x  > O. 

2. Show that the autocovariance function of the Brownian bridge is c (s ,  t) = min{s ,  t }  - st ,  0 ::: 
s, t ::: 1 .  
3. Let W be a standard Wiener process , and let W(t) = W (t) - t W ( l ) .  Show that {W(t) : 0 ::: t ::: I }  
is a Brownian bridge. 

� If W is a Wiener process with W (O) = 0, show that W et) = (l - t) W (t/ ( l - t» for 0 ::: t < 1 ,  

W ( I )  = 0, defines a Brownian bridge. 

5. Let 0 < s < t < 1 .  Show that the probability that the Brownian bridge has no zeros in the 
interval (s , t) is (2/lf) cos- 1 ..j(t - s ) / [t ( l - s ) ] .  
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13.7 Stochastic calculus 

We have so far considered a diffusion processt D = {Dt : t :::: O} as a Markov process with 
continuous sample paths, having some given ' instantaneous mean ' /1 (t , x) and 'instantaneous 
variance' a2 (t , x ) .  The most fundamental diffusion process is the standard Wiener process 
W = {Wt : t :::: OJ ,  with instantaneous mean 0 and variance 1 .  We have seen in Section 1 3 .3  
how to  use this characterization of  W in  order to  construct more general diffusions .  With this 
use of the word ' instantaneous ' ,  it may seem natural, after a quick look at Section 1 3 . 3 ,  to 
relate increments of D and W in the infinitesimal form 

(1) 

or equivalently its integrated form 

(2) Dt - Do = lo t 
/1 (s , Ds )  ds + lo t 

a (s ,  Ds ) dWs .  

The last integral has the form f� 1/1 (s ) d Ws where 1/1 is a random process. Whereas we saw in 
Section 9.4 how to construct such an integral for deterministic functions 1/1, this more general 
case poses new problems, not least since a Wiener process is not differentiable. This section 
contains a general discussion of the stochastic integral, the steps necessary to establish it 
rigorously being deferred to Section 1 3 . 8 .  

For an example of  the infinitesimal form ( 1 )  as  a modelling tool, suppose that Xt is the price 
of some stock, bond, or commodity at time t. How may we represent the change dXt over 
a small time interval (t , t + dt) ?  It may be a matter of observation that changes in the price 
Xt are proportional to the price, and otherwise appear to be as random in sign and magnitude 
as are the displacements of a molecule. It would be plausible to write dXt = bXt dWt ,  or 
Xt - Xo = f� bXs dWs , for some constant b. Such a process X is called a geometric Wiener 
process, or geometric Brownian motion ; see Example ( 1 3 .9 .9) and Section 1 3 . 10. 

We have already constructed certain representations of diffusion processes in terms of W. 
For example we have from Problem ( 1 3 . 1 2. 1 )  that t WI/ t and aWt/a2 are Wiener processes. 
Similarly, the process Dt = /1t + a Wt is a Wiener process with drift. In addition, Ornstein­
Uhlenbeck processes arise in a multiplicity of ways, for example as the processes Ui given 
by: 

UI (t) = e-,Bt W(e2,Bt - 1 ) ,  U2 (t) = e-,Bt W(e2,Bt ) ,  U3 (t ) = Wet) - f3 lo t 
e-,B (t-s ) W (s )  ds . 

(See Problem ( 1 3 . 1 2. 3) and Exercises ( 1 3 .7 .4) and ( 1 3 .7 .5 ) . )  Expressions of this form enable 
us to deduce sample path properties of the process in question from those of the underlying 
Wiener process. For example, since W has continuous sample paths, so do the Ui . 

It is illuminating to start with such an expression and to derive a differential form such 
as equation ( 1 ) .  Let X be a process which is a function of a standard Wiener process W, 
that is, Xt = f(Wt )  for some given f. Experience of the usual Newton-Leibniz chain rule 
would suggest that dXt = f' (Wt )  dWt but this turns out to be incorrect in this context. If f 
is sufficiently smooth, a formal application of Taylor's theorem gives 

XtHt - Xt = f' (Wt ) (8Wr ) + !!"(Wd (8Wd2 + . . . 

tFor notational convenience, we shall write Xt or X (t) interchangeably in the next few sections. 
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where 8Wt = WtHt - Wt . In the usual derivation of the chain rule, one uses the fact that 
the second term on the right side is o(Ot ) .  However, (8Wr )2 has mean Ot ,  and something new 
is needed. It turns out that Ot is indeed an acceptable approximation for (8Wr )2 , and that the 
subsequent terms in the Taylor expansion are insignificant in the limit as Ot -+ o. One is 
therefore led to the formula 

(3) 

Note the extra term over that suggested by the usual chain rule. Equation (3) may be written 
in its integrated form 

Sense can be made of this only when we have a proper definition of the stochastic integral 
f� f' (Ws ) dWs . Equation (3) is a special case of what is known as Ito 's  formula, to which we 
return in Section 1 3 .9 .  

Let us next work with a concrete example in the other direction, asking for an non-rigorous 
interpretation of the stochastic integral f� Ws dWs . By analogy with the usual integral, we 
take t = n8 where 8 is small and positive, and we partition the interval (0, t] into the intervals 
(j 8 ,  (j + 1 ) 8 ] ,  0 :s j < n .  Following the usual prescription, we take some 8j E [j 8 ,  (j + 1 )8] 
and form the sum In = L.7�J We) (W(j+l )8 - Wj8 ) .  

In the context of the usual Riemann integral, the values Wj8 , We} , and W(j+ l )8 would be 
sufficiently close to one another for In to have a limit as n -+ 00 which is independent of 
the choice of the 8j . The Wiener process W has sample paths with unbounded variation, and 
therein lies the difference. 

(4) 

Suppose that we take 8j = j 8 for each j .  It is easy to check that 

n- l n- l 
2In = �)W&+1 )8 - Wj8 ) - �)W(j+l )8 - Wj8 )2 = W( - W6 - Zn 

j=O j=O 

which is to say that Zn -+ t in mean square (see Exercise ( 1 3 .7 .2)) . It follows that In -+ 
! (W? - t) in mean square as n -+ 00, and we are led to the interpretation 

(5) lo t 
Ws dW = ! (Wt

2 - t ) .  

This proposal i s  verified in Example ( 1 3 .9 .7) .  
The calculation above is an  example of  what is called an Ito integral. The choice of  the 8j 

was central to the argument which leads to (5) ,  and other choices lead to different answers. 
In Exercise ( 1 3 .7 .3 )  is considered the case when 8j = (j + 1 )8 ,  and this leads to the value 
! (W? + t) for the integral . When 8j is the midpoint of the interval [j 8, (j + 1 ) 8 ] ,  the answer 
is the more familiar W? ,  and the corresponding integral is termed the Stratonovich integral. 
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Exercises for Section 1 3 .7  

1 .  Doob's L2 inequality. Let W be  a standard Wiener process ,  and show that 
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2.  Let W be a standard Wiener process. Fix t > 0, n � 1 ,  and let 8 = tin .  Show that Zn  = 
L7:6 (W( j+ l)8 - Wj8 )2 satisfies Zn --+ t in mean square as n --+ 00. 

3. Let W be a standard Wiener process. Fix t > 0, n � 1 ,  and let 8 = tin .  Let Vj = Wj8 and 
�j = Yj + 1 - Vj . Evaluate the limits of the following as n --+ 00:  

(a) ft (n) = Lj Yj �j , 
(b) hen) = Lj V;+ l �j , 
(c) 13 (n) = L; � (Yj+ l + Yj)�j , 
(d) 14 (n) = Lj W(j+:l )8 �j · 

4. Let W be a standard Wiener process. Show that U (t) = e-fit W(e2fit ) defines a stationary 
Ornstein-Uh1enbeck process . 

5. Let W be a standard Wiener process .  Show that Ut = Wt - f3 Jd e-fi (t-s ) Ws ds defines an 
Omstein-Uhlenbeck process .  

13.8 The Ito integral 

Our target in this section is to present a definition of the integral 1000 1/Is dWs ,  where 1/1 is a 
random process satisfying conditions to be stated. Some of the details will be omitted from 
the account which follows. 

Integrals of the form 1000 </J (s ) d Ss were explored in Section 9.4 for deterministic functions 
</J, subject to the following assumptions on the process S: 

(a) E( I St l 2 ) < 00 for al l  t ,  
(b) E( I Sf+h - Sd2) --+ 0 as  h t o, for all t ,  
(c) S has orthogonal increments. 

It was required that </J satisfy 1000 I</J (s ) 1 2 dG(s) < 00 where G(t) = E( I St - SO I 2 ) . 
It is a simple exercise to check that conditions (a)-(c) are satisfied by the standard Wiener 

process W, and that G(t)  = t in this case. We turn next to conditions to be satisfied by the 
integrand 1/1 .  

Let W = {Wt ; t ::: O} b e  a standard Wiener process o n  the complete probability space 
(Q , F, lJD) . Let :F; be the smallest sub-a-field of F with respect to which the variables Ws , 
o ::: s ::: t ,  are measurable and which contains the null events .N = {A  E F ; lJD(A) = OJ .  
We write g: = {J=; ; t ::: O} for the consequent filtration. 

A random process 1/1 is said to be measurable if, when viewed as a function 1/It (w) of both 
t and the elementary event w E Q, it is measurable with respect to the product a -field /B ® F;  
here, /B denotes the Borel a -field o f  subsets of [0, (0) . The measurable process 1/1 i s  said to 
be adapted to the filtration g: if 1/If is :F; -measurable for all t . It will emerge that adapted 
processes may be integrated against the Wiener process so long as they satisfy the integral 
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condition 

(1) 

and we denote by A the set of all adapted processes satisfying ( l ) . It may be shown that A is 
a Hilbert space (and is thus Cauchy complete) with the normt 

(2) I I t l l  = lE(foOO I tt l 2 dt) . 

We shall see that 1000 ts dWs may be defined:j: for t E A . 
We follow the scheme laid out in Section 9 .4. The integral 1000 ts d Ws is first defined for 

a random step function tt = Lj Cj I(a} , a}H ]  (t) where the aj are constants and the Cj are 
random variables with finite second moments which are Fa} -measurable. One then passes to 
limits of such step functions, finally checking that any process satisfying ( 1 )  may be expressed 
as such a limit. Here are some details. 

Let 0 = ao < a l < . . .  < an = t, and let Co ,  CI , . . . , Cn- l be random variables with 
finite second moments and such that each Cj is Fa} -measurable. Define the random variable 
¢t by 

if t :::; 0 or t > an , 

if aj < t :::; aj+ l . 
We call the function ¢ a 'predictable step function ' .  The stochastic integral I (¢) of ¢ with 
respect to W is evidently to be given by 

n- l 
(3) I (¢) = L Cj (Wa}H - Wa, ) . 

j=O 
It is easily seen that I (a¢ l + f3¢2 ) = aI  (¢ l ) + f31  (¢2 ) for two predictable step functions 
¢ l , ¢2 and a, f3 E R 

The following ' isometry ' asserts the equality of the norm I I ¢ I I  and the L2 norm of the 
integral of ¢ . As before, we write II U 1 1 2 = JIE I U2 1 where U is a random variable. 

(4) Lemma. If ¢ is a predictable step junction, I I I (¢) 1 1 2 = I I ¢ I I . 

Proof. Evidently, 

(5) 

t Actually I I  • I I  i s  not a norm, since 1 1 1fr I I  = 0 does not imply that 1fr = O. It is however a norm on the set of 
equivalence classes obtained from the equivalence relation given by 1fr � ¢ if JP'( 1fr = ¢) = 1 .  

:j:Integrais over bounded intervals are defined similarly, by multiplying the integrand by the indicator function 
of the interval in question. That 1fr be adapted is not really the 'correct' condition. In a more general theory 
of stochastic integration, the process W is replaced by a so-called semimartingale, and the integrand 1fr by a 
locally bounded predictable process. 
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Using the fact that Cj is Fa] -measurable, 

Similarly, by conditioning on Fak ,  we find that the mean of the final tenn in (5) equals O. 
Therefore, 

E ( I / (4» 1 2) = � E(CJ) (aj+ l - aj ) = E(foOO 
14> (t) 1 2 dt) = 1 1 4> 1 1 2 . • 

J 

Next we consider limits of sequences of predictable step functions. Let 1/1 E A.  It may 
be shown that there exists a sequence � = {4>(nl } of predictable step functions such that 
1 1 4> (nl - 1/1 II -+ 0 as n -+ 00. We prove this under the assumption that 1/1 has continuous 
sample paths, although this continuity condition is not necessary. 

(6) Theorem. Let 1/1 E A be a process with continuous sample paths. There exists a sequence 
� = {4>(nl } of predictable step functions such that 1 1 4> (nl - 1/1 1 1  -+ 0 as n -+ 00. 

Proof. Define the predictable step function 

I [ j/n . · + 1  
(nl n 1/Is ds for !'" < t :::; _1 - , 1 :s j < n2 , 4>t = (J- l l/n n n 

o otherwise. 

By a standard use of the Cauchy-Schwarz inequality, 

Hence 

(7) 

Now, 

j (J+ I l /n I[
j/n 1 2 [ j/n l 4>t(nl I 2 dt = n  1/Is ds :::; 1 1/Is l 2 ds for j � l . j/n (J- l l/n (j- l l/n 

Using the continuity of the sample paths of 1/1, 1 4>;nl - 1/Is I -+ 0 as n -+ 00, uniformly on the 
interval [0, T] ,  whence the penultimate term in (8) tends to 0 as n -+ 00. Since I x + y I 2 :::; 
2( lx 1 2 + l y l 2 ) for x ,  y E R, the last tenn in (8) is by (7) no greater than 4 1::'- (2/nl 1 1/Is 1 2 ds. 
We let n -+ 00 and then T -+ 00 in (8) .  Since 1/1 E A,  it  is the case that 1000 1 1/Is 1 2 ds < 00 
almost surely, and therefore 

almost surely, as n -+ 00. 
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By the same argument used to bound the last tenn in (8) , 

and it follows by the dominated convergence theorem that 1 I <I> (n) - 1/f II -+ 0 as n -+ 00. • 

Let 1/f E .A, and let 4> = {<I>(n) }  be a sequence of predictable step functions converging in 
.A, to 1/f .  Since <I>(m) - <I>(n) is itself a predictable step function, we have that 

1 1 / (<I> (m) - 1 (<I>(n) 1 1 2 = 1 I / (<I>(m) - <I>(n) 1 1 2 
= 1 I <I>(m) - <I>(n) I I  by Lemma (4) 
:::: 1 I <I> (m) - 1/f II + 1 I <I> (n) - 1/f I I  by the triangle inequality 

-+ 0 as m , n -+ 00. 

Therefore the sequence 1 (<I>(n) is mean-square Cauchy convergent, and hence converges in 
mean square to some limit random variable denoted 1 (4)) . It is not difficult to show as follows 
that lP'(I (4)) = 1 (p» = 1 for any other sequence p of predictable step functions converging 
in .A, to 1/f .  We have by the triangle inequality that 

The first and third tenns on the right side tend to 0 as n -+ 00. By Lemma (4) and the linearity 
of the integral operator on predictable step functions, the second tenn satisfies 

1 I / (<I> (n) - l (p(n) 1 1 2 = 1 I / (<I>(n) _ p(n) 1 1 2 = 1 I <I> (n) _ p (n) I I 
:::: 1 I <I>(n) - 1/f  I I  + I I p (n) - 1/f 1 l 

which tends to zero as n -+ 00. Therefore 1 1 1 (4)) - l (p) 1 I 2 = 0, implying as claimed that 
lP'(I (4» = I (p) )  = 1 .  

The (almost surely) unique such quantity 1 (4)) i s  denoted by 1 (1/f ) ,  which we call the Ito 
integral of the process 1/f .  It is usual to denote 1 (1/f) by 1000 1/fs dWs ,  and we adopt this notation 
forthwith. We define 1� 1/fs dWs to be 1000 1/fs l(O, t ] (s) dWs . 

With the (Ito) stochastic integral defined, we may now agree to write 

(9) 

as a shorthand fonn of 

(10) Xt = Xo + lo t 
/L (s , Xs ) ds + lo t 

a (s , Xs ) dWs .  

A continuous process X defined by (9), by which we mean satisfying ( 1 0) ,  is called an /to 
process, or a diffusion process, with infinitesimal mean and variance /L(t ,  x )  and a (t , x)2 . The 
proof that there exists such a process is beyond our scope. Thus we may define diffusions via 
stochastic integrals ,  and it may be shown conversely that all diffusions previously considered 
in this book may be written as appropriate stochastic integrals .  
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It is an important property of the above stochastic integrals that they define martingalest. 
Once again, we prove this under the assumption that 1/f has continuous sample paths. 

(1 1) Theorem. Let 1/f E A be a process with continuous sample paths. The process Jt = 

f� 1/fu dWu is a martingale with respect to the filtration !J:'. 
Proof. Let 0 < s < t and, for n :::: 1 ,  let ao , a l , . . .  , an be such that 0 = ao < al < . . .  < 
am = s < am+ l < . . .  < an = t for some m .  We define the predictable step function 

with integral 

n- I 
1/f�n) = L 1/faj /(aj ,ajH ]  (u) , 

)=0 

n- I 
JSn) = Io v 1/f�n) dWu = L 1/faj (WajHI\V - Waj l\v

) ,  v :::: 0, 
o )=0 

where x /\ y = min{x , y } .  Now, 

where 

and 

n- I 
E(J/n) I Fs ) = L E(1/faj (WaJ+l - Waj ) I Fs) 

)=0 

if j < m ,  

since WaJ+l - Waj is independent of :Faj and has zero mean. Therefore, 

(12) 

if j :::: m ,  

We now let n -+ 00 and assume that max) l aJ+ I - a) I -+ O .  A s  shown i n  the proof of 
Theorem (6), 

1 1 1/f (n) /(O, s ] - 1/f/(o, s ] l I -+  0 and 1 1 1/f (n) /(O, t ] - 1/f/(o, t ] l I -+ 0, 
whence Js(n) -+ f� 1/fu dWu and J/n) -+ f� 1/fu dWu in mean square. We let n -+ 00 in ( 1 2) ,  
and use the result of  Exercise ( 1 3 . 8 .5) ,  to  find that E(Jt I Fs) = Is almost surely. I t  follows 
as claimed that J is a martingale. • 

There is a remarkable converse to Theorem ( 1 1 ) of which we omit the proof. 

(13) Theorem. Let M be a martingale with respect to the filtration !J:'. There exists an 
adapted random process 1/f such that 

Mt = Mo + lo t 
1/fu dWu , t :::: O. 

tIn the absence of condition ( 1 ) ,  we may obtain what i s  called a 'local martingale' , but this i s  beyond the 
scope of this book. 
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Exercises for Section 1 3 . 8  

In the absence of any contrary indication, W denotes a standard Wiener process, and :Ft i s  the smallest 
a -field containing all null events with respect to which every member of {Wu : 0 :::: u :::: t} is 
measurable. 

1. (a) Verify directly that fot 
s dWs = t Wt - fo t 

Ws ds . 

(b) Verify directly that 10' W; dWs = � wl - Io'  Ws ds . 

(c) Show that IE ( [10' Ws dWs f) = 10' IE(W;) ds . 

2. Let Xt = J6 Ws ds . Show that X is a Gaussian process, and find its autocovariance and autocor­
relation function. 

3. Let (Q , :F, lP') be a probability space, and suppose that Xn � X as n -+ 00. If fj, <; :F, show 

that IE (Xn I fj,) � IE(X I fj,) . 

4. Let 0/1 and 0/2 be predictable step functions, and show that 

whenever both sides exist. 

S. Assuming that Gaussian white noise Gt = dWt /dt exists in sufficiently many senses to appear 
as an integrand, show by integrating the stochastic differential equation dXt = -f3Xt dt + dWt that 

if Xo = O.  

6 .  Let 0/ be an adapted process with 1 1 0/ I I  < 00.  Show that I I I (0/ ) 1 1 2 = 1 1 0/ I I .  

13.9 Ito's formula 

The ' stochastic differential equation' , or 'SDE' , 

(1) dX = /L(t ,  X) dt + a (t , X) dW 

i s  a shorthand for the now well-defined integral equation 

solutions to which are called Ito processes, or diffusions. Under rather weak conditions on /L, 
a, and Xo , it may be shown that the SDE ( 1 )  has a unique solution which is a Markov process 
with continuous sample paths. The proof of this  is beyond our scope. 

We tum to a central question. If X satisfies the SDE ( 1 )  and Yt = f(t ,  Xt ) for some given 
f : [0, (0) x R -+ R, what is the infinitesimal formula for the process Y? 
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(2) Theorem. Ito 's formula. If dX = /.L (t , X) d t + a (t , X) d W and Yt = f (t , X t ), where 
f is twice continuously differentiable on [0, (0) x JR, then Y is also an Ito process, given byt 

(3) dY = [fx (t , X)/.L (t , X) + ft (t , X) + !- fxx (t , X)a2 (t , X) ] dt + fx (t , X)a (t ,  X) dW. 

This formula may be extended to cover multivariate diffusions. We do not prove Ito ' s  
formula at the level of generality of (2) ,  instead specializing to the following special case 
when X is the standard Wiener process. The differentiability assumption on the function f 
may be weakened. 

(4) Theorem. Ito 's simple formula. Let f (s ,  w) be thrice continuously differentiable on 
[0, (0) x JR, and let W be a standard Wiener process. The process Yt = ft (t , Wt ) is an Ito 
process with 

dY = [ft (t , W) + !- fww (t , W) ] dt + fw (t , W) dW. 

Sketch proof. Let n :::: 1 , 8 = tin ,  and write f).j = W(j+ l )8 - Wj8 . The idea is  to express 
f(t , Wt ) as the sum 

n- l 
(5) f(t , Wt ) - f(O, Wo) = L[f (J + 1 )8 , W(j+ l)8) - f (j8 ,  W(j+ l )8 ) ] 

j=o 
n- l 

+ L [f (J8 ,  W(j+ l)8 ) - f(J8 ,  Wj8 ) ] 
j=O 

and to use Taylor's theorem to study its behaviour as n -+ 00. We leave out the majority of 
details necessary to achieve this, presenting instead the briefest summary. 

By (5) and Taylor's theorem, there exist random variables (}j E [f 8 , (j + 1 )8 ] and Qj E 
[Wj8 , W(j+ 1 )8 ] such that 

n- l n- l 
(6) f (t , Wt ) - f (O, Wo ) = L ft «(}j , W(j+l )8 )8 + L fw (J8 , Wj8) f).j 

j=O j=o 
n- l n- l 

+ !- L fww (J8 ,  Wj8 )f).} + � L fwww (J8 ,  Qj )f).] . 
j=O j=o 

We consider these terms one by one, as n -+ 00. 
( i )  I t  i s  a consequence of the continuity properties of f and W that 

n- l t 
L ft «(}j , W(J+l ) 8 )8  � 10 ft (s , Ws ) ds . 
j=O 0 

(ii) Using the differentiability of f, one may see that L;;:� fw (J8 , Wj8 )f).j converges in 

mean square as n -+ 00 to the Ito integral J� fw (s , Ws ) dWs '  

tHere ft Ct, X) and fAt,  X )  denote the derivatives of f with respect to its first and second arguments 
respectively, and evaluated at Ct , Xt ) .  
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(iii) We have that E(�J ) = 8 , and �J and �� are independent for j i= k. It follows after 
some algebra that 

n- 1 n- 1 
L fww (J8 , Wj8) �J - L fww (J 8 , -W:i 8 ) 8 � o. 
j=O j=O 

This implies the convergence of the third sum in (6) to the integral � f� f ww (s , Ws ) ds . 
(iv) It may be shown after some work that the fourth term in (6) converges in mean square 

to zero as n -+ 00, and the required result follows by combining (i)-(iv) . • 

(7) Example. (a) Let dX = J-i(t ,  X) dt + a (t ,  X) dW and let Y = X2 . By Theorem (2) , 

dY = (2J-iX + 0'2) dt + 2aX dW = a (t , X)2 dt + 2X dX. 

(b) Let Yt = W( . Applying part (a) with J-i = 0 and a = 1 (or alternatively using Ito 's simple 
formula (4», we find that d Y  = dt + 2W dW.  By integration, 

fa t 
Ws dWs = i (Yt - Yo - t) = � (W( - t) 

in agreement with formula ( 1 3 . 7 .5) . 

(8) Example. Product rule. Suppose that 

dX = J-i1 (t , X) dt + a1 (t , X) dW, dY = J-i2 (t , Y) dt + a2 (t , Y) dW, 

in the notation of Ito ' s  formula (2) . We have by Example (7) that 

d(X2) = 0'1 (t , X)2 dt + 2X dX, 

d (y2) = a2 (t , Y)2 dt + 2Y dY, 

d«X + y)2) = (0'1 (t , X) + a2 (t , y» )2 dt + 2(X + Y) (dX + dY) . 

Using the representation XY = � { (X + Y)2 - X2 - y2 } ,  we deduce the product rule 

d(XY) = X dY + Y dX + 0'1 (t , X)a2 (t , Y) dt . 

• 

Note the extra term over the usual Newton-Leibniz rule for differentiating a product. • 

(9) Example. Geometric Brownian motion. Let Yt = exp(J-it + a Wt ) for constants J-i, a .  
Ito ' s  simple formula (4) yields 

so that Y is a diffusion with instantaneous mean a (t ,  y) = (J-i + ia2)y and instantaneous 
variance b (t , y) = a2y2 . As indicated in Example ( 1 2 .7 . 1 0) ,  the process Y is a martingale if 
and only if J-i + ia2 

= o. • 
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Exercises for Section 1 3 .9 

In the absence of any contrary indication, W denotes a standard Wiener process ,  and :Ft is the smallest 
a-field containing all null events with respect to which every member of {Wu : 0 ::::: u ::::: t} is 
measurable. 

1. Let X and Y be independent standard Wiener processes. Show that, with Rt = Xt + Yr, 

lo t Xs lo t Ys Zt = - dXs + - dYs o Rs O Rs 

is a Wiener process. [Hint: Use Theorem ( 1 3 .8 . 1 3) . ]  Hence show that R2 satisfies 

Rl = 2 fot 
Rs dWs + 2t . 

Generalize this conclusion to  n dimensions . 

2. Write down the SDE obtained via Ito's formula for the process Yt = wi, and deduce that 
E(Wi) = 3t2 . 
3. Show that Yt = t Wt is an Ito process, and write down the corresponding SDE. 

4. Wiener process on a circle. Let Yt = ei Wt . Show that Y = X I + i X 2 is a process on the unit 
circle satisfying 

5. Find the SDEs satisfied by the processes: 
(a) Xt = Wt! (l + t ) , 
(b) Xt = s in Wt , 

I dX2 = - zX2 dt + Xl dW. 

(c) [Wiener process on an ellipse] Xt = a cos Wt , Yt = b sin Wt , where ab I=- O. 

13.10 Option pricing 

It was essentially the Wiener process which Bachelier proposed in 1 900 as a model for the 
evolution of stock prices. Interest in the applications of diffusions and martingales to stock 
prices has grown astonishingly since the fundamental work of Black, Scholes, and Merton in 
the early 1 970s. The theory of mathematical finance is now well developed, and is one of the 
most striking modem applications of probability theory. We present here one simple model 
and application, namely the Black-Scholes solution for the pricing of a European call option. 
Numerous extensions of this result are possible, and the reader is referred to one of the many 
books on mathematical finance for further details (see Appendix II) . 

The Black-Scholes model concerns an economy which comprises two assets, a 'bond ' (or 
'money market account' )  whose value grows at a continuously compounded constant interest 
rate r, and a ' stock' whose price per unit is a stochastic process S = { St : t :::: O} indexed by 
time t. It is assumed that any quantity, positive or negative real valued, of either asset may 
be purchased at any timet .  Writing Mt for the cost of one unit of the bond at time t, and 

tNo taxes or commissions are payable, and the possession of stock brings no di\'idends. The purchase of 
negative quantities of bond or stock is called ' short selling' and can lead to a ' short position ' .  
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nonnalizing so that Mo = 1 ,  we have that 

(1) dMt = rMt dt or Mt = ert . 
A basic assumption of the Black-Scholes model is that S satisfies the stochastic differential 
equation 

(2) dSt = St (j-t dt + O' dWt )  with solution St = exp( JL - �0'2) t + O' Wt) , 
where W is a standard Wiener process and we have nonnalized by setting So = 1 .  That is 
to say, S is a geometric Brownian motion ( 1 3 .9 .9) with parameters JL, 0' ; in this context, 0' is 
usually called the volatility of the price process. 

The market pennits individuals to buy so-called ' forward options'  on the stock, such prod­
ucts being tenned 'derivatives ' . One of the most important derivatives, the 'European call 
option' , pennits the buyer to purchase one unit of the stock at some given future time and at 
some predetennined price. More precisely, the option gives the holder the right to buy one 
unit of stock at time T ,  called the 'exercise date ' , for the price K,  called the ' strike price' ;  
the holder is not required to exercise this right. The fundamental question is to detennine 
the 'correct price '  of this option at some time t satisfying t :::: T . The following elucidation 
of market forces leads to an interpretation of the notion of 'correct price' , and utilizes some 
beautiful mathematicst .  

We have at time T that: 
(a) if ST > K ,  a holder of the option can buy one unit of the stock for K and sell immediately 

for ST , making an immediate profit of ST - K ,  
(b) if ST :::: K,  i t  would be preferable to buy K / ST (:::: 1 ) units of the stock on the open 

market than to exercise the option. 
It follows that the value CPT of the option at time T is given by CPT = max{ST - K, O} = 
(ST - K)+ . The discounted value of CPT at an earlier time t is e-r (T-t) (ST - K)+ , since an 
investment at time t of this sum in the bond will be valued at CPT at the later time T .  One might 
naively suppose that the value of the option at an earlier time is given by its expectation; for 
example, the value at time 0 might be CPO = lE(e-rT (ST - K)+) . The financial market does 
not operate in this way, and this answer is wrong. It turns out in general that, in a market 
where options are thus priced according to the mean of their discounted value, the buyer of 
the option can devise a strategy for making a certain profit. Such an opportunity to make a 
risk-free profit is called an arbitrage opportunity and it may be assumed in practice that no 
such opportunity exists . In order to define the notion of arbitrage more properly:j:,  we discuss 
next the concept of 'portfolio ' .  

Let :Ft be the a-field generated by the random variables {Su : 0 :::: u :::: t } .  A portfolio 
is a pair a = {at : t :::: o} ,  fJ = {fJt : t :::: O} of stochastic processes which are adapted to 
the filtration :J:' = {:Ft : t :::: OJ . We interpret the pair (a, fJ) as a time-dependent portfolio 
comprising at units of stock and fJt units of the bond at time t .  The value at time t of the 
portfolio (a, fJ)  is given by the value function 
(3) 

t It would in practice be a mistake to adhere over rigidly to strategies based on the mathematical facts 
presented in this section and elsewhere. Such results are well known across the market and their use can be 
disadvantageous, as somp have found out to their cost. 

tSuch a concept was mentioned for a discrete system in Exercise (6.6.3) .  
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and the portfolio is called self-financing if 

(4) 

which is to say that changes in value may be attributed to changes in the market only and 
not to the injection or withdrawal of funds. Condition (4) is a consequence of the modelling 
assumption implicit in (2) that S is an Ito integral. It is is explained slightly more fully via 
the following discretization of time. Suppose that E > 0, and that time is divided into the 
intervals In = [nE, (n + l ) E) . We assume that prices remain constant within each interval In . 
We exit interval In_ l  having some portfolio (a(n- l )E , f3(n- l )E ) .  At the start of In this portfolio 
has value Vn = a(n- I )E SnE + f3(n- l )EMnE . The self-financing of the portfolio implies that the 
value at the end of In equals Vn ,  which is to say that 

(5) 

Now, 

(6) Vn+ l - Vn = anE S(n+ I )E + f3nEM(n+l )E - a(n- l )E SnE - f3(n- l )EMnE 
= anE (S(n+ I )E - SnE ) + f3nE (M(n+ I )E - MnE ) 

by (5) . Condition (4) is motivated by passing to the limit E {- O. 
We say that a self-financing portfolio (a, f3 ) replicates the given European call option if its 

value VT (a, f3) at time T satisfies h(a, f3) = (ST - K)+ almost surely. 
We now utilize the assumption that the market contains no arbitrage opportunities .  Let 

t < T, and suppose that two options are available at a given time t. Option I costs ct per unit 
and yields a (strictly positive) value </J at time T; Option II costs C2 per unit and yields the 
same value </J at time T .  We may assume without loss of generality that C }  � C2 . Consider 
the following strategy : at time t, buy -C2 units of Option I and ct units of Option II. The total 
cost is (-C2)C l + ct C2 = 0, and the value at time T is (-C2)</J + ct </J = (ct - C2)</J .  If ct > C2 , 
there exists a strategy which yields a risk-free profit, in contradiction of the assumption of no 
arbitrage. Therefore C l = C2 . 

Assume now that there exists a self-financing portfolio (a, f3 ) which replicates the European 
call option . At time t « T) we may either invest in the option, or we may buy into the portfolio . 
Since their returns at time T are equal, they must by the argument above have equal cost at 
time t .  That is to say, in the absence of arbitrage, the 'correct value' of the European call 
option at time t is Vt (a, f3) . In order to price the option, it remains to show that such a portfolio 
exists , and to find its value function. 

First we calculate the value function of such a portfolio, and later we shall return to the 
question of its existence. Assume that (a, f3 )  is a self-financing portfolio which replicates the 
European call option . It would be convenient if its discounted value function e-rt Vt were a 
martingale, since it would follow that e-rt Vt = E(e-rT VT I :Ft) where VT = (ST - K)+ . 
This is not generally the case, but the following clever argument may be exploited. Although 
e-rt Vt is not a martingale on the probability space (Q , :F ,  JP') , it turns out that there exists an 
alternative probability measure Q on the measurable pair (Q , :F) such that e-rt Vt is indeed a 
martingale on the probability space (Q , :F ,  Q) . The usual proof of this statement makes use 
of a result known as the Cameron-Martin-Girsanov formula which is beyond the scope of 
this book. In the case of the Black-Scholes model, one may argue directly via the following 
'change of measure' formula. 
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(7) Theorem. Let B = {Bt : 0 ::s t ::s T} be a Wiener process with drift 0 and instantaneous 
variance 0'2 on the probability space (Q , :F ,  lP'), and let v E lR. Define the random variable 

{ V V2 } A = exp - BT - - T , 
0'2 20'2 

and the measure IQl by IQl(A) = E(AIA) .  Then IQl is a probability measure and, regarded 
as a process on the probability space (Q , :F , 1Ql), B is a Wiener process with drift v and 
instantaneous variance 0'2. 

Proof. That IQl is a probability measure is a consequence of the fact that 

The distribution of B under IQl is specified by its finite-dimensional distributions (we recall 
the discussion of Section 8 .6) .  Let 0 = to < tl < . . .  < tn = T and XO , X I , . . .  , Xn = X E lR. 
The notation used in the following is informal but convenient. The process B has independent 
normal increments under the measure lP'. Writing {Bt, E dxd for the event that Xi < Btl ::s 
Xi + dXi , we have that 

It follows that, under 1Ql, the sequence Btl ' Bt2 , . . .  , Btn is distributed in the manner of a 
Wiener process with drift v and instantaneous variance 0'2 . Since this holds for all sequences 
tl , t2 , . . .  , tn and since B has continuous sample paths, the claim of the theorem follows.  • 

With W the usual standard Wiener process, and v E R there exists by Theorem (7) a 
probability measure IQlv under which a W is a Wiener process with drift v and instantaneous 
variance 0'2 . Therefore, under IQlv , the process W given by a Wt = -vt + a Wy is a standard 
Wiener process. By equation (2) and the final observation of Example ( 1 3 .9 .9) ,  under IQlv the 
process 

is a diffusion with instantaneous mean and variance a (t ,  x) = (JL-r+v)x and b (t , x) = O'2x2 . 
By Example ( 1 2 .7 . 1 0) ,  it is a martingale under IQlv if JL - r + v = 0, and we set v = r - JL 
accordingly, and write IQl = IQlv . The fact that there exists a measure IQl under which e-rt St is 
a martingale is pivotal for the solution to this problem and its generalizations 
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It is a consequence that, under 'OJ, e-rt Vt constitutes a martingale. This may be seen as 
follows. By the product rule of Example ( 1 3 .9 .8) ,  

(8) d(e-rt Vr ) = e-rt dVt - re-rt Vt dt 
= e-rtOlt dSt - re-rtOlt St dt + e-rt f3t (dMt - rMr ) by (4) and (3) 

= Olt e-rt St ( JL  - r) dt + a dWt )  by ( 1 )  and (2) 

= Olte-rt St (-v dt + a dWt ) ,  

where v = r - JL as above. Under 'OJ ,  a W i s  a Wiener process with drift v and instantaneous 
variance a2 , whence a W = - vt + a W  is a Wiener process with drift 0 and instantanteous 
variance a2 . By (8) ,  

which, by Theorem ( 1 3 . 8 . 1 1 ) ,  defines a martingale under 'OJ.  Now Vt equals the value of the 
European call option at time t and, by the martingale property, 

(9) 

where lElQ> denotes expectation with respect to 'OJ. The right side of (9) may be computed via the 
result of Exercise ( 1 3 . 1 0. 1 ) ,  leading to the following useful form of the valuet of the option.  

(10) Theorem. Black-Scholes formula. Let t < T. The value at time t of the European call 
option is 

(11) 
where t1> is the N(O. 1) distribution junction and 

(12) log(x/ K) + (r + !a2) (T - t) dl (t , X) = .;r:::::t , dz (t , x) = dl (t , x) - aJT - t . 
a T - t  

Note that the Black-Scholes formula depends on the price process through r and a2 and 
not through the value of JL. A similar formula may be derived for any adapted contingent 
claim having finite second moment. 

The discussion prior to the theorem does not constitute a full proof, since it was based 
on the assumption that there exists a self-financing strategy which replicates the European 
call option. In order to prove the Black-Scholes formula, we shall show the existence of a 
self-financing replicating strategy with value function ( 1 1 ) .  This portfolio may be identified 
from ( 1 1 ) , since ( 1 1 )  is the value function of the portfolio (Ol, (3) given by 

(13) 

tThe value given in Theorem ( 1 0) is sometimes called the 'no arbitrage value' or the 'risk-neutral value' of 
the option. 
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Let ; (t , x ) , 1/I (t ,  x ) be smooth functions of the real variables t ,  x ,  and consider the portfolio 
denoted (; , 1/1) which at time t holds ; (t ,  St ) units in stock and 1/I (t , Sr ) units in the bond. 
This portfolio has value function Wt (; , 1/1) = w(t ,  St ) where 

(14) w (t ,  x) = ; (t ,  x )x + 1/I(t ,  x )ert . 

(15) Theorem. Let ;, 1/1 be such that the function w given by ( 1 4) is twice continuously 
differentiable. The portfolio (; , 1/1) is self-financing if and only if: 

(16) 

(17) 

x;x + ert 1/Ix = 0, 

�a2x2;x + X;t + ert 1/lt = 0, 

where fx , ft denote derivatives with respect to x, t . 
Proof. We apply Ito ' s  formula ( 1 3 .9 .2) to the function w of equation ( 1 4) to find via (2) that 

whereas, by (4) and ( 1 ) , (; , 1/1) is self-financing if and only if 

(18) 

Equating coefficients of the infinitesimals, we deduce that (; , 1/1) is self-financing if and only 
if ; = Wx and r1/lert = Wt + �a2x2wxx , which is to say that: 

(19) ; = ; + ;xx + 1/Ixert , 
(20) r1/lert = ;tX + 1/Itert + r1/lert + �a2x2 (;xxx + 2;x + 1/Ixxert ) . 

Differentiating ( 1 9) with respect to x yields 

(21) 

which may be inserted into (20) to give as required that 

• 

Theorem ( 1 5) leads to the following characterization of value functions of self-financing 
portfolios. 

(22) Corollary. Black-Scholes equation. Suppose that w (t ,  x ) is twice continuously differ­
entiable. Then w (t ,  St ) is the value function of a self-financing portfolio if and only if 

(23) 1 2 2 0 2a x Wxx + rxwx + Wt - rw = . 

The Black-Scholes equation provides a means for finding self-financing portfolios which 
replicate general contingent claims. One ' simply ' solves equation (23) subject to the boundary 
condition imposed by the particular claim in question. In the case of the European call option, 
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the appropriate boundary condition is w (T, x )  = (x - K) + . It  is not always easy to find the 
solution, but there is a general method known as the 'Feynman-Kac formula' , not discussed 
further here, which allows a representation of the solution in terms of a diffusion process. 
When the solution exists, the claim is said to be 'hedgeable ' ,  and the self-financing portfolio 
which replicates it is called the 'hedge' .  

Proof. Assume that w satisfies (23), and set 

It is easily checked that the portfolio (; ,  1jf) has value function w(t ,  St ) and, via (23 ) ,  that the 
pair ; , 1jf satisfy equations ( 1 6) and ( 1 7) .  

Conversely, i f  w(t ,  Sf ) is the value of  a self-financing portfolio then w et , x )  = ; (t , x)x + 
1jf(t , x)ert for some pair ; ,  1jf satisfying equations ( 1 6) and ( 1 7) .  We compute Wx and compare 
with ( 1 6) to find that ; = wx . Setting 1jf = e-rt (w - x wx ) , we substitute into ( 1 7) to deduce 
that equation (23) holds. • 

Proof of Theorem (10). Finally we return to the proof of the Black-Scholes formula, showing 
first that the portfolio (a, fJ) ,  given in equations ( 1 3) ,  is self-financing . Set 

aCt ,  x )  = <I> (dJ ( t ,  x ) ) ,  fJ (t ,  x )  = _Ke-rT <I> (d2 (t ,  x ) ) ,  

where d l  and d2 are given in ( 1 2) .  We note from ( 1 2) that 

(24) di = dt - 2 10g(x/K) - 2r (T - t ) ,  

and i t  i s  straightforward to deduce b y  substitution that the pair a, fJ satisfy equations ( 1 6) and 
( 1 7) .  Therefore, the portfolio (a, fJ) is self-financing. By construction, it has value function 
Vt (a, fJ) given in ( 1 1 ) . 

We may take the limit in ( 1 1 )  as t t T . Since 

if ST < K, 
i f  ST > K, 

for i = 1 , 2 , we deduce that VT (a, fJ)  = (ST -K)+ whenever ST =1= K . Now lJD(ST = K) = 0, 
and therefore VT (a, fJ) = (ST - K)+ almost surely. It follows as required that the portfolio 
(a, fJ)  replicates the European call option . • 

Exercises for Section 1 3 . 1 0  

In the absence of any contrary indication, W denotes a standard Wiener process, and :Ft is the smallest 
a -field containing all null events with respect to which every member of { Wu : 0 :'S u :'S t } is 
measurable. The process St = exp« fL - J(2) + a Wt ) is a geometric Brownian motion, and r :::: 0 
is the interest rate. 

1. (a) Let Z have the N(y, ,2) distribution. Show that 

( Z + ) y+ � !2 ( IOg(a/K) + Y ) ( IOg(a /K) + Y ) lE (ae - K) = ae k <I> + , - K <I> 
, , 

where <I> is the N(O, 1 )  distribution function. 
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(b) Let Q be a probability measure under which a W is a Wiener process with drift r - f1- and 
instantaneous variance a2 . Show for 0 :'S t :'S T that 

where 

log(x / K) + (r + ia2) (T - t) 
dl (t , x ) = � , d2 (t, X) = dj (t , x) - a�. 

a T - t 

2. Consider a portfolio which, at time t, holds ; (t , S) units of stock and 1/f (t , S) units of bond, and 
assume these quantities depend only on the values of Su for 0 :'S u :'S t .  Find the function 1/f such that 
the portfolio is self-financing in the three cases :  
(a) ; ct ,  S) = I for all t ,  S, 
(b) ; ct ,  S) = St , 

(c) ; ct ,  S) = l Sv dv .  

3 .  Suppose the stock price St is itself a Wiener process and the interest rate r equals 0 ,  so  that a 
unit of bond has unit value for all time. In the notation of Exercise (2), which of the following define 
self-financing portfolios? 
(a) ; ct ,  S) = 1/f (t, S) = 1 for all t , S, 
(b) ; ct , S) = 2St , 1/f (t , S) = -sl - t ,  
(c)  ; ct ,  S) = -t, 1/f (t , S) = IJ SS ds, 
(d) ; ct , S) = IJ Ss ds, 1/f (t, S) = - IJ S} ds . 
4. An 'American call option' differs from a European call option in that it may be exercised by the 
buyer at any time up to the expiry date. Show that the value of the American call option is the same 
as that of the corresponding European call option, and that there is no advantage to the holder of such 
an option to exercise it strictly before its expiry date. 

S. Show that the Black-Scholes value at time 0 of the European call option is an increasing function 
of the initial stock price, the exercise date, the interest rate, and the volatility, and is a decreasing 
function of the strike price. 

13.11  Passage probabilities and potentials 

In this final section, we study in a superficial way a remarkable connection between probability 
theory and classical analysis, namely the relationship between the sample paths of a Wiener 
process and the Newtonian theory of gravitation. 

We begin by recalling some fundamental facts from the theory of scalar potentials .  Let us 
assume that matter is distributed about regions of Rd . According to the laws of Newtonian 
attraction, this matter gives rise to a function ¢ : Rd -+ R which assigns a potential ¢ (x) to 
each point x = (X I ,  X2 , . . .  , Xd ) E Rd . In regions of space which are empty of matter, the 
potential function ¢ satisfies 

(1) Laplace 's equation: 

where the Laplacian \l2¢ is given by 

(2) 
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It is an important application of Green' s  theorem that solutions to Laplace's equation are 
also solutions to a type of integral equation. We make this specific as follows .  Let x lie in the 
interior of a region R of space which is empty of matter, and consider a ball B contained in R 
with radius a and centre x. The potential </J (x) at the centre of B is the average of the potential 
over the surface 1; of B .  That is to say, </J (x) may be expressed as the surface integral 

(3) </J (x) = ( </J (Y; dS.  lYEb  4na 

Furthermore, </J satisfies (3) for all such balls if and only if </J is a solution to Laplace's equation 
( 1 )  in the appropriate region. 

We turn now to probabilities. Let W(t) = ( Wl (t) ,  W2 (t ) ,  . . .  , Wd (t» be a d-dimensional 
Wiener process describing the position of a particle which diffuses around JRd , so that the 
Wi are independent one-dimensional Wiener processes. We assume that W (0) = w and that 
the Wi have variance parameter a2 . The vector W (t ) contains d random variables with joint 
density function 

(4) 

Let H, J be disjoint subsets of JRd which are 'nice ' in some manner which we will not make 
specific. Suppose the particle starts from W(O) = w, and let us ask for the probability that it 
visits some point of H before it visits any point of J .  A particular case of this question might 
arise as follows. Suppose that w is a point in the interior of some closed bounded connected 
domain D of ]Rd , and suppose that the surface a D which bounds D is fairly smooth (if D is a 
ball then a D  is the bounding spherical surface, for example) .  Sooner or later the particle will 
enter a D for the first time. If aD = H U J for some disjoint sets H and J, then we may ask 
for the probability that the particle enters a D at a point in H rather than at a point in J (as an 
example, take D to be the ball of radius 1 and centre w, and let H be a hemisphere of D) . 

In the above example, the process was bound (almost surely) to enter H U J at some time. 
This is not true for general regions H, J. For example, the hitting time of a point in JR2 

is almost surely infinite, and we shall see that the hitting time of a sphere in JR3 is infinite 
with strictly positive probability if the process starts outside the sphere. In order to include 
all eventualities, we introduce the hitting time TA = inf{t  : W(t) E A} of the subset A of 
]Rd, with the usual convention that the infimum of the empty set is 00. We write lPw for the 
probability measure which governs the Wiener process W when it starts from W(O) = w. 

(5) Theorem. Let H and J be disjoint 'nice ' subsetst ofJRd such that H U J is closed, and 
let p ew) = IP'w(TH < TJ).  The function p satisfies Laplace 's equation, V2 pew) = 0, at all 
poirtts w ¢. H U J, with the boundary conditions 

{ I  if W  E H, 
pew) = 0 if w E J .  

tWe do not explain the condition that H and J be 'nice' , but note that sets with smooth surfaces, such as 
baIls or Platonic solids, are nice. 
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Proof. Let w ¢. H U J .  Since H U J is assumed closed, there exists a ball B contained 
in Il�d \ (H U J) with centre w. Let a be the radius of B and I; its surface. Let T = 
inf{t  : W (t ) E I; }  be the first passage time of W to the set I; .  The random variable T is 
a stopping time for W, and it is not difficult to see as follows that lP'w (T < (0) = 1 .  Let 
Ai = { l W (i ) - W(i - 1 ) [ :::: 2a } and note that lP'w (A t )  < 1 ,  whence 

by independence 

as n -+ 00 .  

We now condition on  the hitting point W e T ) .  By the strong Markov property, given W e T ) ,  

the path of  the process after time T i s  a Wiener process with the new starting point W (T) .  It 
follows that the (conditional) probability that W visits H before it visits J is p(W(T)) ,  and 
we are led to the following formula: 

(6) p ew) = ( lP'w {TH < TJ I WeT) = Y) fw (Y) dS 
lYEh  

where fw i s  the conditional density function o f  WeT) given W(O) = w .  Using the spherical 
symmetry of the density function in (4), we have that WeT)  is uniformly distributed on I; ,  
which i s  to say that 

and equation (6) becomes 

(7) 

1 
fw (Y) = 

4--z for all Y E I; , 
na 

p ew) = { p(Y; dS. 
lYEh  4na 

This integral equation holds for any ball B with centre w whose contents do not overlap H U J, 
and we recognize it as the characteristic property (3) of solutions to Laplace's  equation ( 1 ) .  
Thus p satisfies Laplace's equation. The boundary conditions are derived easily. • 

Theorem (5) provides us with an elegant technique for finding the probabilities that W visits 
certain subsets of Rd . The principles of the method are simple, although some of the ensuing 
calculations may be lengthy since the difficulty of finding explicit solutions to Laplace's 
equation depends on the boundary conditions (see Example ( 14) and Problem ( 1 3 . 1 2 . 1 2) , for 
instance). 

(8) Example. Take d = 2, and start a two-dimensional Wiener process W at a point W (0) = 
W E R2 . Let H be a circle with radius E (> 0) and centre at the origin, such that w does not 
lie within the inside of H .  What is the probability that W ever visits H?  
Solution. We shall need two boundary conditions in  order to find the appropriate solution 
to Laplace' s  equation. The first arises from the case when w E H .  To find the second, we 
introduce a second circle J, with radius R and centre at the origin, and suppose that R is much 
larger than E .  We shall solve Laplace's equation in polar coordinates, 

(9) 
�� (r ap ) + � a2p 

- 0 r ar ar r2 alP - , 
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in the region E :::: r :::: R, and use the boundary conditions 

(10) 
{ I  if w E H, 

p (w) = 
O 'f J 1 W E . 

Solutions to equation (9) having circular symmetry take the form 

p(w) = A log r + B  if w = (r, e ) ,  
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where A and B are arbitrary constants. We use the boundary conditions to obtain the solution 

log(rj R) 
PR (W) = 

10g(Ej R) 
, E :::: r :::: R ,  

and we deduce by Theorem (5) that lP'w (TH < T, ) = PR (W) . 
In the limit as R � 00, we have that T, � 00 almost surely, whence 

We conclude that W almost surely visits any E -neighbourhood of the origin regardless of its 
starting point. Such a process is called persistent (or recurrent) since its sample paths pass 
arbitrarily closely to every point in the plane with probability 1 .  • 

(1 1) Example. We consider next the same question as Example (8) but in three dimensions. 
Let H be the sphere with radius E and centre at the origin of JR.3 . We start a three-dimensional 
Wiener process W from some point W (0) = W which does not lie within H . What is the 
probability that W visits H ?  
Solution. A s  before, let J b e  a sphere with radius R and centre at the origin, where R i s  much 
larger than E. We seek a solution to Laplace's equation in spherical polar coordinates 

(12) 

subject to the boundary conditions ( 1 0) .  Solutions to equation ( 1 2) with spherical symmetry 
have the form 

(13) 
A 

p (w) = - + B if w = (r, e , </J) . 
r 

We use the boundary conditions ( 1 0) to obtain the solution 

Let R � 00 to obtain by Theorem (5) that 

E 
PR (W) � lP'(TH < 00) = - , 

r 
r > E .  
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That is to say, W ultimately visits H with probability E / r .  It is perhaps striking that the answer 
is directly proportional to E .  

We have shown that the three-dimensional Wiener process i s  not persistent, since its sam­
ple paths do not pass through every E -neighbourhood with probability 1 .  This mimics the 
behaviour of symmetric random walks; recall from Problems (5 . 1 2.6) and (6. 1 5 .9) that the 
two-dimensional symmetric random walk is persistent whilst the three-dimensional walk is 
transient. • 

(14) Example. Let � be the surface of the unit sphere in ]R3 with centre at the origin, and let 

H = { (r, e ,  ¢) : r = 1 ,  0 :::: e :::: 17T } 
be the upper hemisphere of � .  Start a three-dimensional Wiener process W from a point 
W (0) = w which lies in the inside of � .  What is the probability that W visits H before it 
visits J = � \ H, the lower hemisphere of � ?  
Solution. The function pew) = J'i!'w (TH < TJ ) satisfies Laplace 's  equation ( 1 2) subject to 
the boundary conditions ( 1 0) .  Solutions to ( 1 2) which are independent of ¢ are also solutions 
to the simpler equation 

a ( 2 ap ) 1 a ( . ap ) 
ar 

r 
ar 

+ 
sin e ae sm e 

ae = o. 
We abandon the calculation at this  point, leaving it to the reader to complete. Some knowledge 
of Legendre polynomials and the method of separation of variables may prove useful .  • 

We may think of a Wiener process as a continuous space-time version of a symmetric 
random walk, and it is not surprising that Wiener processes and random walks have many 
properties in common. In partiCUlar, potential theory is of central importance to the theory of 
random walks. We terminate this chapter with a brief but electrifying demonstration of this. 

Let G = (V, E) be a finite connected graph with vertex set V and edge set E.  For simplicity 
we assume that G has neither loops nor multiple edges. A particle performs a random walk 
about the vertex set V . If it is at vertex v at time n, then it moves at time n + I to one of the 
neighbours of v, each such neighbour being chosen with equal probability, and independently 
of the previous trajectory of the particle. We write Xn for the position of the particle at time 
n, and J'i!'w for the probability measure governing the Xn when Xo = w.  

For A � V, we define the passage time TA = inf{n : Xn  E A } .  Let H and J be  disjoint 
non-empty sets of vertices. We see by conditioning on X] that the function 

(15) 

satisfies the difference equation 

pew) = L J'i!'w (X] = x )p (x ) for w ¢. H U J. 
X E V  

This expresses p (w ) a s  the average o f  the p-values o f  the neighbours o f  w :  

(16) 
1 

pew) = 
dew) x�w 

p (x ) for w ¢. H U J, 
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where d ( w) is the degree of the vertex w and we write x '" w to mean that x and w are 
neighbours. Equation ( 1 6) is the discrete analogue of the integral equation (7) .  The boundary 
conditions are given as before by ( 1 0) .  

Equations ( 1 6) have an interesting interpretation in  terms of  electrical network theory. We 
may think of G as an electrical network in which each edge is a resistor with resistance 1 
ohm. We connect a battery into the network in such a way that the points in H are raised 
to the potential 1 volt and the points in J are joined to earth. It is physically clear that this 
potential difference induces a potential ¢ (w) at each vertex w ,  together with a current along 
each wire. These potentials and currents satisfy a well-known collection of equations called 
Kirchhoff's laws and Ohm's law, and it is an easy consequence of these laws (exercise) that ¢ 
is the unique solution to equations ( 1 6) subject to ( 1 0) .  It follows that 

(17) ¢ (w)  = p ew ) for all w E V. 

This equality between first passage probabilities and electrical potentials is the discrete ana­
logue of Theorem (5) .  

As a beautiful application of  this relationship, we  shall show that random walk on  an  infinite 
connected graph is persistent if and only if the graph has infinite resistance when viewed as 
an electrical network. 

Let G = ( V, E) be an infinite connected graph with countably many vertices and finite 
vertex degrees, and let 0 denote a chosen vertex of G .  We may tum G into an (infinite) 
electrical network by replacing each edge by a unit resistor. For u ,  v E V, let d(u ,  v) be the 
number of edges in the shortest path joining u and v, and define /).n = {v E V ; d(O, v) = n } .  
Let Rn be the electrical resistance between 0 and the set /).n . That i s  to say, 1 / R n  i s  the current 
which flows in the circuit obtained by setting 0 to earth and applying a unit potential to the 
vertices in /).n . It is a standard fact from potential theory that Rn ::: Rn+ 1 , and we define the 
resistance of G to be the limit R(G)  = limn--+oo Rn . 

(18) Theorem. A random walk on the graph G is persistent if and only if R (G) = 00. 

Proof. Since G is connected with finite vertex degrees, a random walk on G is an irreducible 
Markov chain on the countable state space V . It suffices therefore to show that the vertex 0 
is a persistent state of the chain. We write lP' x for the law of the random walk started from 
XO = X . 

Let ¢n be the potential function in the electrical network obtained from G by earthing 0 
and applying unit potential to all vertices in /).n . Note that 0 ::: ¢n (x ) ::: 1 for all vertices x 
(this is an application of what is termed the maximum principle) . We have from the above 
discussion that ¢n (x ) = lP' x (hn < To) ,  where TA denotes the first hitting time of the set A .  
Now T6.n i s  at least the minimum distance from x to /).n , which i s  at least n - d(O, x ) ,  and 
therefore lP' x (T 6.n � 00 as n � 00) = 1 for all x .  It follows that 

(19) ¢n (x ) � lP'x (To = 00) as n � 00. 

Applying Ohm's law to the edges incident with 0, we have that the total current flowing 
out of 0 equals 

1 
L ¢n (x ) = - . 

Rn 
x :x�o 
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We let n � 00 and use equation ( 1 9) to find that 

(20) 
1 

"" lI\ (To = (0) = -­� R (G) x :x�o 

where 1 /00 is interpreted as O. 
We have by conditioning on X 1 that 

1 
lP'O (Xn = 0 for some n > 1 )  = -- L lP'x (To < (0) - d(O) x :x�O 

The claim follows . 

1 1 = 1 -
d(O) 

L lP'x (To = (0) = 1 - d(O)R (G) ' x :x�O 

• 

(21) Theorem. Persistence of two-dimensional random walk. Symmetric random walk on 
the two-dimensional square lattice 71.,2 is persistent. 

Proof. It suffices by Theorem ( 1 8) to prove that R(71.,2) = 00. We construct a lower bound 
for Rn in the following way. For each r ::s n, short out all the points in f'...r (draw your own 
diagram), and use the parallel and series resistance laws to find that 

1 1 1 R > - + - + " ' + -- . n - 4 1 2  8n  - 4 

This implies that Rn � 00 as n � 00, and the result is shown. • 

(22) Theorem. Transience of three-dimensional random walk. Symmetric random walk 
on the three-dimensional cubic lattice 71.,3 is transient. 

Proof. It is a non-trivial and interesting exercise to prove that R(71.,3 ) < 00. See the solution 
of Problem (6. 1 5 .9) for another method of proof. • 

Exercises for Section 1 3 . 1 1  

1. Let G be the closed sphere with radius E and centre at the origin of ]Rd where d :::: 3 .  Let W be a 
d-dimensional Wiener process starting from W(O) = w ¢. G .  Show that the probability that W visits 
G is (E / r )d-2 , where r = I w l .  

2. Let G be an infinite connected graph with finite vertex degrees .  Let !'!.n be the set o f  vertices x 
which are distance n from 0 (that is, the shortest path from x to 0 contains n edges), and let Nn be 
the total number of edges joining pairs x, y of vertices with x E !'!.n , Y E !'!.n+ 1 .  Show that a random 
walk on G is persistent if L:i Ni- 1 = 00. 

3. Let G be a connected graph with finite vertex degrees, and let H be a connected subgraph of G .  
Show that a random walk o n  H is persistent i f  a random walk o n  G i s  persistent, but that the converse 
is not generally true. 
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13.12 Problems 

1. Let W be a standard Wiener process, that is, a process with independent increments and continuous 
sample paths such that W (s + t) - W (s ) is N (0, t ) for t > O. Let a be a positive constant. Show that: 
(a) aW(t/a2) is a standard Wiener process, 
(b) Wet + a) - W(a) is a standard Wiener process, 
(c) the process V ,  given by Vet) = tW ( 1 / t )  for t > 0, V (O) = 0, is a standard Wiener process .  

2. Let X = {X (t ) : t � O} be a Gaussian process with continuous sample paths, zero means, and 
autocovariance function c (s ,  t) = u (s ) v (t ) for s :s t where u and v are continuous functions. Suppose 
that the ratio r et ) = u (t )/v (t ) is continuous and strictly increasing with inverse function r - l . Show 
that Wet) = X(r- 1 (t» / v (r - 1 (t» is a standard Wiener process on a suitable interval of time. 

If c (s ,  t) = s ( 1  - t) for s :s t < 1 ,  express X in terms of W. 

3. Let 13 > 0, and show that U(t) = e-fit W (e2fit - 1 )  is an Ornstein-Uhlenbeck process if W is a 
standard Wiener process .  

4. Let V = { V et) : t � O} be an Ornstein-Uhlenbeck process with instantaneous mean a Ct ,  x ) = 
-f3x where f3 > 0, with instantaneous variance bet , x ) = (12, and with U (O) = u .  Show that V et) is 
N(ue-fit , (12 ( 1 - e-2fit ) / (2f3» .  Deduce that V et )  is asymptotically N (O, i(12/f3) as t --+ 00, and 

show that V is strongly stationary if V (O) is N (O, 1(12/13 ) .  
Show that such a process i s  the only stationary Gaussian Markov process with continuous auto­

covariance function, and find its spectral density function. 

5. Let D = {D (t ) : t � O} be a diffusion process with instantaneous mean a Ct ,  x) = ax and 
instantaneous variance bet , x) = f3x where a and f3 are positive constants. Let D (O) = d. Show that 
the moment generating function of D(t) is 

{ 2ad()eat } 
M(t , () = exp 

f3() ( 1  _ eat ) + 2a 
. 

Find the mean and variance of D(t) ,  and show that lP'(D(t)  = 0) --+ e-2da/fi as t --+ 00. 

6.  Let D be an Ornstein-Uhlenbeck process with D (O) = 0, and place reflecting barriers at  -c and 
d where c, d > O. Find the limiting distribution of D as t --+ 00. 

7. Let Xo , Xl > . . . be independent N(O, 1 )  variables, and show that 

t /!;� sin(kt) W et ) = -Xo + - L..J -- Xk ..jir n k= l k 
defines a standard Wiener process on [0, n j .  
8. Let W b e  a standard Wiener process with W (0) = O .  Place absorbing barriers at -b and b, where 
b > 0, and let Wa be W absorbed at these barriers. Show that Wa (t ) has density function 

which may also be expressed as 

� -J. . ( nn(y + b» ) 
fa(y , t) = L..J an e n t sm 2b ' 

n= l 

-b < y < b, 

-b < y < b, 
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Hence calculate lP'(suPO:::s:9 I W (s ) 1 > b) for the unrestricted process W. 

9. Let D be a Wiener process with drift m, and suppose that D (O) = O. Place absorbing barriers at 
the points x = -a and x = b where a and b are positive real numbers. Show that the probability Pa 
that the process is absorbed at -a is given by 

e2mb - 1 
Pa = 

e2m(a+b) _ 1 
. 

10. Let W be a standard Wiener process and let F (u , v) be the event that W has no zero in the interval 
(u , v) .  
(a) If ab > 0, show that lP' (F (O, t) I W(O) = a ,  W et)  = b) = 1 - e-2ab/ t . 
(b) If W (O) = 0 and 0 < to ::; t1 ::; t2 , show that 

(c) Deduce that, if W(O) = 0 and 0 < t1 ::; t2 , then lP'(F(O, t2 ) I F(O, t1 » = .jtl / t2 ' 

11. Let W be a standard Wiener process. Show that 

lP' ( sup I W (s ) 1 � w) ::; 2lP'( l W (t) 1 � w) ::; 
2� O:::s:::t w 

for w > O. 

Set t = 2n and w = 22n/3 and use the Borel-Cantelli lemma to show that t- I W (t) ---+ 0 a.s. as 
t ---+ 00. 

12. Let W be a two-dimensional Wiener process with W (0) = w, and let F be the unit circle. What 
is the probability that W visits the upper semicircle G of F before it visits the lower semicircle H? 

13. Let W1 and W2 be independent standard Wiener processes; the pair Wet) = (WI (t) ,  W2 (t» 
represents the position of a particle which is experiencing Brownian motion in the plane. Let I be 
some straight line in JR2, and let P be the point on I which is closest to the origin O. Draw a diagram. 
Show that 
(a) the particle visits I, with probability one, 
(b) if the particle hits I for the first time at the point R, then the distance PR (measured as positive or 

negative as appropriate) has the Cauchy density function f(x)  = d/{n (d2+x2) } ,  -00 < x < 00, 
where d is the distance OP, 

(c) the angle POR is uniformly distributed on [- �n,  in ] .  

14. Let ¢ (x + i y )  = u (x ,  y) + i v (x ,  y) be  an analytic function on the complex plane with real part 
u (x ,  y )  and imaginary part v ex , y) ,  and assume that 

Let (Wj , W2) be the planar Wiener process of Problem ( 1 3) above. Show that the pair U (Wl , W2) ,  
V (Wl , W2) is also a planar Wiener process . 
15. Let M(t) = maxO<s<t W(s ) ,  where W is a standard Wiener process. Show that M(t) - Wet) 
has the same distribution as M(t) . 

16. Let W be a standard Wiener process, u E JR, and let Z = (t : W et) = u } . Show that Z is a null 
set (i .e . ,  has Lebesgue measure zero) with probability one. 
17. Let M(t) = maxO<s<t W (s ) ,  where W is a standard Wiener process . Show that M(t) is attained 
at exactly one point in Io;-t J ,  with probability one. 
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18. Sparre Andersen theorem. Let So = 0 and Sm = L'.J=l Xj , where (Xj : 1 :::: j :::: n) is a given 
sequence of real numbers. Of the n ! permutations of (Xj : 1 :::: j :::: n) ,  let Ar be the number of 
permutations in which exactly r values of (sm : 0 :::: m :::: n) are strictly positive, and let Br be the 
number of permutations in which the maximum of (sm : 0 :::: m :::: n) first occurs at the r th place. 
Show that Ar = Br for 0 :::: r :::: n. [Hint: Use induction on n . ]  

19. Arc sine laws. For the standard Wiener process W, let A be  the amount of  time u during the 
time interval [0, t] for which W (u) > 0; let L be the time of the last visit to the origin before t ;  
and let R b e  the time when W attains its maximum i n  [0, t ] .  Show that A, L ,  and R have the same 
distribution function F(x)  = (2/lT:) sin- 1 JXTi for 0 :::: x :::: t .  [Hint: Use the results of Problems 
( 13 . 1 2 . 1 5)-( 1 3 . 1 2 . 1 8) . ]  

20. Let W be a standard Wiener process, and let Ux be the amount of time spent below the level x 
(0:: 0) during the time interval (0, 1 ) ,  that is, Ux = Jd I( W(t ) <x } dt . Show that Ux has density function 

Show also that 

1 ( x2 ) 
fux (u) = 

IT: Ju(l  _ u) 
exp -

2u ' O < u < 1 . 

{ sup {t :::: 1 : Wt = x }  if this set is non-empty , 
Vx = 

1 otherwise, 

has the same distribution as Ux . 

21. Let sign (x ) = 1 if x > 0 and sign (x ) = - 1 otherwise. Show that Vt = J� sign (Ws )  dWs defines 
a standard Wiener process if W is itself such a process. 

22. After the level of an industrial process has been set at its desired value, it wanders in a random 
fashion. To counteract this the process is periodically reset to this desired value, at times 0, T, 2T, . " . 
If Wt is the deviation from the desired level, t units of time after a reset, then { Wt : 0 :::: t < T }  can 
be modelled by a standard Wiener process. The behaviour of the process after a reset is independent 
of its behaviour before the reset. While Wt is outside the range (-a ,  a) the output from the process 
is unsatisfactory and a cost is incurred at rate C per unit time. The cost of each reset is R. Show that 
the period T which minimises the long-run average cost per unit time is T* , where 

[T* a ( a2 ) 
R = C Jo J(2lT: t) 

exp -
2t 

dt .  

23. An economy is governed by the Black-Scholes model in which the stock price behaves as a 
geometric Brownian motion with volatility a ,  and there is a constant interest rate r .  An investor likes 
to have a constant proportion y (E (0, 1» of the current value of her self-financing portfolio in stock 
and the remainder in the bond. Show that the value function of her portfolio has the form Vt = f (t) Sr 
where f(t) = c exp{ ( 1  - y) (i ya 2 + r ) t }  for some constant c depending on her initial wealth . 

24. Let u (t , x) be twice continuously differentiable in x and once in t, for x E IR and t E [0, T] .  Let 
W be the standard Wiener process .  Show that u is a solution of the heat equation 

au 1 a2u 
at = 2 ax2 

if and only if the process Ut = u (T - t , Wt ) ,  0 :::: t :::: T, has zero drift. 



Appendix I 
Foundations and notation 

Summary. Here is a digest of topics with which many readers will already be 
familiar, and which are necessary for a full understanding of the text. 

(A) Basic notation 

The end of each example or subsection is indicated by the symbol . ;  the end of each proof is 
indicated by •. 

The largest integer which is not larger than the real number x is denoted by Lx J ,  and the 
smallest integer not smaller than x by r xl . We use the following symbols :  

JR. == the real numbers ( -00, 00) , 
z == the integers { . . .  , -2, - 1 , 0 , 1 , 2, . . .  } ,  

c == the complex plane { x  + i y  : x ,  y E JR.} .  

Here are two 'delta' functions. { I if i = j , 
Kronecker 0 : If i and j belong to some set S, define oij = ' "  o If l i= l . 
Dirac 0 function: If x E JR., the symbol Ox represents a notional function with the properties 

(a) ox (y) = 0 if y 'I x ,  

(b) i: g (y)ox (Y) dy = g (x )  for all integrable g : JR. -+ R 

(B) Sets and counting 

In addition to the union and intersection symbols, U and n, we employ the following notation: 

set difference: A \ B = {x E A : x fj. B } ,  

symmetric difference: A f::" B = (A \ B) U (B \ A) = {x E A U  B : x fj. A n B } .  

The cardinality I A I  o f  a set A i s  the number of elements contained in A .  The complement of 
A is denoted by A c .  

The binomial coefficient (;) i s  the number o f  distinct combinations of r objects that can be 
drawn from a set containing n distinguishable objects. The following texts treat this material 
in more detail: Halmos ( 1 960) , Ross ( 1 998) , and Rudin ( 1 976) .  
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(C) Vectors and matrices 

565 

The symbol x denotes the row vector (X l , X2 , . . .  ) of finite or countably infinite length. The 
transposes of vectors x and matrices V are denoted by x' and V' respectively. The determinant 
of a square matrix V is written as IV I . 

The following books contain information about matrices, their eigenvalues, and their canon­
ical forms : Lipschutz ( 1 974), Rudin ( 1 976), and Cox and Miller ( 1 965) . 

(D) Convergence 

(1) Limits inferior and snperior. We often use inferior and superior limits, and so we review 
their definitions. Given any sequence {xn : n 2: I }  of real numbers, define 

gm = inf Xn , hm = sup Xn .  n�m n�m 

Then gm :::: gm+ I and hm 2: hm+ I for all m, whence the sequences {gm } and {hm } converge 
as m � 00. Their limits are denoted by ' lim infn-+oo xn ' and ' lim sUPn-+oo xn ' respectively. 
Clearly, lim infn-+oo Xn :::: lim sUPn-+oo Xn • The following result is very useful. 

(2) Theorem. The sequence {xn } converges if and only if lim infn-+oo Xn = lim sUPn-+ oo Xn. 

(3) Cauchy convergence. The criterion of convergence (for all E > 0, there exists N such 
that IXn - X I < E if n 2: N) depends on knowledge of the limit x .  In many practical instances 
it is convenient to use a criterion which does not rely on such knowledge. 

(4) Definition. The sequence {xn } is called Cauchy convergent if, for all E > 0, there exists 
N such that IXm - Xn I < E whenever m, n 2: N. 

(5) Theorem. A real sequence converges if and only if it is Cauchy convergent. 

(6) Continuity of f unctions. We recall that the function g : R � R is continuous at the point 
X if g (x + h) � g (x ) as h � O. We often encounter functions which satisfy only part of this 
condition. 

(7) Definition. The function g : R � R is called: 
(i) right-continuous if g (x + h) � g (x ) as h t o  for all x ,  

(ii) left-continuous if g (x + h) � g (x ) as h t 0 for all x .  

The function g i s  continuous if and only if g i s  both right- and left-continuous. 
If g is monotone then it has left and right limits, limhtO g (x + h) ,  limh-l-O g (x + h), at all 

points x ;  these may differ from g (x ) if g is not continuous at x .  We write 

g (x+) = lim g (x + h) ,  g (x - ) = lim g (x + h) .  
h W h� 
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(8) Infinite products. We make use of the following result concerning products of real 
numbers. 

(9) Theorem. Let Pn = TI7=1 (1 + Xi ) · 
(a) If Xi > 0 for all i ,  then Pn ---+ 00 as n ---+ 00 if and only if Li Xi = 00. 
(b) If - 1 < Xi :::: Of or all i ,  then Pn ---+ 0 ifand only ifLi IXi l = 00. 

(10) Landau's notation. Use of the 010 notationt is standard. If f and g are two functions 
of a real variable x ,  then we say that: 

f (x )  = o(g (x» as X ---+ 00 if lim f (x )/g (x)  = 0, 
x-+oo 

f (x ) = O(g (x» as  x ---+ 00 if I f (x ) / g (x ) I < C for all large x and some constant C. 

Similar definitions hold as  x {- 0, and for real sequences U (n) } ,  {g (n) } as  n ---+ 00 .  

(11) Asymptotics. We write 

f(x )  "" g (x )  as x ---+ 00 if lim f(x ) /g (x) = 1 ,  
x-+oo 

with a similar definition as  x (- 0, and for sequences U(n) } ,  {g (n) } as  n ---+ 00 . When we 
write f (x )  :::::: g (x ) ,  we mean that f(x)  is approximately equal to g (x ) ,  perhaps in some 
limiting sense. 

For more details about the topics in this section see Apostol ( 1 974) or Rudin ( 1 976). 

(E) Complex analysis 

We make use of elementary manipulation of complex numbers, the formula eitx 
= cos (tx ) + 

i sin (tx ) ,  and the theory of complex integration. Readers are referred to Phillips ( 1 957) , 
Nevanlinna and Paatero ( 1 969) , and Rudin ( 1 986) for further details. 

(F) Transforms 

An integral transform of the function g : R ---+ R is a function g of the form 

g(B) = i: K(B , x )g (x ) dx ,  

for some 'kernel' K.  Such transforms are very useful in the theory of differential equations. 
Perhaps most useful is the Laplace transform. 

(12) Definition. The Laplace transform of g is defined to be the function 

i(B) = i: e-ox g (x)  dx where B E e 

whenever this integral exists . 

tInvented by Paul Bachmann in 1 894. 
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As a special case of the Laplace transform of g, set e = i A. for real A. to obtain the Fourier 
transform 

C(A.) = g(iA.) = i: e-iJ...x g (x )  dx . 

Often, we are interested in functions g which are defined on the half-line [0, (0) , with Laplace 
transform 

gee) = 1000 
e-()xg (x ) dx .  

Such a transform is called 'one-sided' .  We often think of g as a function of a real variable e .  
Subject to certain conditions (such as existence and continuity) Laplace transforms have 

the following important properties. 

(13) Inversion. Thefunction g may be retrieved from knowledge ofg by the 'inversionfor­
mula '. 

(14) Convolution. Ifk(x )  = i: g (x - y)h (y) dy then k(e)  = g(e)h(e ) .  

(15) Differentiation. If C : [0 ,  (0) � 'R. and g = dC jdx then e C(e ) = gee)  + C (O). 

It is sometimes convenient to use a variant of the Laplace transform. 

(16) Definition. The Laplace-Stieltjes transform of g is defined to be 

g* (e ) = i: e-()x dg (x ) where e E C 

whenever this integral exists . 

We do not wish to discuss the definition of this integral (it is called a 'Lebesgue-Stieltjes'  
integral and is related to the integrals of Section 5 .6) . You may think about it in the following 
way. If g is differentiable then its Laplace-Stieltjes transform g* is defined to be the Laplace 
transform ofits derivative g', since in this case dg (x ) = g' (x ) dx . Laplace-Stieltjes transforms 
g* always receive an asterisk in order to distinguish them from Laplace transforms. They have 
properties similar to ( 1 3) ,  ( 14) , and ( 1 5) .  For example, ( 1 4) becomes the following. 

(17) Convolution. If k(x )  = i: g (x - y) dh (y) then k* (e ) = g* (e )h * (e ) . 

Fourier-Stieltjes transforms may be defined similarly. 
More details are provided by Apostol ( 1 974) and Hildebrand ( 1 962). 

(G) Difference equations 

The sequence fUr : r � O} is said to satisfy a difference equation if 

(18) 
m 

I >i Un+m-i = f en ) ,  n � 0 ,  
i=O 
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for some fixed sequence ao , aI , . . .  , am and given function f. If aoam =1= 0, the difference 
equation is said to be of order m .  The general solution of this difference equation is 

r mi - 1 

Un = L L ciJ nJ Oi + Pn 
i = 1 j =O 

where 01 , 02 , . . .  , Or are the distinct roots of the polynomial equation 

m 
L aiOm-i = 0, 
i=O 

mi being the multiplicity of the root Oi ,  and {Pn : n 2: O} is any particular solution to ( 1 8) .  In 
general there are m arbitrary constants, whose determination requires m boundary conditions. 

More details are provided by Hall ( 1 983) . 

(H) Partial differential equations 

Let a = a (x ,  y ,  u ) ,  b = b (x ,  y ,  u ) ,  and c = (x , y , u ) be 'nice ' functions of JR.3 , and suppose 
that u (x , y) satisfies the partial differential equation 

(19) 
aU  au 

a - + b - = c. 
ax ay 

The solution u = u (x ,  y) may be thought of as a surface ¢ (x ,  y, u) = 0 where ¢ (x ,  y , u) = 

u - u (x , y ) .  The normal to ¢ at the point (x , y , u (x , y ) )  lies in the direction 

Consider a curve {x (t ) ,  y (t ) ,  u (t )  : t E JR.} in JR.3 defined by x = a, y = b, it = c. The 
direction cosines of this curve are proportional to the vector (a , b , c) ,  whose scalar product 
with V ¢ satisfies 

au au 
V¢ . (a , b ,  c) = -a 

ax 
- b 

ay 
+ c = 0, 

so that the curve is perpendicular to the normal vector V¢. Hence any such curve lies in the 
surface ¢ (x , y ,  u ) = 0, giving that the family of such curves generates the solution to the 
differential equation ( 1 9) .  

For more details concerning partial differential equations, see Hildebrand ( 1 962) , Piaggio 
( 1 965), or O'Neil ( 1 999) . 
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Further reading 

This list is neither comprehensive nor canonical . The bibliography lists books which are useful 
for mathematical background and further exploration. 

Probability theory. Ross ( 1 998), Hoel et al. ( 1 97 1  a), Grimmett and Welsh ( 1 986), and Stirza­
ker ( 1 994, 1 999) are excellent elementary texts . There are many fine advanced texts , including 
Billingsley ( 1 995), Breiman ( 1 968), Chung ( 1 974), Kallenberg ( 1 997) , and Shiryayev ( 1 984) . 
The probability section of Kingman and Taylor ( 1 966) provides a concise introduction to the 
modem theory, as does Ito ( 1 984) .  Moran ( 1 968) is often useful at our level. 

The two volumes of Feller's treatise (Feller 1 968, 1 97 1 ) are essential reading for incipient 
probabilists ; the first deals largely in discrete probability, and the second is an idiosyncratic 
and remarkable encyclopaedia of the continuous theory. Blom et al. ( 1 994) give a modem 
collection of problems of discrete probability in the spirit of Feller. The book of Stoyanov 
( 1 997) provides many cautionary examples . 

The Stein-Chen method of proving distributional limits is discussed at length by Barbour 
et al. ( 1 992) . 

Markov chains. We know of no account of discrete-time Markov chains that is wholly 
satisfactory at this level, though various treatments have attractions. Billingsley ( 1 995) proves 
the ergodic theorem by the coupling argument; Cox and Miller ( 1 965) and Karlin and Taylor 
( 1 975) contain many examples ; Ross ( 1 996) is clear and to the point; Norris ( 1 997) is an 
attractive and slightly more sophisticated account; Kemeny et al. ( 1 976) deal extensively with 
links to potential theory. Chung ( 1 960) and Freedman ( 1 97 1  b) are much more advanced and 
include rigorous treatments of the continuous-time theory; these are relatively difficult books. 
Bn!maud ( 1 998) includes a pleasant selection of recent applications of the theory. 

Other random processes. Our selection from the enormous list of books on these topics is 
necessarily ruthless. Karlin and Taylor ( 1 975, 1 98 1 ) , Cox and Miller ( 1 965), and Ross ( 1 996) 
each look at several kinds of random processes and applications in an accessible way. 

TIme series, stationarity, and extensions thereof, are well covered by Brockwell and Davis 
( 1 987) and by Daley and Vere-Jones ( 1 988) .  

Apart from by Cox ( 1 962), renewal theory is seldom treated in isolation, and is  often 
considered in conjunction with Markov chains and point processes; see Ross ( 1 996), Feller 
( 1 97 1 ) , and Karlin and Taylor ( 1 975 ,  198 1 ) .  

Queueing theory i s  treated i n  the above books also, i n  the form of  examples involving 
Markov chains and renewal processes. Examples of excellent books dedicated to queues 
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include Kelly ( 1 979), Wolff ( 1 989) , and Asmussen ( 1 987) .  
Martingale theory was expounded systematically by Doob ( 1 953) .  The fine book of 

Williams ( 1 99 1 )  provides an invaluable introduction to measure theory (for the probabilist) 
and to martingales in discrete time. Other fairly accessible books include those by Neveu 
( 1 975) , Hall and Heyde ( 1 980), and Kopp ( 1 984). 

Diffusion processes in general, and the Wiener process in particular, are often considered 
by authors in the context of continuous-parameter martingales and stochastic integration. Of 
the torrent of bulky volumes, we mention Revuz and Yor ( 1 999), 0ksendal ( 1 998), Williams 
( 1 979), and Rogers and Williame ( 1 987) .  There are many books on financial mathematics, at 
several levels, and we mention only Baxter and Rennie ( 1 996), Bingham and Kiesel ( 1 998), 
Bjork ( 1 998) , and Nielsen ( 1 999) . 
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History and varieties of probability 

History 

Mathematical probability has its origins in games of chance, principally in games with dice and 
cards. Early calculations involving dice were included in a well-known and widely distributed 
poem entitled De Vetula, written in France around 1 250 AD, (possibly by Richard de Fournival, 
a French cleric). Dice and cards continued as the main vessels of gambling in the fifteenth 
and sixteenth centuries, during which mathematics flowered as part of the Renaissance. A 
number of Italian mathematicians of this period (including Galileo) gave calculations of the 
number and proportion of winning outcomes in various fashionable games. One of them (G. 
Cardano) went so far as to write a book, On games of chance, sometime shortly after 1 550. 
This was not published however until 1 663, by which time probability theory had already had 
its official inauguration elsewhere. 

It was around 1 654 that B .  Pascal and P. de Fermat generated a celebrated correspondence 
about their solutions of the problem of the points . These were soon widely known, and C. 
Huygens developed these ideas in a book published in 1 657, in Latin. Translations into Dutch 
( 1 660) and English ( 1 692) soon followed. The preface by John Arbuthnot to the English 
version (see Appendix  IV) makes it clear that the intuitive notions underlying this work were 
similar to those commonly in force nowadays. 

These first simple ideas were soon extended by Jacob (otherwise known as James) Bernoulli 
in Ars conjectandi ( 17 1 3) and by A. de Moivre in Doctrine of chances ( 1 7 1 8 , 1 738 , 1 756) . 
These books included simple versions of the weak law of large numbers and the central limit 
theorem. Methods, results, and ideas were all greatly refined and generalized by P. Laplace 
in a series of books from 1 774 to 1 827 . Many other eminent mathematicians of this period 
wrote on probability : Euler, Gauss, Lagrange, Legendre, Poisson, and so on. 

However, as ever harder problems were tackled by ever more powerful mathematical tech­
niques during the nineteenth century, the lack of a well-defined axiomatic structure was rec­
ognized as a serious handicap. In 1 900, D. Hilbert included this as his sixth problem, and 
in his 1 933 book Grundbegriffe der Wahrscheinlichkeitsrechnung, written to aid roof repairs 
of his dacha, A. Kolmogorov provided the axioms which today underpin most mathematical 
probability. 
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Varieties 

It is necessary to have an interpretation of probability, for this is what suggests appropriate 
axioms and useful applications .  The oldest interpretations of probability are as: 

(a) an indication of relative frequency, and 
(b) an expression of symmetry or fairness .  

These views were natural given the origins of the subject. A well-made die is symmetrical 
and is equally likely to show any face; an ill-made die is biased and in the long run shows its 
faces in different relative frequencies .  (Recall Ambrose Bierce's definition of 'dice' : dice are 
small polka-dotted cubes of ivory constructed like a lawyer to lie upon any side, commonly 
the wrong one.)  

However, there are many chance events which are neither repeatable nor symmetrical, and 
from earliest times probabilists have been alert to the fact that applications might be sought 
in fields other than gambling. G. Leibniz considered the degree to which some statement 
had been proved, and many later authors concerned themselves with the theory of testimony. 
Indeed, Daston ( 1988) has argued that legal questions and concepts were among the primary 
catalysts for the development of probability ; mathematicians simply used the obvious and 
natural symmetries of fair games to model the far more slippery concepts of equity and fair 
Uudicial) expectation. Such ideas lead to more complicated interpretations of probability such 
as : 

(c) to what extent some hypothesis is logically implied by the evidence, and 
(d) the degree of belief of an individual that some given event will occur. 

This last interpretation is commonly known as ' subjective probability ' ,  and the concept is 
extremely fissiparous. Since different schools of thought choose different criteria for judging 
possible reasons for belief, a wide variety of axiomatic systems have come into being. 

However, by a happy chance, in many cases of importance, the axioms can be reasonably 
reduced to exactly the axioms ( 1 . 3 . 1 )  with which we have been concerned. And systems not 
so reduced have in general proved very intractable to extensive analysis. 

Finally we note that (a)-( d) do not exhaust the possible intepretations of probability theory, 
and that there remain areas where interpretations are as yet unagreed, notably in quantum 
mechanics .  The reader may pursue this in books on physics and philosophy; see Kriiger et al. 
( 1 987) .  
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John Arbuthnot's Preface to 
Of the laws of chance ( 1 692) 

I t  is thought as  necessary to write a Preface before a Book, as i t  is judg'd civil, when you 
invite a Friend to Dinner, to proffer him a Glass of Hock beforehand for a Whet: And this 
being maim'd enough for want of a Dedication, I am resolv'd it shall not want an Epistle to 
the Reader too. I shall not take upon me to determine, whether it is lawful to play at Dice or 
not, leaving that to be disputed betwixt the Fanatick Parsons and the Sharpers ; I am sure it 
is lawful to deal with Dice as with other Epidemic Distempers; and I am confident that the 
writing a Book about it, will contribute as little towards its Encouragement, as Fluxing and 
Precipitates do to Whoring. 

It will be to little purpose to tell my Reader, of how great Antiquity the playing at Dice is . 
I will only let him know that by the AlereLudus, the Antients comprehended all Games, which 
were subjected to the determination of mere Chance; this sort of Gaming was strictly forbid 
by the Emperor Justinian, Cod. Lib. 3. Tit. 43. under severe Penalties; and Phocius Nomocan. 
Tit. 9. Cap. 2 7. acquaints us, that the Use of this was altogether denied the Clergy of that time. 
Seneca says very well, Aleator quanto in arte est melior tanto est nequior; That by how much 
the one is more skilful in Games, by so much he is the more culpable; or we may say of this, 
as an ingenious Man says of Dancing, That to be extraordinary good at it, is to be excellent 
in a Faultt ; therefore I hope no body will imagine I had so mean a Design in this, as to teach 
the Art of Playing at Dice. 

A great part of this Discourse is a Translation from Mons. Huygen 's Treatise, De ratiociniis 
in ludo Alere; one, who in his Improvements of Philosophy, has but one Superior:j:, and I think 
few or no Equals . The whole I undertook for my own Divertisement, next to the Satisfaction 
of some Friends, who would now and then be wrangling about the Proportions of Hazards in 
some Cases that are here decided. All it requir'd was a few spare Hours, and but little Work 
for the Brain; my Design in publishing it, was to make it of general Use, and perhaps persuade 
a raw Squire, by it, to keep his Money in his Pocket; and if, upon this account, I should incur 
the Clamours of the Sharpers, I do not much regard it, since they are a sort of People the world 
is not bound to provide for. 

You will find here a very plain and easy Method of the Calculation of the Hazards of Game, 
which a man may understand, without knowing the Quadratures of Curves, the Doctrine 

tAn apophthegm of Francis Bacon who attributes it to Diogenes .  

tlsaac Newton. 
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of Series 's , or the Laws of Concentripetation of Bodies, or the Periods of the Satellites of 
Jupiter; yea, without so much as the Elements of Euclid. There is nothing required for the 
comprehending the whole, but common Sense and practical Arithmetick; saving a few Touches 
of Algebra, as in the first Three Propositions, where the Reader, without suspicion of Popery, 
may make use of a strong implicit Faith; tho' I must confess, it does not much recommend it 
self to me in these Purposes; for I had rather he would enquire, and I believe he will find the 
Speculation not unpleasant. 

Every man's  Success in any Affair is proportional to his Conduct and Fortune. Fortune 
(in the sense of most People) signifies an Event which depends on Chance, agreeing with 
my Wish; and Misfortune signifies such an one, whose immediate Causes I don ' t  know, and 
consequently can neither foretel nor produce it (for it is no Heresy to believe, that Providence 
suffers ordinary matters to run in the Channel of second Causes) . Now I suppose, that all 
a wise Man can do in such a Case is, to lay his Business on such Events, as have the most 
powerful second Causes, and this is true both in the great Events of the World, and in ordinary 
Games. It is impossible for a Die, with such determin'd force and direction, not to fall on 
such a determin'd side, only I don' t  know the force and direction which makes it fall on such 
a determin'd side, and therefore I call that Chance, which is nothing but want of Art; that 
only which is left to me, is to wager where there are the greatest number of Chances, and 
consequently the greatest probability to gain; and the whole Art of Gaming, where there is 
any thing of Hazard, will be reduc'd to this at last, viz. in dubious Cases to calculate on which 
side there are most Chances; and tho' this can ' t  be done in the midst of Game precisely to an 
Unit, yet a Man who knows the Principles, may make such a conjecture, as will be a sufficient 
direction to him; and tho ' it is possible, if there are any Chances against him at all, that he 
may lose, yet when he chuseth the safest side, he may part with his Money with more content 
(if there can be any at all) in such a Case . 

I will not debate, whether one may engage another in a disadvantageous Wager. Games 
may be suppos'd to be a tryal of Wit as well as Fortune, and every Man, when he enters the 
Lists with another, unless out of Complaisance, takes it for granted, his Fortune and Judgment, 
are, at least, equal to those of his Play-Fellow; but this I am sure of, that false Dice, Tricks 
of Leger-de-main, &c. are inexcusable, for the question in Gaming is not, Who is the best 
Jugler? 

The Reader may here observe the Force of Numbers, which can be successfully applied, 
even to those things, which one would imagine are subject to no rules. There are very few 
things which we know, which are not capable of being reduc'd to a Mathematical Reasoning; 
and when they cannot, it' s a sign our Knowledge of them is very small and confus'd; and 
where a mathematical reasoning can be had, it' s as great a folly to make use of any other, 
as to grope for a thing in the dark, when you have a Candle standing by you. I believe the 
Calculation of the Quantity of Probability might be improved to a very useful and pleasant 
Speculation, and applied to a great many Events which are accidental besides those of Games; 
only these Cases would be infinitely more confus'd, as depending on Chances which the most 
part of Men are ignorant of; and as I have hinted already, all the Politicks in the World are 
nothing else but a kind of Analysis of the Quantity of Probability in casual Events, and a good 
Politician signifies no more, but one who is dextrous at such Calculations; only the Principles 
which are made use of in the Solution of such Problems, can ' t  be studied in a Closet, but 
acquir'd by the Observation of Mankind. 

There is likewise a Calculation of the Quantity of Probability founded on Experience, to 
be made use of in Wagers about any thing; it is odds, if a Woman is with Child, but it shall 
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be a Boy; and if you would know the just odds, you must consider the Proportion in the Bills 
that the Males bear to the Females :  The Yearly Bills of Mortality are observ 'd to bear such 
Proportion to the live People as 1 to 30, or 26; therefore it is an even Wager, that one out of 
thirteen, dies within a Year (which may be a good reason, tho ' not the true, of that foolish 
piece of superstition), because, at this rate, if l out of 26 dies, you are no loser. It is but 1 
to 1 8  if you meet a Parson in the Street, that he proves to be a Non-Jurort, because there 
is but 1 of 36 that are such. It is hardly 1 to 1 0, that a Woman of Twenty Years old has her 
Maidenhead:%. , and almost the same Wager, that a Town-Spark of that Age has not been clap ' d. 
I think a Man might venture some odds, that 1 00 of the Gens d 'arms beats an equal Number 
of Dutch Troopers ; and that an English Regiment stands its ground as long as another, making 
Experience our Guide in all these Cases and others of the like nature. 

But there are no casual Events, which are so easily subjected to Numbers, as those of 
Games ;  and I believe, there the Speculation might be improved so far, as to bring in the 
Doctrine of the Series 's and Logarithms. Since Gaming is become a Trade, I think it fit the 
Adventurers should be put upon the Square; and therefore in the Contrivance of Games there 
ought to be strict Calculation made use of, that they mayn ' t  put one Party in more probability 
to gain them another; and likewise, if a Man has a considerable Venture; he ought to be allow'd 
to withdraw his Money when he pleases, paying according to the Circumstances he is then 
in : and it were easy in most Games to make Tables, by Inspection of which, a Man might 
know what he was either to pay or receive, in any Circumstances you can imagin, it being 
convenient to save a part of one's Money, rather than venture the loss of it all .  

I shall add no more, but that a Mathematician will easily perceive, it is not put in  such a 
Dress as to be taken notice of by him, there being abundance of Words spent to make the more 
ordinary sort of People understand it. 

t A 'Non-Juror' is one who refused to take an oath of allegiance to William and Mary in 1688 .  

tKarl Pearson has suggested that this may be a reference to a short-lived Company for the Assurance of 
Female Chastity. 
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t F (a , b; c; z )  is Gauss's hypergeometric function and M (a , a + b, i t )  is a confluent hypergeometric function_ 
The N (0, I )  distribution function is denoted by <p _  



Appendix VI 
Chronology 

A subset of the mathematicians, scientists and others mentioned in this book. 

Pythagoras 6th century BC 
Plato 428-348 BC 
Diogenes 400-320 BC 
Euclid 325-265 BC 
Seneca 4 BC-65 
Luca Pacioli 1445-15 14  
Gerolamo Cardano 1 501-1576 
Gerardus Mercator 1 5 1 2-1594 
Francis Bacon 156 1-1626 
Galileo Galilei 1 564-1642 
Pierre de Fermat 1601-1665 
Blaise Pascal 1 623-1 662 
Christiaan Huygens 1 629-1695 
Lorenzo Tonti 1 630-1695 
Antony van Leeuwenhoek 1 632-1723 
Samuel Pepys 1 633-1703 
Isaac Newton 1 642-1727 
Gottfried von Leibniz 1 646-17 1 6  
William o f  Orange 1 650-1702 
Jacob [James] Bernoulli 1 654-1705 
Guillaume de L' Hopital 1661-1704 
John Arbuthnot 1 667-1735 
Abraham de Moivre 1 667-1754 
Pierre de Montmort 1 678- 17 1 9  
Brook Taylor 1 685-173 1 
Nicholas Bernoulli 1 687-1759 
James Stirling 1 692-1770 
Daniel Bernoulli 1 700-1782 
Thomas Bayes 1701-176 1 
Leonhard Euler 1707-1783 
Georges Buffon 1707-1788 
Edward Waring 1 734-1798 
Joseph-Louis Lagrange 1736-1 8 1 3  
Pierre-Simon de Laplace 1 749-1 827 

Adrien-Marie Legendre 1752-] 833 
Heinrich Olbers 1758-1 840 
Thomas Malthus 1 766-1 834 
Jean Fourier 1 768-1 830 
Robert Brown 1773-1 858 
Carl Friedrich Gauss 1777-1 855 
Simeon Poisson 1 78 1- 1840 
Friedrich Wilhelm Bessel 1784-1 846 
Georg Ohm 1789-1 854 
Augustin-Louis Cauchy 1789-1 857 
George Green 1793-184 1  
Irenee-Jules Bienayme 1796-1 878 
Niels Abel 1 802-1 829 
Carl Jacobi 1 804-1 85 ] 
Johann Dirichlet ] 805-1 859 
Augustus De Morgan ] 806-187 1 
William Makepeace Thackeray 1 8 1 1-1 863 
Pierre Laurent 1 8 1 3-1 854 
James Sylvester 1 8 14-1 897 
George Boole 1 8 1 5-1 864 
Karl Weierstrass 1 8 1 5-1 897 
Pafnuti Chebyshov 1 82 1-1 894 
Joseph Bertrand 1 822-1900 
Francis Galton 1 822-19 1 1 
Leopold Kronecker 1 823-1 89 1 
Gustav Kirchhoff 1 824-1 887 
Georg Bernhard Riemann 1 826-] 866 
Morgan Crofton 1 826- 1 9 1 5  
Henry Watson 1 827-1 903 
Henry Labouchere 1 83 1-19 ] 2  
Lewis Carroll [Charles Dodgson] 

1 832-1 898 
Rudolf Lipschitz 1 832-1903 
John Venn 1 834-1923 



Simon Newcomb 1 835-1909 
Paul Bachmann 1 837-1920 
Josiah Willard Gibbs 1 839-1903 
Charles Peirce 1 839-19 14  
William Whitworth 1 840-1 905 
Ambrose Bierce 1 842-19 14  
Rayleigh [John Strott] 1 842-19 19  
Hermann Schwarz 1 843-192 1 
Georg Cantor 1 845-19 1 8  
Vilfredo Pareto 1 848-] 923 
Ferdinand Georg Frobenius ] 849- 19 17  
Jules Henri Poincare 1 854- 19 12  
Thomas Stieltjes 1 856-1 894 
Andrei A. Markov 1 856-1922 
Alexander Liapunov 1 857-19 1 8  
Karl Pearson 1 857-1936 
Ernesto Cesaro 1 859-1906 
Alfred Dreyfus 1 859-1935 
Otto Holder 1 859-1937 
Alfred Whitehead 1 86 1-1947 
David Hilbert 1 862-1943 
Hermann Minkowski 1 864-1909 
Johan Jensen 1 869-1925 
Ernest Rutherford ] 87 1-1937 
George Udny Yule ] 87 1-195 1 
Emile Borel 1 87 1-1 956 
Paul Langevin 1 872-1946 
Bertrand Russell 1 872-1970 
Johan Steffensen 1 873-196 1 
Henri Lebesgue 1 875-194 1 
Francesco Cantelli ] 875-1966 
William Gosset [Student] 1 876-1937 
Tatiana Ehrenfest 1 876-1964 
Edmund Landau 1 877-1 938 
Godfrey H. Hardy 1 877-1947 
Agner Erlang 1 878-1929 
Pierre Fatou 1 878-1929 
Guido Fubini 1 879-1 943 
Albert Einstein 1 879-1955 
Paul Ehrenfest ] 880-1933 
Evgenii Slutsky 1 880-1948 
Norman Campbell 1 880-1949 
Sergei Bernstein 1 880-1968 
Oskar Perron 1 880-1975 
Arthur Eddington 1 882-1 944 
Hans Geiger 1 882-1945 

Chronology 

Harry Bateman 1 882-1946 
John Maynard Keynes 1 883-1946 
Paul Levy 1 886-197 1 
Johann Radon 1 887-1956 
George P61ya 1 8 87-1 985 
Wilhelm Lenz 1 888-1957 
Sydney Chapman 1 888-1970 
Ronald Fisher 1 890-1962 
Emil Gumbel 1 89 1-1966 
Stefan Banach 1 892-1945 
Carlo Bonferroni 1 892-1 960 
John B. S .  Haldane 1 892-1 964 
Paul Getty 1 892-1976 
Harald Cramer 1 893-1985 
Alexander Khinchin 1 894--1959 
Norbert Wiener 1 894--1964 
Heinz Hopf 1 894--197 1 
Harold Hotelling 1 895-1973 
Joseph Berkson 1 899-1982 
Salomon Bochner 1 899-1982 
George Uhlenbeck 1 900-1988 
Ernst Ising 1900-1998 
Abraham Wald 1 902-1950 
George Zipf 1902-1950 
Paul Dirac 1 902-1984 
John von Neumann 1903-1957 
Andrei Kolmogorov 1 903-1 987 
William Feller 1906-1970 
Eugene Lukacs 1 906-1987 
Stanislaw Ulam 1909-1984 
Paul Turan 1 9 1 0-1976 
Garrett Birkhoff 1 9 1 1-1996 
Paul Erdos 1 9 1 3-1996 
Mark Kac 1 9 1 4--1984 
Wassily Hoeffding 19 14-199 1 
Wolfgang Doeblin 1 9 1 5-1940 
Leonard Jimmie Savage 1 9 1 7-197 1  
Patrick Moran 1 9 1 7-1988 
Richard Feynman 1 9 1 8-1988 
Alfred Renyi 192 1-1970 
Pieter Kasteleyn 1 924-1996 
Lucien Le Cam 1924--2000 
John Kemeny 1926-1992 
Frank Spitzer 1 926-1992 
Roland Dobrushin 1929-1995 
Radha Laha 1 930-1999 
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Notation 

bin (n , p) binomial distribution N(J-L, a2) normal distribution 
c(n) , c(t) autocovariances N(t) Poisson or renewal process 
cov(X, Y) covariance Q(t) queue length 
dTV total variation distance X, Y, Z, X (w) random variables 
f, /j ,  fi) probabilities X, Y, W random vectors 
f(x) , fx ( - ) mass or density functions V (X) covariance matrix 
!vIX (Y I x) conditional mass or density I V I determinant of V 
fx, y (x , y) joint mass or density W(t) , Wt , W(t) Wiener processes 
f' (t) derivative of f W, Wn waiting times 
f * g convolution X sample mean 
g Laplace transform A, 93, :F, fl., .]f, 1 a-fields 
g* Laplace-Stieltjes transform 93 Borel a -field 

J=1 oi) Kronecker delta 
i, j ,  k, t ,  m ,  n ,  r, S indices o (t) Dirac delta 
m(- ) , md ( - ) mean renewal functions 'f/ probability of extinction 
max (v) , min (A) maximum, minimum X

2 ( - ) chi-squared distribution 
P, Pi , Pij , p(t) , Pi (t) probabilities </Jx (t) characteristic function 
x + , x - max{x , O} , - min{-x , O}  J-L mean 
LxJ integer part of x J-L i mean recurrence time 
fxl least integer not less than x 1C stationary distribution 
var(X) variance a standard deviation 
Z complex conjugate p (n) autocorrelation 
I A I cardinality of set A p (X , Y) correlation between X and Y 
AC complement of set A y Euler's constant 
A' transpose of A w elementary event 
A' matrix with entries a�j (t) r (t) gamma function 
B(a ,  b) beta function r () .. , t) gamma distribution 
C(t) , D(t) ,  E (t) current, total, excess life Q sample space 
F(r, s ) F distribution <I> (x) normal distribution function 
F(x) , Fx (x) distribution functions C complex plane 
FY l x (Y I x) conditional distribution IE expectation 
Fx, y (x , y) joint distribution 18:( .  I :f) conditional expectation 
G(s ) ,  Gx (s )  generating functions lP, (Ql probability measures 
H, T head, tail R real numbers 

fA indicator of the event A Z integers 
J Jacobian 0 empty set 
Mx (t) moment generating function 1 1 · 1 1  norm 





Index 

Abbreviations used in this index: c .f. characteristic function; distn distribution ; eqn equation ;  
fn function ; m.g.f. moment generating function ; p .g .f. probability generating function; pro 
process ;  r.v. random variable ; r.w. random walk ; s . r.w. simple random walk; thm theorem. 

A 
Abel 's theorem 1 5 1 , 22 1 

absolute convergence 50 

absolutely continuous 33 

absorbing barrier: in diffusion pro 
530, 53 1 , 56 1 , 562; in r.w. 1 8, 
72, 74 

absorbing state 224, 266 

abstract integral 178  

acceptance probabi lity 293 

adapted: process 539, 543 ; 
sequence 473,  501  

additive probability measure 5 

affine transformation 1 36 

age-dependent branching process 
176, 273, 430, 438, 508; 
honest 273 ; Malthusian 
parameter 430; mean 1 77 

age of renewal process 366, 42 1 

airlines 25, 44 

alarm clock 299 

algorithm 293, 294, 296 

aliasing method 1 26 

almost sure convergence 1 80, 308 

almost surely (a.s . )  7 

alternating renewal pro 425 ,  436, 
438 

alternative measure 549 

American cal l option 554 

ancestors in common 175 

ancillary distn 203 

anomalous numbers 66 

Anscombe's theorem 358 

antithetic variable 126 

ants 302 

aperiodic: set 224; state 222 

arbitrage 55, 242, 548, 55 1 

Arbuthnot, 1. 86, 573 

arc sine distn, sampling from 1 27 

arc sine laws for r.w. : maxima 
86, 9 1 ;  sojourns 8 1 ,  170;  visits 
80, 83 

arc sine laws for Wiener pro 529, 
563 

arithmetic r .  v.  1 92, 417, 422, 428 

arrows 135  

atom 34, 50 

atomic 33 

autocorrelation function 380; 
spectral thm for 38 1 

autocovariance function 36 1 ,  380; 
non-negative definite 380 

autoregressive scheme 364, 378,  
385 

autoregressive sequence 374, 
spectral density of 386 

auxiliary pro 465 

average 50, 93 ;  moving 363, 373,  
393 

B 
backward equations: birth pro 

25 1 ;  birth-death pro 272; 
diffusion pro 5 1 9 ; Markov pro 
259, 267 ; Wiener pro 5 17 

backward martingale 499 

balance equations 238 ,  293 

ballot theorem 77, 500 

balls in boxes 1 30  

Bandrika 25,  92 

bankruptcy, see gambler's ruin 

Barker's algorithm 296 

barriers, absorbing/reflecting 
in diffusion 530, 53 1 ,  533 ;  
absorbinglretaining in r.w. 74; 
hitting by Wiener pro 529 

Bartlett: equation 524; thm 374 

batch service 468 

baulking 369, 468, 470 

Bayes 's formula 22 

Bayesian inference 292 

bears 29 1 ,  439 

Benford's distn 66 

Berkeley 20 

Berkson's fallacy 88 

Bernoulli: Daniel 55, 59; James 
3 1 ;  Nicholas 55 

Bernoulli distn 29, 60;  c .f. 1 86; 
distn 29, 60; moments 52, 60; 
p.g.f. 1 5 1 ;  sampling from 123 ;  
sum of  47 ,  60 ,  85 ,  129 ,  1 53  

Bernoulli: model 302; pro 2 18 ;  
renewal pro 374 

Bernoulli 's  theorem 3 1  

Bernstein's  inequality 32, 203, 
477 

Bertrand's paradox 133 ,  1 4 1  

Bessel: function 442, 468, 470; 
process 5 1 2, 525 

best predictor 343, 346, 378 

beta: distn 97; -binomial 107 ;  
sampling from 1 26 

betting scheme 242 

bin packing 477 

binary expansion 377, 402, 4 1 0  

binary fission 177 

binary tree 210 ,  r.w. on 236 

binomial distn 47, 60;  c.f. 1 86; 
distn 47, 60; limits 6 1 ,  1 30, 
1 95 ,  2 1 0;  moments 52, 60; 
p.g.f. 1 53 ;  sampling from 123 ;  
sum of 84 ,  153  

birth process 25 0, 255;  
dishonest 252, 267 ; forward 
and backward eqns 25 1 ;  
generator 258 ;  honest 252; 
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immigration 255 ;  minimal 
25 1 ;  non-homogeneous 300; 
uniform 268 ; see also simple 
birth 

birth-death process 269 ; 
backward eqn 272; coupled 
303 ;  extinction 272, 275 , 
300, 5 09;  forward eqn 27 1 ;  
generator 269; immigration 
276; martingale 509; 
non-homogeneous 274; queue 
28 1 ,  442 ; stationary distn 269; 
uniform 269; see also simple 
birth-death 

birthdays 24, 42 

bivariate: branching pro 275 ; 
negative binomial distn 208 ; 
normal distn 1 00, 1 06, 1 1 1 , 
1 1 2, 1 14, 1 1 8 ,  1 4 1 ,  349; p.gJ. 
1 54, 

Black-Scholes: eqn 552 ;  formula 
55 1 ;  model 547, 563 ; value 
554 

boat race 1 

Bochner's theorem 1 82,  38 1 

bond 547 

Bonferroni 's  inequality 25 

books 45 

Boole's inequalities 22 

Borel: field 9 1 ;  1 80, 3 1 5 ,  398 ;  
measurable 92; normal number 
thm 4 1 0; paradox 1 06;  set 9 1 ,  
28 1 , 372 

Borel-Cantelli lemmas 320 

bounded convergence 1 80, 229 

bow tie 237 

Box-Muller normals 126 

boxes 281  

boys 9, 86 

branching process 1 7 1 ;  
age-dependent 1 76, 273 ,  430, 
438, 508; bivariate 275 ; busy 
period 450; conditioned 177 ,  
208,  243,  246;  convergence 
509; critical 245 ; diffusion 
52 1 ;  diffusion approximation 
520; dishonest 273 ; explosion 
273; extinction 173 ;  family 
tree 1 7 1 ;  geometric 172 ;  
honest 273 ; imbedded 1 77, 
272, 450; immigration 
1 75 ,  338 ,  508 ;  Malthusian 
parameter 430; Markov 2 1 6; 
martingale 334, 475 , 508, 509; 
moments 172 ,  207; p.g.f. 1 7 1 ;  
r.w. 278 ;  stationary distn 245 ; 
sublsupercritical 245 ; total 

Index 

population 207 ; transition 
matrix 2 1 6 ;  variance 172, 207 

bridge 24 

Brownian bridge 4 1 1 ,  535 ;  
autocovariance 536;  zeros 536, 

Brownian motion 370, 5 14 ;  
geometric 525, 537 ,  546;  tied 
down 4 1 1 

Buffon's :  cross 1 03 ;  needle 
1 00, 1 03 ,  1 34, 1 43 ,  144, 305 ;  
noodle 1 4 3 ;  weldings 128 

busy period 28 1 ;  in MIGll 447 ; 
branching pro 450 

d!dlag 373 

cake 87 

c 

call option: American 554, 
European 548, 552, 554 

Campbell-Hardy theorem 290, 
291  

cancer 280 ,  298 

canonical form 24 1 

Cantelli, see Borel-Cantelli 

capture-recapture 62 

car wash 436 

cardinality 6, 564 

cards 16 ,  24, 25,  235 

Carroll, Lewis 12 ,  135  

Casanova 333 

characteristic function 1 82 ;  
autocorrelation fn 38 1 ;  
Bernoulli distn 1 86; binomial 
distn 1 86; Cauchy distn 
1 86; central limit thm 
1 94; chi-squared distn 
1 88 ;  continuity thm 1 90; 
exponential distn 1 86; 
extreme-value distn 209; first 
passage distn 200; gamma 
distn 1 88 ;  infinitely divisible 
208 ; inversion 1 89; joint 1 83 ,  
209 ; law of  large numbers 
328 ;  m.gJ. 1 84; moments 1 83 ;  
multi normal distn 1 87 ;  normal 
1 87 ;  positive definite 1 82 ;  sum 
of independent r.v. 1 83 

Chebyshov's  inequality 3 1 9  

cherries 23 

chess 242 

chicks 68, 154 

chimeras 87 

chi-squared CX 2 ) distn 97, 1 1 9; 
c .f. 1 8 8 ;  non-central 1 85 ;  sum 
of 1 22, 1 4 1  

Cholesky decomposition 147 

chromatic number 48 1 

circle 133 ,  1 38 ,  1 4 1 ,  146, 556 

classification: Markov chain 224; 
Markov pro 260; of states 220, 
222 

closed: set 224; linear space 344; 
casino 7 1 ,  75, 333 ,  338 ,  472, 488, 

martingale 484; migration pro 
5 1 1  

464 
Cauchy complete 540 

Cauchy convergence 309, 323, 
565 ;  in m.s .  355 

Cauchy distn 97, 140, 146, 385;  
c .f. 1 86; maximum 356;  
moments 97;  sampling from 
1 26; sum of 1 1 5 ,  206, 209, 
328 

Cauchy-Schwarz inequality 65 , 
1 02 

cells 275 

central limit thm 1 94, 200, 4 17 ,  
5 1 5 

central moments 5 1  

certain event 2 

Cesaro average 292 

chain, see Markov 

chain rule 538  

chamber 236  

change: exponential 203 ; of 
measure 549; of variables 1 08 ,  
1 1 2 

Chapman-Kolmogorov eqns 2 1 5 ,  
256 

coins: double 12; fair 5 ,  6, 14, 
80, 8 1 ;  first head 3 ,  8 ,  43, 
487; gambler's 26; patterns 
1 62, 206, 5 1 1 ;  transitive 45 ; 
unbiased 6; see Poisson flips 

colouring: of graph 48 1 ;  sphere 
24; Poisson C. thm 287 

communicating states 223, 297 

compensator 475 

competition lemma 29 1 
complement 2, 564 

complete convergence 324 
complete probability space 15 

complex: pro 388 ;  r.v. 1 82, 363, 
376, 

compound: distns 1 25 ;  
immigration 277; Poisson pro 
299; Poisson distn 207 

compounding 153 ,  1 6 1  

conditional: branching pro 177, 
208, 243 , 246; density 1 04, 
1 1 1 ; distn 67, 1 04;  entropy 
303 ;  expectation 67, 1 05 ,  336, 
346, 348 ; independence 13 , 14, 



49; mass fn 67; probability 9, 
22; probability mass fn 67 ; c .  
property of Poisson pro 277, 
286; s.r.w. 75;  variance 69; 
Wiener process 37 1 ,  535,  536; 
with respect to a-field 346, 
473 

conductance bound 296 

congruential generator 122 

constant r. v. 29 

continuity 565 ;  distn fns 28, 1 90; 
of expectation 179; marginals 
102;  of probability measures 
7, 23; sample paths 5 1 6, 54 1 ,  
543; thm 1 90; of Wiener pro 
5 1 6, 522, 524 

continuous r.v. 33, 89; examples 
33, 95 ; expectation 93 ; 
independence 99; jointly 40, 
99; limits of discrete r.v. 43, 
179; moments 94 

continuous-time martingale 501  

convergence 306, 308 ,  3 1 0; 
almost sure (a. s . )  308; 
bounded 1 80, 229; Cauchy 
309, 323; c.f. 1 90 ;  complete 
324; in distn 1 90, 1 93 ,  308; 
dominated 1 80, 3 1 7 ;  in law 
193 ,  309; martingale 338 ,  
48 1 , 498, 502; in  mean 309 ;  in 
mean square 309; in measure 
306; moments 353 ;  monotone 
1 79; in norm 306; pointwise 
306; in probability 308; radius 
of 150; in rth mean 308; in 
total variation 3 1 8 ; weak 193 ,  
309, 3 1 6  

convex: fn 1 8 1 , 475 ; rock 147 

convolution 70, 4 1 5 ;  integral 1 14; 
Laplace 1 82 ;  sequences 70, 
1 49; c .  thm 567 

Corn Flakes 8, 22 

correlation coefficient 64; 
bivariate normal distn 1 0  I 

countably additive 5, 23 

counters 423 ; dead period 423, 
437; Geiger 246, 423 ; types 
423 ; type 2 438 

counting process 365 

coupling 127, 133; birth-death 
pro 303 ;  game 235 ; Markov 
chains 233 ;  maximal 133 ,  356;  
Poisson 1 29 ;  renewal pro 1 60, 
429 

coupons 55 ,  162, 2 1 0  

co1'llriance 64; bivariate normal 
di stn 1 0 1 ; complex r.v. 376; 

Index 

matrix 85 ,  1 1 7 ;  Poisson pro 
355 ;  stationary 361  

Cox process 299 

Cp inequality 3 1 9  

criterion: Kolmogorov 239; 
persistence 23 1 ,  237; 
non-nullity 227 ; transience 
230 

critical branching process 245 

Crofton's method 135  

crudely stationary 365 

cubic lattice 5 14, 560 

cumulants 1 85 

cups and saucers 8 

current life 366, 42 1 ;  Markov 423 

customer: arriving 45 1 ;  departing 
445 , 467; difficult 468 ; 
invisible 463 ; lucky 460 

cycle 434 

dam 42, 236 

darts 35 

D 

de Moivre: martingale 472, 483,  
486,  492;  de M. thm 148 ;  trial 
62 

de Moivre-Laplace theorem 96, 
1 95 

De Morgan laws 4 

dead period 423, 437 

death pr. : birth 269, 
biIth-immigration 276, 
immigration 270 

decimal expansion 47, 305 , 354 

decomposition: Cholesky 147; 
Doob 474; Krickeberg 5 1 0; 
Markov chain 224 

decreasing a -fields 499 

defective distn 1 54 

degradation of polymer 275 

degrees of freedom 97 

delayed renewal 366, 427, 438 

density 33, 89; arc sine 80, 127 ;  
beta 97 ; bivariate normal 
1 00, 1 1 1 ;  Cauchy 97, 385 ;  
chi-squared 97 ; conditional 
1 04, 1 1 1 ;  Dirichlet, 87, 147;  
exponential 95 ; extreme value 
145 ;  F (r, s) 1 2 1 ;  first passage 
200, 526; Fisher' s spherical 
144;  gamma 96; Gaussian 95 ; 
joint 40, 98 ;  log-normal 97, 
2 1 1 ;  marginal 99; maximum 
355 ;  maximum of Wiener pro 
526; multinormal 1 1 7 ;  normal 
95 ; spectral 382;  standard 
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normal 96; Student' s  t 1 2 1 ;  
uniform 95 ; Weibull 97 

departure pro 445 , 467 

derangement 60 
derivative 548 

detailed balance 238,  293 

diagonal: d. form 1 1 6; Jordan 
form 24 1 ;  d. selection 234, 
236 

dice 14 ,  49, 55; weighted or 
loaded 44, 2 1 0  

difference eqn 17 ,  2 3 ,  60, 74, 75 ,  
567 

differences 564;  martingale 476 

differential-difference eqns 248 

difficult customers 468 

diffusion 5 1 6, 544; absorbing 
barrier 53 1 ;  approximation 
for branching pro 520; Bessel 
pro 5 1 2, 525 ; branching 52 1 ;  
Ehrenfest model 238, 239, 
302; first passage 526, 529; 
forward and backward eqns 
5 1 9 ;  geometric 528 ;  Ito 
process 544; maximum 526, 
529; models 59, 238, 298, 
302; Ornstein-Uhlenbeck pro 
407, 5 1 5 , 537 , 539 ;  osmosis 
302; potential theory 555 ;  
reflecting barrier 533 ;  regular 
53 1 ;  stopping time 526, 529; 
Wiener pro 5 1 6-5 19 ;  zeros 
527, 528 

diligent pupil 39 
dimer problem 87 

Dirac delta function 564 

Dirichlet distn 87, 147 

disasters 28 1 ,  300 

discontinuous marginal 1 02 
discounting 549 

discrete r.v. 33 ;  independent of 
48, 53 ,  63, 154 ;  sum of 70, 
1 53  

dishonest: birth pro 252, 267 ; 
branching pro 273 

disjoint events 2, 5 

distance preserving 389 

distribution: ancillary 203 ; arc 
sine 80, 1 27 ;  arithmetic 1 92, 
4 1 7 ;  atomic 33; Benford 66; 
Bernoulli 29, 60; beta 97;  
beta-binomial 1 07 ;  binomial 
47, 60; bivariate normal 
1 00, 1 1 1 ;  Cauchy 97, 385 ; 
c .f. 1 82 ;  chi-squared 97 ; 
compound 125 ;  conditional 
67, 104; convergence 308; 
current life 42 1 ,  422; defective 
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1 54;  Dirichlet 8 7 ,  147;  
empirical 4 1 1 ;  excess life 
42 1 ;  expectation 50, 93 ; 
exponential 9; F(r, s) 1 2 1 ;  
finite-dimensional 360, 37 1 ;  
first passage 200, 526; function 
27;  gamma 96; Gaussian 95 ; 
geometric 6 1 ;  hypergeometric 
84; hypoexponential l 1 5 ;  
indicator 29; infinitely divisible 
207, 208 ; inverse square 47, 
54; joint 39, 63, 98 ;  lattice 
1 85 ;  logarithmic 47, 1 6 1 ;  
log-normal 97, 2 1 1 ;  marginal 
39, 99; maximum 355 ;  mixed 
125 ;  modified Poisson 47 ; 
moments 5 1 ,  94; multinomial 
62; multinormal 1 1 7 ;  negative 
binomial 6 1 ;  normal 95 ; 
Poisson 47;  spectral 382;  
standard normal 96; stationary 
227 ; Student's t 1 2 1 ;  tails 30;  
target 293 ; tilted 1 86, 203 ; 
trinomial 40, 60; trivariate 
normal 1 1 9;  uniform 95 ; 
variance 5 1 , 94; waiting time 
6 1 ,  95 ; Weibull 97; zetalZipf 
83 

DNA fingerprinting 85 

Dobrushin: bound, ergodic 
coefficient 296 

dog-flea model 238, 239, 302 

dominated convergence 1 80, 3 1 7  

Doob's :  convergence theorem 
48 1 ;  decomposition 474; L2 
inequality 539;  martingale 347, 
484 

Doob--Kolmogorov inequality 
338 ,  342, 497 

doubly stochastic: matrix 220, 
297 ; Poisson pro 299 

downcrossings inequality 486 

drift 5 1 9 ;  of Ornstein-Uhlenbeck 
pro 520; of Wiener pro 520, 
528, 532, 533 , 550, 55 1 

drug 1 9  

drunken walker 7 1  

dual queue 453 ,  46 1 

Dubins's inequality 485 

duration of play 74 

dyadic rationals 508, 524 

E 
earthing 559 

Eddington's controversy 24 

editors 236 

eggs: hatching 68, 154 ;  weight 
207 

Index 

Ehrenfest model 238, 239, 302 

eigenvector 295, 335 ,  473, 492 

Einstein, A. 5 1 9 

electrical network, resistance 559 

elementary: event 4; renewal thm 
4 1 7  

embarrassment 3 2  

empires 298 

empirical: distn 4 1 1 ;  ratio 4, 8, 
30 

entrance fee 55, 80 

entropy 33 1 ;  conditional 303; 
mutual 66 

epidemic 276, 3 0 1 ,  505 

equilibrium, see stationary 

equivalence class 44, 224, 307, 
540 

ergodic: coefficient 296; measure 
399; state 222; e. thm for 
Markov chain 235 ,  358 ,  402, 
429; Markov pro 26 1 ,  358 ;  
stationary measure 399 ;  e. thm 
for stationary pro 363, 393, 
394, 4 1 0  

Erlang's loss formula 470 

estimation 32, 42, 1 1 9, 305, 343, 
358, 4 1 1 ,  425 

Euler's constant 209 

European call option 548, 552,  
554 

event 2 ;  certain e. 2 ;  
complement of 2 ;  disjointness 
2; elementary e. 4; 
exchangeability 324; field 2; 
impossible e.  2 ;  independence 
1 3 ;  intersection of 2 ;  
invariance 398;  null e. 7 ,  15 ,  
539 ;  recurrence 159 ,  198 ,  2 1 1 ,  
2 1 7 ,  33 1 , 409; sequence of 
7, 22; a -field of 3, 14,  2 1 ;  
tail 322, 324; uncountable 
intersection of 372; union of 
2 

excess life 255,  366, 42 1 ;  Markov 
property 423 ; reversed 367 

excess service 454 

exchangeable 324 

excursions: martingale 534; of 
s.r.w. 80; of Wiener pro 534 

exercise date 548 

expectation 50;  abstract 179 ;  
conditional 67 ,  1 05 ,  336, 346, 
348; continuity of 179 ;  of 
continuous r.v. 93; of discrete 
r.v. 5 1 ;  of functions of r.v. 50, 
64, 93,  99; linearity of 52, 99; 
notation 178 ;  e .  operator 52,  

179 ;  tail integral 93, 94;  tail 
sum 84, 140 

expected value, see expectation 

experiment 1 

explosion: of birth pro 252; of 
Markov pro 262; of branching 
pr. 273 

exponential change of distn 203 

exponential distn 95 ; c .f. 1 86; 
holding time 259; in Poisson 
process 248 ;  lack-of-memory 
property 140; limit in 
branching pro 177 ;  l imit of 
geometric distn 2 1 0; heavy 
traffic 462; distn of maximum 
2 1 0, 355 ; mean 95 ; waiting 
time 95 ; in Markov pro 259; 
order statistics 144; sum of 
1 09, l I S ,  1 4 1 ,  2 1 2, 252 

exponential generating fn 149, 
1 8 1  

exponential martingale 525, 528 

exponential smoothing 409 

extinction: of birth-death pro 272, 
275 , 300, 509; of branching pro 
1 73 ;  of non-homogeneous pro 
274 

extreme value distn 9 1 ,  145 ,  355 ;  
c .f. and mean 209 

F 
F-measurable 27, 92 

F (r, s) distn 1 2 1 ;  non-central 1 85 

factorial moments l S I  

fair: coins 5 ,  6 ,  80; dice 6, 55 ;  
fee 54 ,  80 ;  game 80 ;  price 55 ;  
wager 54  

fairness 5 

fallacy: Berkson 88 ;  prosecutor 
1 2  

false positives 20 

families 9, 14, 69 

family: planning 87; f. size p.g.f. 
1 7 1 ;  uniformly integrable 35 1 

Farkas's theorem 242 

Fatou's lemma 1 80 

fdds 360, 37 1 

Feller minimal solution 25 1 
Fenchel-Legendre transform 20 I 
ferromagnetism 292 

Feynman-Kac formula 553 

field 2 ;  Borel, 91 ,  1 80, 3 1 5 ,  
398 ;  a- 3 ,  1 4, 2 1 ;  tail f .  322; 
triviality 323 

filtration 347, 353 , 473, 487, 488, 
490, 5 0 1 ,  539, 543 

fingerprinting 85 



finite: Markov chain 225 ; waiting 
room 468 

finitely additive 5 

first exit of r. w. 494 

first passage 487; of diffusion pro 
526, 529; distn 200, 526; of 
Markov chain 220, 226, 433 ; 
mean 226; of martingale 488;  
p.g.f. in s.r.w. 164; of r.w. 79,  
83,  164, 495 ; stopping time 
488, 501 ; of Wiener pro 526 

Fisher: eqn 522; spherical distn 
144; -Tippett-Gumbel distn 
145 

FKG inequality 85 

flip-flop 364 

forward eqns: of birth pro 25 1 ;  of 
simple birth-death pro 27 1 ;  of 
diffusion pro 5 1 9 ;  of Markov 
pro 259, 267 ; of Wiener pro 5 1 7  

forward option 548 

Fourier: inversion 1 89, 383 ;  
series 363 ;  transform 1 82, 383 ,  
567 

fractional: dimensionality 528;  
moments 55 ,  94 

functional eqn 140; for 
age-dependent pro 176 ;  for 
branching Pl'. 1 7 1 ,  174; 
for busy period 450; for 
conditional branching pro 244 

G 
Galton, F. 64, 95;  paradox 14;  

G.-Watson Pl'. 1 73 

gambler's ruin 17 ,  42, 74, 472, 
475, 496 

gambling 7 1 ;  advice 75 , 333 ;  
martingales 333 ,  338 ,  47 1 ,  
488; systems 503 

gamma distn 96; c.f. 1 88 ;  and 
Poisson distn 141 ; sampling 
from 123 ,  1 26; sum of 141  

gaps: Poisson 369; recurrent 
events 2 1 1 ;  renewal 4 1 6  

Gaussian Pl'. 393, 406, 523;  
Markov property 406; 
stationary 393, 406, 408 ; white 
noise 544 

Gaussian distn 95 , see normal 

Geiger counter 246, 423 

gene frequency 2 1 6, 34 1 , 523 ; 
inbreeding 24 1 

generating fn 148;  for branching 
Pl'. 1 7 1 ;  for compound distn 
153 ;  cumu1ant g.f. 1 85 ,  20 1 ;  
exponential g.f. 1 49, 1 8 1 ;  

Index 

for first passage time 1 64; 
for independent r.v.s 1 53 ,  
154 ;  joint 154 ;  for Markov 
chain 22 1 ;  moment g.f. 1 8 1 ;  
probability g.f. 150 ;  of random 
sum 153 ;  of r.w. 1 62 ;  of sum 
153  

generator 256, 258 ;  of  birth Pl'. 
258, 268 ; of birth-death pro 
269; of Markov chain 25 8 ;  of 
semigroup 266; of two-state 
chain 267 , 384 

genetic 2 1 6, 24 1 ,  5 1 3 ;  g. 
martingale model 341 

geometric :  branching pro 1 72;  
Brownian motion 525 , 537,  
546; Wiener pro 528,  537 

geometric distn 47 , 6 1 ;  
lack-of-memory property 
84; moments 6 1 ;  p.g.f. 1 5 1 ;  
sampling from 1 26; sum of 6 1 ,  
70, 7 1  

Gibbs sampler 294 

global balance 239 

goat 1 2  

graph 5 9 ;  colouring 48 1 ;  r.w. on 
g. 236, 240, 558 

Green's theorem 555 

H 
half life 250 

Hall, Monty 12 

harmonic fn 473 

Hastings algorithm 293, 296 

Hawaii 45 

Hajek-Renyi-Chow inequality 
508 

hazard rate 9 1 ,  98 ;  technique 1 26 

heat bath 294 

heat eqn 563 

Heathrow 420 

heavy traffic 462 

hedge 553 

hen, see eggs 

Hewitt-Savage zero-one law 324 

Hilbert space 39 1 ,  540 

hit or miss Monte Carlo 42 

hitting time theorem 79, 1 65 

Hoeffding's  inequality 476 

Holder's inequality 143, 3 1 9  

holding time 259, 26 1 ,  433,  444 

homogeneous: diffusion pro 370; 
Markov chain 214; Markov pro 
256; r.w. 72 

honest: birth pro 252; branching 
pro 273 ;  renewal pro 4 1 2  
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horses 62 

Hotelling's theorem 147 

house 92, 299, 304 

hypergeometric distn 84; p.gJ. 
1 52;  moments 152 ;  negative 
62, 1 25 

hypoexponential distn 1 1 5 

idle period 460 

images 532 

I 

imbedding 2 1 9, 256, 265 , 299; 
in birth-death pro 272; of 
branching pro 177 , 272; 
jump chain 26 1 ,  265 , 274; in 
Markov chain 299; in queues 
44 1 , 444, 445 , 449, 450, 45 1 ,  
453 ,  45 8 ;  o f  r.w. 272, 444, 45 8 

immigration: birth pro 250, 255 ;  
birth-death pro 276; branching 
Pl'. 175 ,  338 ;  death pro 270, 
274, 299; with disasters 28 1 ,  
300; Poisson pro 276 

importance sampling 126 

impossible event 2 

inbreeding 24 1 

inclusion-exclusion principle 6, 8 ,  
22, 56 

increasing pro 475 

increments: independent 254, 
370, 5 1 5 , 5 1 6;  orthogonal 387 ,  
388 ;  stationary 254,  408,  422, 
428; in Wiener pro 408, 5 16 

independent 1 3 ,  92; c.f. 
1 84; conditionally 1 3 ,  14 ;  
continuous r.v. s 92,  99;  
discrete r.v.s 48, 53 ,  63, 92, 
154; events 1 3 ,  14; family of 
r.v. s 49; functions of r.v.s 49, 
83, 92; increments 254, 370, 
408, 5 1 5 , 5 1 6; Markov chains 
233; mean and variance of 
normal sample 1 1 9, 1 22, 2 1 1 ;  
normal r.v.s 1 0 1 ;  pairwise 1 3 ,  
1 4 ,  1 55 ;  p.g .f. 1 5 4 ;  set 8 8 ;  
triplewise 1 55  

indicator r.v. 29 ,  56 ;  linear 
combinations of 43, 48;  
matching 56 ;  moments 52;  
structure fn 58  

inequality: Bernstein 32 ;  
Bonferroni 25 ;  Boole 22;  
Cp 3 1 9 ;  Cauchy-Schwarz 
65 , 1 02;  Chebyshov 
3 1 9;  Doob-Kolmogorov 
338 ,  342, 497; Doob L2 
539;  downcrossings 486; 
Dubins 485;  FKG 85 ;  
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Hajek-Renyi-Chow 508; 
Hoeffding 476; Holder 
143, 3 1 9 ;  Jensen 1 8 1 ,  349; 
Kolmogorov 342, 358, 498, 
508 ;  Kounias 25 ; Lyapunov 
143 ;  Markov 3 1 1 , 3 1 8 ;  
maximal 489, 490, 496; 
Minkowski 143, 3 1 9 ;  triangle 
306, 343 ; upcrossings 482, 486 

infinitely divisible distn 207, 208 

inspection paradox 42 1 ,  437 

instantaneous :  mean and variance 
5 1 9 ;  state 266 

insurance 470, 5 1 0  

integral: abstract 178 ;  Ito 538 ,  
542 ;  Lebesgue-Stieltjes 1 80; 
Monte Carlo 42, 1 4 1 ;  Riemann 
538 ;  stochastic 388 ,  4 1 1 ,  538 ;  
Stratonovich 538 ;  surface i .  
555 ;  transforms 566 

intensity : of birth pro 250; of 
Poisson pro 282; traffic i. 369, 
44 1 

interarrival time 248,  368, 374, 
4 1 2  

invariant: event 3 9 8 ;  a -field 399, 
405 

inverse distn 35 

inverse square distn 47, 54 

inverse transform technique 1 22 

inversion theorem: c .f. 1 89; 
Fourier 1 89, 383; Lagrange 
1 66 

invisible customers 463 

irreducible chain and set 224, 
232; of Markov pro 260, 298 

Ising model 292 

isometric isomorphism 3 9 1 ,  540 

iterated logarithm 332 

Ito: formula 538 ,  545 ; integral 
538 ,  542; process 542, 544; 
product rule 546; simple 
formula 545 

J 
Jackson network 463 

Jacobian 1 08 

Jaguar 17 , 42, 74, 86 

jargon 3 

Jensen's  inequality 1 8 1 ,  349 

joint: c .f. 1 83 ,  209; density 40, 
98; distn 39, 63, 98; mass fn 
39, 63;  moments 209, p.g.f. 
154, 1 5 5 ;  transformed r.v.s 
108, 1 1 2 

Jordan form 24 1 

Index 

jump chain 26 1 ;  imbedded 265 , 
274, 445 

K 
Keynes, J. M. 75 

key renewal theorem 4 1 8  

killing 5 3 1  

Kirchhoff's laws 559 

knapsack problem 48 1 

Kolmogorov: consistency 
conditions 37 1 ,  405 ; criterion 
239; -Doob inequality 338 ,  
342, 497 ; eqns 267 ; -Fisher 
eqn 522; inequality 342, 358 ,  
498 ,  508;  zero-one law 322, 
400 

Korolyuk-Kbinchin theorem 365 

Kounias' s  inequality 25 

Krickeberg decomposition 5 1 0 

Kronecker: delta fn 22 1 ,  564; 
lemma 342 

kurtosis 145 

L 
L2 : ineqUality 539 ;  norm 343 

Lp norm 343 

Labouchere system 5 1 0  

lack of anticipation 265 

lack-of-memory property: of 
exponential distn 140; of 
geometric distn 84; of holding 
time 259 

ladders 45 8 ,  459, 461 

Lagrange's formula 166 

Lancaster's theorem 144 

Langevin eqn 5 1 6 

Laplace: convolution 567; -de 
Moivre thm 96, 1 95 ;  L. eqn 
554, 556, 557 ;  method of 
steepest descent 1 92;  -Stieltjes 
transform 4 1 6, 567; transform 
1 8 1 , 442, 566 

large deviations 32, 202, 477 

last exits 223 

lattice: cubic 5 14, 560; distn 1 85 ;  
square 279, 560 

law: of anomalous numbers 66; 
arc sine 80, 8 1 ,  83, 86, 1 70, 
529, 563;  convergence in 
1 93 , 309; De Morgan 4;  of 
iterated logarithm 332;  of large 
numbers 193 ,  326; strong 326, 
329; of unconscious statistician 
50, 64, 83 ,  93,  99; weak 1 93 ,  
326 ;  zero-one 3 2 1 ,  322 ,  324, 
400, 484 

lazy: landlord 424; pupil 39 

leads in tied down r.w. 1 69 

Lebesgue measure 28 1 ,  300, 3 1 5  

Lebesgue-Stieltjes integral 1 80 

left-continuous r. W. 1 65 

Legendre polynomial 558 

level sets of Wiener pro 562 

Levy: characterization 502; 
dichotomy 267 ; martingale 
347, 484; metric 44, 308, 3 1 8  

life: current 366, 42 1 ,  423 ; 
excess 255 ,  366, 42 1 , 423 ; 
total 366, 42 1 

light bulbs 365 ,  4 1 2, 426 

likelihood ratio 358 ,  504 

limit: binomial 84, 
binomial-Poisson 6 1 ,  1 30, 
2 1 0; branching 1 74;  central 
limit theorem 1 94; diffusion 
5 1 5 ;  1 . distns 35 ,  308; ergodic 
393,  394; events 7, 23;  
extreme-value 1 45 ;  gamma 
192 ;  geometric-exponential 95 , 
2 1 0; immigration-death 270; 
lim inf 23, 565 ;  lim sup 23, 
565 ; local central 1. thm 195 ;  
Markov chain 232; martingale 
48 1 ;  Poi sson 85,  87, 129 ;  r.v. 
43, 1 79 ;  r.w. 483;  renewal 160, 
4 1 2  

Lindley's eqn 455 

linear fn of normal r. V. 1 1 7, 1 1 8 

Lipschitz continuity 507 

Little' s  theorem 435 

local: balance 239; central limit 
thm 1 95 

locked counter 423 , 437 

logarithmic distn 47, 16 1  

logarithm iterated 332  

log-convex 47 

log-likelihood 358 

log-normal distn 97, 2 1 1 

long run average waiting time 
435 

Los Alamos 43 

lottery 24 

lucky customer 460 

Lyapunov's inequality 1 43 

machine 470 

magnets 60 

M 

Malthusian parameter 430 

mapping theorem 284 

marginal: bivariate normal 1 00; 
density 99; discontinuous 1 02;  
distn 39, 99; of multinomial 



distn 66; order statistics 142; 
mass fn 63 

Marilyn vos Savant 1 1  

Markov chain in continuous time 
256; backward eqns 259, 
267; Chapman-Kolmogorov 
eqns 256; classification 
260, 263 ; ergodic thm 261 ,  
358;  explosion 262; first 
passage 433; forward eqns 
259, 267; generator 258 ;  
holding time 259, 261 , 433; 
homogeneous 256; irreducible 
260, 298 ; jump chain 261 ,  
265 , 274; Kolmogorov 
eqns 267 ; martingale 501 ,  
543 ; mean recurrence time 
265 , 433 ; minimal 262; 
non-homogeneous 274, 
300; renewal pro 366, 4 1 6; 
reversible 299, 469; sampled 
264; skeleton 261 ; stationary 
distn 260; transition matrix 
256; two-state 260, 264, 267, 
384; visits 265, 433 

Markov chain in  discrete time 
2 1 4; Chapman-Kolmogorov 
eqn 2 1 5 ;  classification of 
220, 222; coupled 233; 
decomposition of 224; ergodic 
thm 235, 358,  402, 429; 
finite 225 ; first passage of 
220, 226; generating fns 22 1 ;  
homogeneous 2 1 4; imbedded 
2 19, 265 , 274, 299, 446, 452; 
limit thm for 232; martingale 
335,  34 1 ,  473, 480, 486, 
492; mean first passage 226; 
mean recurrence time 222; 
M.'s other chain 2 1 8 ;  renewal 
297, 42 1 ;  reversed M.c. 237 ; 
reversible 238 ;  stationary distn 
for 227 ; transition matrix 2 14 ;  
two-state 239, 298, 364; visits 
by 223, 226, 297, 303 

Markov chain Monte Carlo 292 

Markov condition 2 1 4  

Markov inequality 3 1 1 , 3 1 8  

Markov-Kakutani theorem 242 

Markov process: Gaussian 406, 
408; stationary 227, 260, 407, 
408 

Markov property 2 1 4, 256; of 
branching pro 2 1 6; of r.w. 73 ,  
2 1 6 ; strong 2 1 9, 253 , 526; 
weak 253, 525 

Markov renewal pro 366, 4 1 6  

Markov time 487, see stopping 
time 

Index 

Markovian queue 280, 369, 442, 
468, 470 

marriage problem 144 

martingale 333 ,  47 1 ,  474, 543; 
backward 499; birth-death 
pro 509; branching pro 334, 
475 , 508, 509; closed 484; 
continuous parameter 5 0 1 ,  
502, 5 1 2, 528, 534, 543, 546, 
55 1 ;  convergence of 338 , 48 1 ,  
498, 502; de Moivre m .  472, 
483, 486, 492; m. differences 
476; diffusion pro 542; Doob's 
m. 347, 484; epidemic 505 ;  
exponential m .  5 2 5 ,  528;  
excursions of 534; gambling 
333 , 338 , 47 1 , 475 , 496, 503, 
5 1 1 ;  genetic model 34 1 ;  Ito 
integral 543 ; Levy m. 347, 
484; Markov chain 335, 34 1 ,  
473, 480, 486, 492; optional 
stopping 488, 49 1 ,  503 ;  partial 
sum of 335 ;  m. representation 
543 ; reversed m. 499; s.r.w. 
47 1 ,  472, 475 , 483, 486, 490, 
492, 494, 496; stochastic 
integral 543 ; submartingale 
474; supermartingale 474, 475 , 
486; m. transform 503 ;  with 
respect to filtration 474 

mass, centre of 50 

mass function 46; conditional 67 ;  
joint 39, 63 ; marginal 63 

matching 56, 60,  85 ,  156 ,  158 ,  
1 62, 5 1 2 

matrix: covariance 85 ,  1 1 7 ;  
doubly stochastic 220, 
297 ; multiplication 147 ; 
proposal 293 ; stochastic 2 1 5 ;  
sub-stochastic 220; transition 
2 14 ;  tridiagonal 238, 269 

maximal: coupling 1 33 ,  356;  
inequality 489,  490,  496 

maximum of: drifting Wiener 
pro 529; r.w. 78 ,  83 ,  1 67 ,  1 70, 
2 1 9; uniforms 2 10 ;  Wiener pro 
526, 529, 562 

maximum principle 559 

maximum r.v. 355 

mean 50;  Bernoulli 52;  binomial 
52 ;  branching pro 1 72, 1 77 ;  
Cauchy 97 ;  continuous 
r.v. 93 ;  convergence 309; 
discrete r. v. 5 1 ;  exponential 
95 ; extreme value 209; first 
passage 226; geometric distn 
6 1 ;  hypergeometric 152 ;  
indicator function 56;  landlord 
424; measure 282; negative 

59 1 

binomial 6 1 , 206; normal 96; 
Poisson 6 1 ;  recurrence time 
222, 265 , 433; waiting time 
455 ,  468, 469 

mean-square convergence 309; 
Cauchy 355 

measurable: Bore1- 92, :F- 27, 92; 
process 539; r. v. 27 

measure: alternative 549; 
Borel 90; change of 549; 
convergence in 306; ergodic 
399; Lebesgue 28 1 ,  300, 3 1 5 ,  
507; mean 282; preserving 
398;  probability 5; product 1 5 ,  
399; stationary 3 9 8 ;  strongly 
mixing 4 1 0  

median 44, 94 

melodrama 56  

menages 23  

Mercator projection 29 1 

meteorites 159 ,  29 1 ,  409 

metric 44; Levy 44, 308, 3 1 8 ; 
total variation 44, 128  

Metropolis algorithm 293 , 294 

migration pro 463 ; closed m.p. in 
equilibrium 464; departures 
from 467 ; open m.p. in 
equilibrium 466, 467, 468 ; 
reversal of 467 

Mills's ratio 98 

minimal: solution 25 1 ,  265 ; m. 
pr. 262 

Minkowski 's  inequality 143, 3 1 9 

misprints 236 

mixing 294; strong 4 1 0  

mixture 1 25 

modified renewal pro 366, 427 , 
438 

moments 5 1 ,  94; of branching 
pro 172 ;  central 5 1 ;  c.f. 1 83 ,  
1 84 ;  convergence of  353 ;  
factorial 1 5 1 ;  fractional 55 ,  
94 ;  m. generating fn 152 ,  1 8 1 ;  
joint 209; problem 1 84, 2 1 1 ;  
renewal pro 4 1 6, 437, 438 

monotone convergence 1 79 

Monte Carlo 42, 1 00, 1 4 1 ,  292 

Monty Hall 1 2  

Moscow 468 

moving average pro 364, 373,  
377, 393, 409 ; spectral density 
of 409 

multinomial distn 62; marginals 
66; p.g.f. 155  

multinormal distn 1 1 7 ,  370; 
c.f. 1 87 ,  1 88 ;  covariance 
matrix 1 17 ,  1 88 ;  mean 1 1 7 ;  
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sampling from 147; singular 
1 1 8 ;  standard 1 1 8 ;  transformed 
1 1 7 

Murphy's law 8 

mutual information 66 

N 
needle, Buffon's 1 00, 1 03 ,  1 04, 

143, 144, 305 ,  

negative binomial distn 6 1 ;  
bivariate 208 ; moments 6 1 ;  
p.gJ. 1 5 5 ,  206; sampling from 
1 23 

negative hypergeometric distn 62, 
1 25 

Newton, I. 7 1 ,  554 

no arbitrage 55 1 

non-central distns 1 85 

non-homogeneous: birth pro 300; 
birth-death pro 274; Poisson pro 
282, 29 1 ,  299 

non-linear: birth pr., epidemic 
276 

non-null state 222 

noodle, Buffon's  143 

norm 306, 540; of complex r.v. 
389 ;  convergence in 306; 
equiValence class 540; L2 343 ; 
Lp 343 

normal distn 95,  140; bivariate 
1 00, 1 06, 1 1 1 , 1 1 2, 1 14, 1 1 8, 
1 4 1 ,  349; central limit theory 
1 94, 200; c .f. 1 87 ;  correlation 
1 0 1 ;  covariance 10 1 ;  linear 
transformation 1 1 7 ,  1 1 8 ;  
Mills's ratio 98 ;  moments 
96; multivariate 1 1 7 ;  sample 
1 1 9, 1 22, 2 1 1 ;  sampling 
from 1 26, 146; square 1 07 ;  
standard 96 ;  sum of  1 1 4 ;  sum 
of squares 1 4 1 ,  193 ;  trivariate 
1 1 9;  uncorrelated 1 0 1  

normal number theorem 4 1 0  

null : event 7 ,  1 5 ,  5 3 9 ;  state 222 

o 
010 notation 566 

occupancy 1 5 8  

Ohm's law 5 5 9  

Olbers's paradox 290 

open migration pro 466 

optimal: packing 477, 48 1 ;  
replacement 433 ;  reset time 
563 

optimal stopping: dice 5 5 ;  
marriage 144 

Index 

optional: sampling 489; skipping 
503;  starting 504; switching 
488 

optional stopping 488, 49 1 ,  502, 
503;  diffusion 529; martingale 
49 1 , 502 

order statistics 142; exponential 
144;  general 144;  Poisson pro 
277; uniform 142, 144, 302 

Ornstein-Uhlenbeck pro 407, 5 1 5 ,  
537 ,  539 ;  drift 520 ;  reflected 
56 1  

orthogonal: increments 387,  
388 ,  539;  polynomials 144;  
complex-valued r.v. s 376 

osmosi s 302 

outcome 1 

p 
pairwise independent: events 1 3 ,  

14 ;  r.v. s 49 

paradox: Bertrand 1 33 ,  1 4 1 ;  
Borel 1 06; Carroll 12 ;  Galton 
14 ;  inspection 42 1 ,  437; 
Olbers 290; Parrando 303 ;  
prisoners 1 1 ;  Simpson 1 9 ;  
St Petersburg 5 5 ;  voter 66; 
waiting time 42 1 

parallel lines 146 

parallelogram 147;  property 307; 
rule 344 

parking 143 

Parrando's paradox 303 

partial balance 464, 466 

partition: event 337 ;  function 
292; sample space 1 0, 22; state 
space 224 

Pasta property 264 

path of r.w. 72, 76 

patterns 1 62, 206, 439, 5 1 1  

pawns 45 

Pearson, K. 7 1  

Pepys's problem 7 1  

periodic state 222 

Perron-Frobenius thm 240, 295 

persistent: chain 225 ; r.W. 163,  
1 97 ,  207,  559;  state 220,  263 ; 
Wiener pro 557 

pig 23 

point mass 34, 50 

points, problem of 75 ,  86, 156 

pointwise convergence 306 

Poisson: approximation 87;  
convergence 1 28 ;  coupling 
1 29 ;  flips 48, 62, 208, 2 1 0; 
traffic 302, 304, 369 

Poisson distn 47, 6 1 ;  compound 
207 ; and gamma distn 14 1 ;  
limit of binomial distn 6 1 ,  
1 30, 2 1 0; m.g.f. 1 5 2 ;  modified 
47; moments 6 1 ;  p.g.f. 1 5 1 ;  
sum of 84, 1 50, 3 1 8 ;  truncated 
452 

Poisson pro 247 ; age 42 1 ;  
characterization of 4 1 0, 
5 0 1 ;  colouring thm 287; 
compound P. 299; conditional 
property 277, 286; continuity 
in m.s .  355 ;  covariance 
355 ;  differentiability 355 ;  
doubly stochastic 299; 
excess life 255 ;  forest 30 1 ;  
gaps 369; intensity fn 282; 
Markov renewal pro 4 1 6; 
mapping thm 284; martingales 
50 1 ;  mean measure 282; 
non-homogeneous 282, 29 1 ,  
299, 374; perturbed 302; p.g.f. 
248 ;  renewal 366, 4 1 6; Renyi's 
thm 288;  sampling 264; spatial 
282; superposed 255 ,  283; 
thinned 255 ;  total life 437; 
traffic 302, 304, 369 

poker 24, 25 ; p. dice 25 

P6lya's urn 358,  5 1 0 

polymer 275 ,  

portfolio 548, 554; replicating 
549, 553 ;  self-financing 549 

positive definite 1 1 6, 1 1 8, 408 

positive state, see non-null 

postage stamp lemma 226 

posterior distn 292 

potential theory: diffusion 555 ;  
r.w. 559 

power: series 150 ;  series 
approximation 356; set 3 

Pratt's lemma 354 

predictable: sequence 474; step 
fn 540, 542, 544 

predictor; best 343, 346; linear 
378 ;  minimum m.s .  343 

prior distn 292 

prisoners' paradox 1 1  

probabilistic method 24, 59 

probability: conditional 9;  
continuity of p. measure 
7; convergence 7, 308; p. 
density fn 33 ,  89; p. di stn fn 
27; extinction of branching 
pro 173 ;  p. mass fn 46; p. 
measure 5; p.g.f. 150; product 
p. measure 1 5 ;  a-additivity 5 ;  
p .  space 5 ,  6; transition p .  2 1 4, 
256; p. vector 1 26 



product: measure and space 15 ,  
399; rule 546 

projection: of r.w. 207; p. 
theorem 345 

proof reading 236 

proportion, see empirical ratio 

proportional investor 563 

proposal matrix 293 
prosecutor's fallacy 12 

protocol 12, 24 

pseudo-random number 42, 1 22 

pull-through property 69, 336, 
348 

pupils 39 

Q-matrix 257 
Q 

quadratic form 1 1 5 ;  non-negative 
definite, positive definite 1 16 

quadratic variation 37 1 

quantum theory 54 

queue: batch 468 ; baulking 369, 
468, 470; busy period 28 1 ,  
447, 450; costs 469; departure 
pr. 445 , 467; difficult customer 
468;  discipline 368; D/M/1 
455 ,  470; dual q. 453 ,  460, 
461 ;  Erlang loss formula 
470; finite waiting room 468 ;  
G/GIl 455 , 46 1 , 469; G/M/1 
45 1 , 454, 455 , 46 1 ;  heavy 
traffic 462; idle period 460; 
imbedded branching pr. 450; 
imbedded Markov pr. 446, 
452; imbedded r.w. 444, 458 ;  
Jackson network 463 ; ladder 
point 458 ,  459, 46 1 ;  Lindley 
eqn 455 ;  lucky customer 460; 
MID/1 45 1 , 462, 469 ; M/G/1 
28 1 , 445 , 45 1 , 46 1 , 468 ; 
M/G/oo 28 1 ;  migration system 
463; M/M/I 28 1 , 442, 445 , 
45 1 ,  462, 468, 469 ;  M/Mlk 
374, 467, 469, 470; networks 
463 ; notation 440; reflection 
46 1 ;  reversed 467 ; series 468, 
469 ; simple 280; stability 
368; supermarket 468 ; tandem 
445 ; taxicabs 470; telephone 
exchange 464, 469 ; traffic 
intensity 369, 44 1 ;  virtual 
waiting 454, 468 ; waiting time 
6 1 , 369, 445 , 449, 454, 459, 
469 

R 
R-process 373 

rth mean convergence 308 

Index 

radioactivity 246, 423, 425 

Radon-Nikodym derivative 507 

random: bias 20 1 ;  binomial 
coefficient 1 6 1 ;  chord 1 33 ;  
dead period 437; harmonic 
series 359;  integers 30 1 ;  line 
1 34;  r. parameter of distn 1 07 ,  
125 ,  155 ,  161 ,  1 62 ;  pebbles 
146; permutation 1 25 ;  polygon 
236; process 360; rock 147; 
rod 143, 146; sample 142; 
subset 282; sum 69, 7 1 ,  1 53 ,  
2 1 2 ;  telegraph 364; triangle 
1 36  

random sample 142 ;  normal 1 1 9 ;  
order statistics 142 

random variable 27;  arc sine 
80; arithmetic 1 92, 4 1 7 ;  
Bernoulli 29, 60; beta 97; 
binomial 47, 60; bivariate 
normal 1 00; Cauchy 97 ; 
c.f. 1 82 ;  chi-squared 97;  
complex 1 82 ;  compound 
125 ,  153 ,  1 6 1 ;  constant 29; 
continuous 33, 89; correlated 
64; defective 154 ;  density 
33 ,  89; dependent 62, 98 ;  
discrete 33 ;  distribution 27 ; 
expectation 179 ;  exponential 
95 ;  F (r, s) 1 2 1 ;  measurability 
of 27, 92; function of 34, 50, 
92; gamma 96; generating 
fn of 1 50, 1 52;  geometric 
47, 6 1 ;  hypergeometric 
84; independent 48, 53 ,  
92 ;  indicator 29 ;  infinitely 
divisibility 208 ; log-normal 
97, 2 1 1 ;  m.g.f. 152 ,  1 8 1 ;  
moments 5 1 ,  94; multinomial 
62; multinormal 1 1 7 ,  370; 
negative binomial 6 1 ;  normal 
95 ;  orthogonal 376; p.g.f. 
1 50; Poisson 47 , 6 1 ;  simple 
179 ;  singular 33 ;  spectral 
representation for 387 ;  
standard normal 96; Student's  
t 1 2 1 ;  sums of 70, 1 53 ;  
symmetric 49, 9 1 ,  209; tails of 
30; tilted 1 86, 203 ; truncated 
38 ,  329, 349; uncorrelated 53 ,  
84 ,  1 1 5 ;  uniform 95;  waiting 
time 6 1 ,  95 ;  Weibull 97; zeta 
83 

random vector 38  

random walk 71 ,  1 62 ;  asymmetric 
75 ;  with barriers 74; on 
binary tree 236; branching 
278 ;  classification of 223 ; 
conditional 75 ;  on cube 226; 
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diffusion limit of 5 1 5 ;  first 
exit 494; first passage 1 64; 
first visit 83 ;  on graph 236, 
240, 302, 558, 559, 560; 
homogeneous 72; imbedded in 
birth-death pr. 272; imbedded 
in queue 444, 458;  leads 1 69;  
Markov 73 ;  martingale 495 ; 
maximum 78,  83 ,  1 67 ,  1 70; 
path 72, 76; persistent 1 63 ,  
1 97 ;  potential theory 559 ;  
projected 170;  range 86, 
403 ;  reflected 460; reflection 
principle 76, 1 65 ;  retaining 
barrier 23 1 ;  returns to origin 
79, 83 ,  163 ;  reversed 79, 239, 
457; simple 7 1 ,  72, 74, 1 62, 
2 1 6, 47 1 , 472, 483, 486; on 
square 1 70; symmetric 17, 
2 1 ;  three dimensional 298, 
560; tied down 169; transient 
163 , 33 1 ;  truncated 240; two 
dimensional 1 70, 207 , 240, 
5 1 1 , 560; visits 77, 80, 86, 
1 65 ;  zeros of 1 62 

range of r.w. 86, 403 

rate of convergence 295 , 303 

ratio 4, 8 ,  30; of uniforms 1 24 

realization 76, 360; of Wiener pr. 
5 1 8  

record: times 92; values 1 07 ,  
299, 359 

recurrence eqn, see difference eqn 

recurrence time 222, 433 

recurrent, see persistent 

recurrent event 1 59 ,  198 ,  2 1 1 ,  
2 17 ,  33 1 ,  409 

Red Now 5 1 1  

reflecting barrier 530, 533 

reflection: in diffusion 530, 533 ;  
of  Ornstein-Uhlenbeck pr. 
56 1 ;  principle 76, 1 65 ;  in 
queues 46 1 ;  in r.w. 74, 460; 
of Wiener pr. 526, 530, 533 ,  
534 

regeneration 434 

regular diffusion 5 3 1  

rejection method 123 

reliability 57 

renewal: age 366, 42 1 ;  
alternating 425 , 436, 438 ;  
Bernoulli 374; Blackwell thm 
4 1 7 ;  central limit thm 437 ; 
counters 423 ; coupling 429; 
current life 366, 42 1 ;  delayed 
366, 427, 438 ;  elementary 
r. thm 4 1 7 ;  r. equation 4 14 ;  
excess life 366, 42 1 ;  function 
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366, 4 1 3 ,  438; gaps 4 1 6; 
honesty 4 1 2 ;  key r. thm 4 1 8 ;  
law o f  large numbers; Markov 
r. 366, 4 1 6; r. process 365 ,  
367, 4 1 2 ;  r.-reward thm 43 1 ;  r. 
sequence 297, 367 ;  stationary 
r. pro 428 ;  stopping time 4 1 8 ;  
sum/superposed 426, 437; r. 
thm 1 60, 1 98 , 367, 4 1 7 , 429; 
thinning 439; total life 366, 
42 1 ;  r.-type eqn 4 14, 4 1 6, 430 

Renyi's theorem 288 

repairman 425 

replication 549 

repulsion 24 

residual: life 366; service 454 

resistance 559 

resources 303 

retaining barrier 74 

reversed: chain 237 ,  367 ;  
martingale 499; migration pro 
467 ; r.w. 79, 457 

reversible: chain 238, 240, 263, 
293; Markov pro 299, 469 ; r.w. 
239 

reward fn 43 1 

right-continuous 28 ;  filtration 
50 1 ; martingale 502; r.w. 1 64 

risk-neutral 55 1 

rod 1 43 ,  146 

ruin 470, 5 1 0, see also gambler's 
ruin 

runs 59, 69, 2 1 1 

S 
a-field 3, 14,  2 1 ;  conditioning on 

346; decreasing sequence of 
499; increasing sequence of 
347, 473 ;  invariant 399; tail 
322; trivial 323 

St John's College 146 

St Petersburg paradox 55 ,  1 00 

sample: s. mean 1 1 9 ;  normal 
1 1 9, 1 22, 2 1 1 ;  ordered s. 142; 
S .  path 76, 360, s .  space 1 ;  s .  
variance 1 1 9 

sampling 87, 1 22 ;  optional 489; 
with and without replacement 
84 

sampling from distn 1 22;  arc sine 
1 27 ;  beta 1 26; binomial, 123 ;  
Cauchy 1 26; gamma 1 23 ,  1 26; 
geometric 1 26; multinormal 
147;  negative binomial 123 ;  
normal 1 26, 146 ;  uniform 1 25 

schoolteacher 39 

second-order stationary 361 

Index 

secretary problems 56, 85,  1 44, 
487 

self-financing portfolio 549 

semigroup 256; generator 258, 
266; standard 257, 266; 
stochastic 256, 266; transition 
256; uniform 266 

semi-invariant 1 85 

sequence: of events 7, 23 ;  of 
heads and tails 8, 14 ;  renewal 
297, 367 ;  of step fns 506; 
typical 3 1  

series of queues 468 

shift operator 398, 4 1 0  

shocks 29 1 

shorting 547, 560 

shot noise 289 

simple birth 250, 255 

simple birth-death 270, 274; 
extinction 272, 274, 300; 
non-homogeneous 274; p.gJ. 
27 1 

simple immigration-death pro 270 

simple: process 365 ;  queue 280; 
r.v. 179 ;  r.w. 7 1 ,  72, 74, 1 62, 
2 1 6, 47 1 , 472, 483, 486 

simplex 302; S .  algorithm 87 

Simpson's paradox 1 9  

simulation 1 22, see sampling 

singular: multivariate normal 
distn 1 1 8 ;  r.v. 33 

skeleton 26 1 

skewness 1 45 

Skorokhod: map 373 ;  thm 3 14 

sleuth 85 

Slutsky's theorem 3 1 8  

smoothing 409 

Snell 's inequality 48 1 

snow 16 ,  2 1  

space: closed 344; complete 1 5 ;  
Hilbert s .  3 9 1 ,  540; probability 
S. 5, 6; product S. 1 5 ,  399; 
state s .  2 1 3 , 214; sample S .  1 ;  
vector S .  43, 66 

span of r.v.s 1 85 ,  1 92, 4 1 7  

Sparre Andersen theorem 563 

spectral: decomposition of 2-state 
Markov chain 385 ;  density 
382;  distribution 382;  process 
387 ;  representation 387 ;  S .  thm 
363, 3 8 1 ,  387 

spectrum 363, 382 

sphere 24, 1 06, 1 44, 29 1 , 5 1 2, 
555, 557 ,  558, 560 

Spitzer, F. 127; identity 1 67 

square lattice 279, 560 

squeezing 145 

stable: queue 368, 46 1 ,  46 1 ;  state 
266 

standard: bivariate normal 
distn 1 00; S. deviation 5 1 ;  
multinormal distn 1 1 8 ;  normal 
distn 96; S. semigroup 257, 
26 1 ,  266; s .  Wiener pro 370, 
4 1 0, 5 17 

stars 290 

state: absorbing 223, 266; 
aperiodic 222; classification 
of 222; closed set 224; 
communicating 223 ; 
ergodic 222 ; finite S. space; 
instantaneous 266; irreducible 
set of 224; Markov chain 
214 ;  null 222; period(ic) 222; 
persistent 220, 263 ; recurrent 
220; space 2 1 3 ,  2 1 4; stable 
266; symmetric 223 ; transient 
220, 263 

stationary distn: of birth-death 
pro 269; of branching pro 244; 
of closed migration pro 464; of 
Markov chain 227 ; of Markov 
pro 260; of open migration pro 
466; of queue length 443 , 445 , 
447, 452, 454, 462, 469; of 
r.w. 23 1 ,  444; waiting time 
445 , 449, 454, 455 ,  461 

stationary excess life 422, 423 

stationary increments 254, 408, 
422, 428 

stationary Markov process:  
continuous 260; discrete-time 
227 

stationary measure 398 

stationary process 361 ; best 
predictor 378 ;  ergodic thm 
393, 394;  Gaussian 393, 
408; Gaussian Markov 407 ; 
spectral representation thm 
387;  strongly 3 6 1 ;  weakly 36 1 ;  
stationary recurrent events 160; 
renewal 428, 429 

Stein-Chen approximation 1 30 

stereology 143 

Stigler's law, 19 

Stirling's formula 80, 83 ,  1 90, 
1 92, 298, 357 

stochastic: differential eqn 544; 
S .  domination 127 ;  doubly S. 
220; S .  integral 388 ,  4 1 1 ,  542; 
S .  matrix 2 1 5 ;  S .  ordering 1 27 ,  
133 ;  s .  pro 2 1 3 ;  s .  semigroup 
256, 266 

stock 547 



stopped martingale 488 

stopping: optimal 55 ,  1 44; 
optional 488, 49 1 ,  502, 503; 
s. time 2 1 9, 253, 420, 490; s. 
time for martingale 487, 50 1 ; 
s. time for renewal pro 4 1 8 ; S .  
time for Wiener pro 526 

strategy 45, 55, 1 44, 304, 5 1 1 

Stratonovich integral 538 

strike price 548 

strong law of large numbers 326, 
329, 355, 409, 499 

strong mixing 4 1 0  

strongly stationary 36 1 ;  ergodic 
thm 393 

strong Markov property 2 1 9, 253,  
526 

strontium 250 

structure function 58 

Student's t distn 1 2 1 ; non-central 
1 85 

subadditive function 298 

subcritical branching 245 

submaliingale 474 

sum of dependent r.v. s 70, 1 1 3 
sum of independent r.v.s 70, 1 5 3 ;  

Bernoulli 47 ,  60, 85 ,  1 29, 1 53 ;  
binomial 84, 1 53 ;  Cauchy 
1 1 5 ,  206, 209, 328;  c .f. 1 83 ;  
chi-squared 1 22, 1 4 1 ;  distn 
of 70; exponential 1 09, 1 15 ,  
1 4 1 , 2 1 2, 252 ;  gamma 14 1 ;  
geometric 6 1 , 70, 7 1 ;  normal 
1 1 4; p.g.f. 1 5 3 ;  Poisson 84, 
1 50, 3 1 8 ;  random S .  69, 7 1 ,  
153 ,  2 1 2 ; renewals 426, 437 ;  
uniform 7 1 ,  1 1 5 ;  variance 53  

sunspots 364 

supercritical branching pro 245 

supermartingale 474 

superposed: Poisson pro 255 ,  283;  
renewal pro 426,  437 

sure thing principle 2 1  

survival 59, 9 1  

Sylvester's problem 139  

symmetric :  difference 564; r. v. 
49, 9 1 , 209; r.w. 17 , 2 1 , 72, 
80, 86, 1 70, 280, 298, 492, 
495 ; spectral distn 383; state 
223 

system 503; Labouchere 5 1 0  

T 
t , Student's 1 2 1  

tail :  equivalent 359 ;  event 322, 
324; fn 323; integral 93, 94; 
a-field 322; sum 84, 1 40 

Index 

tail of distn 30; p .g .f. 155  

tandem queue 445 

target distn 293 

taxis 470 

Taylor's theorem 1 8 1 ,  1 83 ,  537 ,  
545 

telekinesis 44 

telephone: exchange 464, 469 ; 
sales 88 

testimony 18 

Thackeray, W. M. 333 

thinning 255 ;  of renewal pro 439 

three series theorem 359 

three-dimensional r.w. : transience 
298, 560; Wiener pro limit 5 1 5 

three-dimensional Wiener pro 5 1 5 ,  
555 ,  5 5 7  

tied-down : r.w. 1 69 ;  Wiener pro 
4 1 1 , 535 

tilted distn 1 86, 203 

time-reversed chain 237 

time-reversible chain 238,  240, 
263, 293, 299, 469 

time series 364, 377 

Tontine 38 

total life 366,  42 1 

total variation distance 44, 1 28 ,  
1 33 ,  3 1 8 ,  356 

tower property 69,  1 43 ,  336 

traffic:  gaps 369; heavy 462; 
intensity 369, 44 1 ;  Poissonian 
302, 304 

transform: Fenchel-Legendre 
20 1 ;  Fourier 1 82, 567; Laplace 
1 8 1 ,  5 66; Laplace-Stieltjes 
4 1 6, 567; martingale 503 

transient: chain 225 ; diffusion pro 
558 ;  queue 443 , 444, 447, 452;  
r.w. 1 63 ,  1 97 , 2 1 1 , 298, 33 1 ,  
559 ;  state 220, 263 ; Wiener pro 
558 

transition: matrix 2 14 ;  
probabilities 2 14, 256;  
semigroup 256 

transitive coins 45 

trapezoidal distn 7 1  

travelling salesman 478 

trial 1; Bernoulli, 60, 95 ; clinical 
1 9, 20; de Moivre 62 

triangle inequality 306, 343 , 396 

trinomial distn 40, 60 

triplewise independent 155  

trivariate normal distn 1 1 9  

trivial a-field 323 

truncated 329, 348; Poisson 452; 
r.v. 38; r.w. 240 
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tumour 280 

Tunin's theorem 88 

two-dimensional: r.w. 1 70, 207, 
240, 5 1 1 , 560; Wiener pro 556, 
562 

two-state: Markov chain 239, 
298, 364; Markov pro 260, 267, 
384 

type 2 counter 438 

U Mysaka 374 

unbiased 6, 1 1 9 

uncle, rich 74 

u 

unconscious statistician 50, 64, 
83 , 93, 99 

uncorre1ated: normal r.v. s 1 0 1 ;  
r.v. s 5 3 ,  64, 84, 1 1 5 ,  345 

uniform birth pro 268 

uniform: distn 95 ; I l l , 384; 
maximum 2 1 0; order statistics 
142, 1 44, 277, 302; sampling 
from 1 25 ;  sum of 7 1 ,  1 1 5 

uniform integrability 350 

uniform stochastic semigroup 266 

uniqueness theorem 1 89 

upcrossings inequality 482, 486 

upper class fn 332 

uranium 250 

urn 1 1 , 12 , 24; P61ya u. 358, 5 1 0  

usual conditions 50 1  

utility 54  

V 
value function 548, 55 1 ,  554 

variance 5 1 , 94; Bernoulli 52 ;  
binomial 52 ;  branching pro 
1 72, 207 ; complex r.v. 376; 
conditional 69; geometric 
6 1 ;  hypergeometric 152 ;  
indicator fn 52 ;  negative 
binomial 6 1 ;  non-lineruity 
of 54;  non-negativity of 5 1 ;  
normal 96; normal sample 
1 1 9 ;  Poisson 6 1 ;  of sums 53  

vector space 43, 66 

versions 372 

Vice-Chancellor 8 , 22 

virtual waiting time 454, 468 

visits : by Markov chain 223, 226, 
265, 297, 303, 433 ;  by r.w. 77, 
80, 86, 1 65 

volatility 548 

vos Savant, M.  1 1  

voter paradox 66 
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w 
wagers 54 

waiting room 468 

waiting time: distn 61,  95 ;  for 
a gap 369, 4 1 6; in GIGll 
455 ,  469 ; in GIMlI 454; in 
M/O/1 449; in MIMI1 445 ; 
paradox 42 1 ;  stationary distn 
of 445 , 449, 454, 455, 46 1 ,  
469; virtual 454, 468 

Wa1d's :  eqn 4 1 9, 43 1 ,  493 ; 
identity 493, 494 

Waldegrave's  problem 207 

Waring's theorem 22, 1 5 8  

warning 1 1 1  

weak convergence 1 93 ,  309, 3 1 6 

weak law of large numbers 1 93 , 
326 

weak Markov property 253 , 525 

weakly stationary 36 1 ;  ergodic 
thm for 394 

Weibull distn 97, 98 , 356 

Weierstrass 's  theorem 324 

Index 

white noise: discrete 384; 
Gaussian 544 

Wiener-Hopf eqn 456, 462 

Wiener process 370, 407, 5 1 6 ;  
absorbing barrier for 530, 
5 6 1 ;  arc sine laws 529, 
563 ; backward eqns for 
5 1 7 ;  characterization 502; 
on circle 547; conditional 
37 1 ,  535 ,  536;  continuity 
of 5 1 6, 522, 524; with drift 
520, 528, 532, 533 ,  55 1 ;  on 
ellipse 547 ;  excursions 534; 
existence of 523 ;  first passage 
526; forward eqns for 5 1 7 ;  
geometric 5 2 5 ,  5 3 7 ;  hitting 
barrier 529; homogeneous 
370; integrated 4 1 1 ,  5 1 2, 537 ,  
544;  level sets of 562; Levy 
characterization thm 502;  
martingales 5 1 2 ;  maximum 
of 526, 529, 562; positive 
536;  quadratic variation 37 1 ;  
realization of 5 1 8 , reflected 

526, 530, 533 ,  534; standard 
370, 4 1 0, 5 1 6; stopping time 
526; in three dimensions 555,  
557 ;  tied down 4 1 1 ,  535 ;  in 
two dimensions 556, 562; 
zeros of 527, 534, 562 

Wimbledon 4 

x 
X-ray 144 

y 
Yule, G. U. 1 9  

Z 
zero-one law 32 1 ,  484; 

Hewitt-Savage 324; 
Kolmogorov 322, 400 

zeros: Brownian bridge 536; of 
r.w. 1 62;  of Wiener pro 527 , 
534, 562 

zeta, Zipf distn 83 

zoggles 1 1 , 1 8  
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